King Saud University: Mathematics Department Math-254

First Semester
1442 H
Maximum Marks $=40$

Final Examination Time: 180 mins.

Name of the Student: I.D. No. $\qquad$

Name of the Teacher: Section No.

Note: Check the total number of pages are Six (6). (20 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 20 : Marks: 1.5 for each one $(1.5 \times 20=30)$


| Q. No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a,b,c,d |  |  |  |  |  |  |  |  |  |  |


| Quest. No. | Marks Obtzinka | Marks for Questions |
| :---: | :---: | :---: |
| Q. 1 to Q. 20 |  | 30 |
| Q. 21 |  | 5 |
| Q. 22 |  | 5 |
| Total |  | 40 |

Question 1: The number of iterations required to find the zero of $f(x)=x^{3}-x^{2}-1$ in $[1,2]$ accurate to within $10^{-6}$ using Bisection method is:
(a) 22
(b) 20
(c) 18
(d) None of These

Question 2: Using Newton's method the first approximation of the root of $x^{3}-\alpha x^{2}-1=0$ is 2 when $x_{0}=1$, then the value of $\alpha$ is:
(a) 2
(b) 3
(c) 1
(d) None of These

Question 3: The equation $x^{3}-4 x^{2}-3 x+18=0$ has a double root at $\alpha=3$. Using quadratic convergent method with $x_{0}=0$, the first approximation of the root is:
(a) 12
(b) 6
(c) 3.5
(d) None of These

Question 4: Let $A=\left[\begin{array}{ll}1.001 & 1.5 \\ 2 & 3\end{array}\right]$, then the determinant of the lower-triangular matrix $L$ of the LU factorization using Crout's method is:
(a) 1.001
(b) 0.300
(c) 0.003
(d) None of these

Question 5: The $l_{\infty}$-norm of the Jacobi iteration matrix of the following linear system $4 x_{1}-x_{2}+x_{3}=7, \quad 4 x_{1}-8 x_{2}+x_{3}=-21, \quad-2 x_{1}+x_{2}+5 x_{3}=15 ;$ is:
(a) 0.5
(b) 0.625
(c) 0.6
(d) None of These

Question 6: The $l_{\infty}$-norm of the first approximation of the solution vector obtained by GaussSeidel method starting with $x^{(0)}=(0,0,0)^{t}$ for the following linear system $4 x_{1}-x_{2}+x_{3}=4, \quad 3 x_{1}+8 x_{2}+x_{3}=-21, \quad-2 x_{1}+x_{2}+5 x_{3}=15$; is:
(a) 4
(b) 3
(c) 5
(d) Nome af These

Question 7: Let $A=\left[\begin{array}{cc}0 & \alpha \\ 1 & 1\end{array}\right]$ and $0<\alpha<2$. If the coudition number $k(A)$ of the matrix $A$ is 6 , then $\alpha$ equals to:
(a) 0.2
(b) 0.8
(c) 0.5
(d) None of These

Question 8: Let $p_{1}(x)$ the linear Lagrange interpolation polynomial for the data $(2,4)$ and $(5, \alpha)$. If the constant term in $p_{1}(x)$ is equal 6 , then the value of $\alpha$ is:
(a) 2
(b) -1
(c) 1
(d) None of These

Question 9: If the quadratic Lagrange interpolation of a function $f$ at $x=1.4$ is given by $p_{2}(1.4)=A f(0)+B f(1)+C f(2)$, then the value of $B$ is:
(a) -0.12
(b) 0.84
(c) 0.28
(d) None of These

Question 10: Let $x_{0}=2, x_{1}=2.5, x_{2}=4$ and $x_{3}=4.5$. If the best approximation of $f(x)=\frac{1}{x}$ at $x=3$ using quadratic interpolation formula is $p_{2}(3)=0.325$, then the value of the unknown point $\eta$ in the error formula is equal to:
(a) 2.7859
(b) 2.9201
(c) 3.1472
(d) None of These

Question 11: If $x_{0}=0, x_{1}=1, x_{2}=3$ and for a function $f(x)$, the divided differences are $f\left[x_{1}\right]=2, f\left[x_{2}\right]=3, f\left[x_{0}, x_{1}\right]=1, f\left[x_{1}, x_{2}\right]=\frac{1}{2}, f\left[x_{0}, x_{1}, x_{2}\right]=-\frac{1}{6}$. Then the approximation of $f\left(\frac{1}{2}\right)$ using quadratic interpolation Newton formula is:
(a) 1.5417
(b) 4.1232
(c) 2.3481
(d) None of these

Question 12: Let $f(x)=x^{2}$ and $\alpha \neq 1$. The value of $\alpha$ such that $f[1,1, \alpha]=\alpha^{2}$ is:
(a) 0
(b) 2
(c) -1
(d) None of These

Use the data in the following table to answer the Question 13 up to Question 16:

| $x$ | 1.00 | 1.20 | 2.00 | 2.25 | 2.60 | 2.75 | 2.80 | 3.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 0.4 | 1.5 | 2.03 | 2.7 | 3.7 | 4.5 | 5.2 | $\alpha$ |

Question 13: The best approximate value of $f^{\prime}(2.5)$ using 3 -point difference formula is:
(a) 2.6
(b) 3.6
(c) 1.6
(d) None of These

Question 14: If the best approximate value of $f^{\prime}(3)$ using 3 -point difference formula is 6 , then the value of $\alpha$ is:
(a) 5.5
(b) 6.5
(c) 4.5
(d) None of These

Question 15: The best approximate value of $f^{\prime \prime}(2)$ using 3-point central difference formula is:
(a) 4.125
(b) 2.125
(c) 3.120
(d) None of These

Question 16: If $\alpha=6$, then the best approximate value of $\int_{1}^{3} f(x) d x$ using Simpson's rule is:
(a) 4.84
(b) 5.23
(c) 6.72
(d) None of These

Question 17: The number of subintervals required to approximate the integral $\int_{1}^{3}\left(x^{2}+\ln (4-x)\right) d x$ accurate to within $10^{-5}$ using the composite Simpson's rule is:
(a) 18
(b) 16
(c) 20
(d) None of These

Question 18: Given $y^{\prime}+y=2 x, y(0)=-1$, the approximate value of $y(0.2)$ using Euler's method when $n=2$ is:
(a) -1.01
(b) -0.9
(c) -0.79
(d) None of These

Question 19: Given $y^{\prime}+x y=0, y(0)=1$, the approximate value of $y(0.2)$ using Taylor's method of order 2 when $n=1$ is:
(a) 1.0
(b) 0.98
(c) 1.01
(d) None of These

Question 20: The actual error by using the Modified Euler's method of $y(0.1)$ where $y^{\prime}=2 x y^{2}, y(0)=1, n=1$, and $y(x)=\left(1-x^{2}\right)^{-1}$ is:
(a) 0.0001
(b) 0.0002
(c) 0.0003
(d) None of These

Question 21: Let $f(x)=\ln (x+2)+e^{-(x+2)}$ defined over the interval $[1,2]$. Find the approximation of $\ln (3.8)+e^{-3.8}$ by using the equally spaced cubic Newton's polynomial on $[1,2]$ if approximation by equally spaced quadratic Newton's polynomial on $[1,2]$ is 1.3575 and fourth order divided difference is 0.0028 . Compute the number of points to get the accuracy $10^{-6}$ using the equally spaced cubic Newton's polynomial on $[1,2]$.

Question 22: Determine the number of subintervals $n$ required to approximate the integral $\int_{0}^{2} \frac{1}{x+4} d x$, with an error less than $10^{-4}$ using the composite Simpson's rule. Then approximate the integral $\int_{0}^{2} \frac{1}{x+4} d x$.

```
King Saud University: Mathematics Department Math-254
First Semester 1442 H Final Examination Solution
Maximum Marks \(=40\)

Question 21: Let \(f(x)=\ln (x+2)+e^{-(x+2)}\) defined over the interval [1, 2]. Find the approximation of \(\ln (3.8)+e^{-3.8}\) by using the cubic Newton's polynomial if approximation by quadratic Newton's polynomial is 1.3575 and fourth order divided difference is 0.0028 . Compute the absolute error and the number of points to get the accuracy \(10^{-6}\) using the cubic Newton's polynomial.

Solution. Since \(h=(2-1) / 3=1 / 3\); so \(x_{0}=1, x_{1}=4 / 3, x_{2}=5 / 3, x_{3}=2\). Using quadratic polynomial \(p_{2}(x)\) to find cubic Newton's polynomial \(p_{3}(x)\), we have to use the formula
\[
f(x)=p_{3}(x)=p_{2}(x)+f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right),
\]
and this gives
\(f(x)=p_{3}(x)=p_{2}(x)+(0.0028)(1.8-1)(1.8-4 / 3)(1.8-5 / 3)\) and \(f(1.8) \approx p_{3}(1.8)=1.3575+0.00014=1.3576\),
with possible absolute error
\[
\left|f(1.8)-p_{3}(1.8)\right|=|1.3574-1.3576|=0.0002 .
\]

Finally, as the upper bound of error in cubic polynomial is
\[
\left|E_{3}\right| \leq \frac{M h^{4}}{24}
\]
where
\[
M=\max _{1 \leq x \leq 2}\left|f^{(4)}(x)\right|=\max _{1 \leq x \leq 2}\left|\frac{-6}{(x+2)^{4}}+e^{(-x-2)}\right|=0.0243 .
\]

Since
\[
\frac{M h^{4}}{24} \leq 10^{-6}, \quad h^{4} \leq \frac{(24) \times\left(10^{-6}\right)}{M}
\]
gives, \(h \leq 0.1773\) and \(n=5.6409 \approx 6\). Thus we need, 7 points, for the cubic interpolations.

Question 22: Determine the number of subintervals \(n\) required to approximate the integral \(\int_{0}^{2} \frac{1}{x+4} d x\), with an error less than \(10^{-4}\) using the composite Simpson's rule. Then approximate the integral \(\int_{0}^{2} \frac{1}{x+4} d x\).

Solution. We have to use the error bound formula of Simpson's rule which is
\[
\left|E_{S_{n}}(f)\right| \leq \frac{(b-a)}{180} h^{4} M \leq 10^{-4}
\]

Given the integrand is \(f(x)=\frac{1}{x+4}\), and we have \(f^{(4)}(x)=\frac{24}{(x+4)^{5}}\). The maximum value of \(\left|f^{(4)}(x)\right|\) on the interval \([0,2]\) is \(3 / 128\), and thus \(M=\frac{3}{128}\). Using the above error formula, we get
\[
\frac{3}{(90 \times 128)} h^{4} \leq 10^{-4}, \quad \text { or } \quad h \leq \frac{2}{5} \sqrt[4]{15}=0.7872 .
\]

Since \(n=\frac{2}{h}=\frac{2}{0.7872}=2.5407\), so the number of even subintervals \(n\) required is \(n \geq 4\). Thus the approximation of the given integral using \(h=\frac{2-0}{4}=\frac{1}{2}=0.5\) is
\[
\begin{gathered}
\int_{0}^{2} \frac{1}{x+4} \approx \frac{0.5}{3}[f(0)+4[f(0.5)+f(1.5)]+2 f(1)+f(2)] \\
\int_{0}^{2} \frac{1}{x+4} \approx \frac{1}{6}[0.25+4(0.2222+0.1818)+2(0.2)+0.1667]=0.4055,
\end{gathered}
\]
which is equal to the true value of the given integral \(\alpha=\ln (1.5)=0.4055\) up to 4 decimal places.

\section*{Solution of the Final Examination}

The Answer Tables for Q. 1 to Q. 20 : Math

Ps. : Mark \(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\) or d\(\}\) for the correct answer in the box.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline a,b,c,d & b & c & a & c & b & a & c & c & b & a \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. No. & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline a,b,c,d & a & c & b & b & a & a & c & c & b & a \\
\hline
\end{tabular}

The Answer Tables for Q. 1 to Q. 20 : MAth

Ps. : Mark \(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\) or d\(\}\) for the correct answer in the box.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline a,b,c,d & c & a & b & b & a & c & b & a & c & b \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. No. & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline a,b,c,d & b & a & c & c & b & b & a & a & c & b \\
\hline
\end{tabular}

The Answer Tables for Q. 1 to Q. 20 : MATh

Ps. : Mark \(\{\mathrm{a}, \mathrm{b}, \mathrm{c}\) or d\(\}\) for the correct answer in the box.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline a,b,c,d & a & b & c & c & b & a & a & b & b & c \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q. No. & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline a,b,c,d & c & b & a & a & c & c & b & b & a & c \\
\hline
\end{tabular}```

