Q1: (a) Find the inverse of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$. (4 marks)
(b) Use Cramer's rule to solve the following linear system:

$$
\begin{aligned}
& x_{1}+2 x_{3}=6 \\
& -3 x_{1}+4 x_{2}+6 x_{3}=30 \\
& -x_{1}-2 x_{2}+3 x_{3}=8
\end{aligned}
$$

(4 marks)
Q2: (a) Find a subset of the vectors $\mathrm{v}_{1}=(1,-2,0,3), \mathrm{v}_{2}=(2,-5,-3,6), \mathrm{v}_{3}=(0,1,3,0)$, $v_{4}=(2,-1,4,-7)$ and $v_{5}=(5,-8,1,2)$ that forms a basis for the space spanned by these vectors. (4 marks)
(b) Find bases for the eigenspaces of the matrix $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$ (4 marks)

Q3: (a) Let \mathbb{R}^{4} have the Euclidean inner product. Find the cosine of the angle θ between the vectors $\mathbf{u}=(4,3,1,-2)$ and $\mathbf{v}=(-2,1,2,3)$.
Moreover, if P_{2} has the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$, then show that the vectors x and x^{2} are orthogonal. (4 marks).
(b) Assume that the vector space \mathbb{R}^{3} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $(1,1,1),(0,1,1),(0,0,1)$ into an orthonormal basis. (4 marks)

Q4: (a) Consider the basis $S=\left\{\mathrm{v}_{1}=(1,1,1), \mathrm{v}_{2}=(1,1,0), \mathrm{v}_{3}=(1,0,0)\right\}$ for \mathbb{R}^{3}. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation for which $T\left(v_{1}\right)=(1,0), T\left(v_{2}\right)=(2,-1)$ and $T\left(v_{3}\right)=(4,3)$. Find a formula for $T\left(x_{1}, x_{2}, x_{3}\right)$, and then use that formula to compute $\mathrm{T}(2,-3,5)$. (4 marks)
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear operator defined by the formula:
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2},-2 x_{1}-4 x_{2}+3 x_{3}, 5 x_{1}+4 x_{2}-2 x_{3}\right)$

Determine whether T is one-to-one; if so, find $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)$. (4 marks)

Q5: Prove the following statements:
(a) If \mathbf{u} and \mathbf{v} are orthogonal vectors in an inner product space, then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .(2$ marks $)$
(b) If $T: V \rightarrow W$ is a linear transformation, then the range of T is a subspace of W. (2 marks)
(c) If $T: V \rightarrow W$ is a linear transformation, then T is one-to-one if and only if $\operatorname{ker}(\mathrm{T})=\{0\}$. (2 marks)
(d) If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are two linear transformations, then $\left(T_{2} \circ T_{1}\right): U \rightarrow W$ is also a linear transformation. (2 marks)

