King Saud University: Mathematics Department
MATh-254
First Semester 1444 H Final Examination
Maximum Marks $=40$
Time: 180 mins.

Name of the Student:- I.D. No.

Name of the Teacher:
Section No.

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Question No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: The first approximation of the square root of 19 using a quadratic convergent method with $x_{0}=5$ is:
(a) 4.44
(b) 4.4
(c) 4.36
(d) None of these

Question 2: The first approximation of the double root of $x^{3}-3 x^{2}+4=0$, by quadratic convergent iterative method using $x_{0}=1.5$ is:
(a) 2.056
(b) 2.255
(c) 1.250
(d) None of these

Question 3: The first approximation of the solution of the system of nonlinear equations $\overline{4 x^{3}+y=6}$ and $y x^{2}=1$ using Newton's method with initial approximation $\left(x_{0}, y_{0}\right)=(1,1)$ is:
(a) $\left(x_{1}, y_{1}\right)=(0.91,1.09)$
(b) $\left(x_{1}, y_{1}\right)=(1.09,0.91)$
(c) $\left(x_{1}, y_{1}\right)=(1.5,0.5)$
(d) None of these

Question 4: If the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 1\end{array}\right)$ is factored as $L U$ using Doollitle's method, where L is a lower triangular matrix, and U is an upper triangular matrix, then the solution of the system $L \mathbf{y}=[-1,0]^{T}$ is:
(a) $[-1,-2]^{T}$
(b) $[-1,2]^{T}$
(c) $[-1,6]^{T}$
(d) None of these

Question 5: The second approximation for solving linear system $A \mathbf{x}=\binom{1}{1}$ using Jacobi iterative method where $A=\left(\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right)$ and $\mathbf{x}^{(\mathbf{0})}=\binom{1}{1}$ is :
(a) $\mathbf{x}^{(2)}=\binom{0}{-3}$
$(\mathbf{b}) \mathbf{x}^{(\mathbf{2})}=\binom{2}{-1}$
$(\mathbf{c}) \mathbf{x}^{(\mathbf{2})}=\binom{3}{3}$
(d) None of these

Question 6: The number of iterations needed to achieve accuracy 10^{-4} using Gauss-Seidel iterative method if $\left\|T_{G}\right\|=\frac{1}{3}, \mathbf{x}^{(\mathbf{0})}=[1,0,-1]^{T}$ and $\mathbf{x}^{(\mathbf{1})}=[1.2,2.3,3.1]^{T}$ is :
(a) 8
(b) 9
(c) 11
(d) None of these

Question 7: Let $x_{0}=2.0, x_{1}=3.0, x_{2}=4.0$, and $f(x)=x \ln x+e^{-x}$. Then error bound for the approximation of $f(2.5)$ using best Lagrange interpolating polynomial is:
(a) 0.25
(b) 0.024
(c) 0.204
(d) None of these

Question 8: Absolute error $\left|f(0.3)-p_{1}(0.3)\right|$ in approximating $f(0.3)$ by using linear Lagrange polynomial passing through $x_{0}=0$ and $x_{1}=1$ where $f(x)=x-10 x^{2}$ is:
(a) 0.1
(b) 0.05
(c) 2.1
(d) None of these

Question 9: Let $f(x)=e^{-x}$ and $x_{0}=0, x_{1}=0, x_{2}=1$, then the approximation of $1 / e^{0.5}$ by using quadratic Newton's polynomial is:
(a) 0.5920
(b) 0.6920
(c) 0.4920
(d) None of these

Question 10: Let $f(x)=\ln (2 x+1)$, and $x_{0}=0, x_{1}=1$. Then, the largest possible value of h needed to approximate $f^{\prime}\left(x_{0}\right)$ accurate to within 10^{-2} using these points and the 2-point forward difference formula is approximately:
(a) 0.001
(b) 0.05
(c) 0.005
(d) None of these

Question 11: Let $f(x)=x^{2}+\cos x(x$ in radian $)$ and $h=0.1$. Then, using the best 3 -point formula for the approximation of $f^{\prime}(1)$, the absolute error is:
(a) 0.0134
(b) 0.0014
(c) 0.0125
(d) None of these

Question 12: Let $f(x)$ be a differentiable function satisfies $f^{\prime \prime}(x)=(x+1) f(x)$. If $f(0.5)=-1$ and $f(1.5)=3$, then, using 3-point central difference formula for the second derivative, the approximate value of $f^{\prime \prime}(1)$ is equals to:
(a) 1.6
(b) 0.8
(c) 0.25
(d) None of these

Question 13: Let $f(x)=x \ln (x+1)$. Then, the upper bound for approximating the integral $\int_{0}^{1} f(x) d x$ by using the simple trapezoidal rule is:
(a) 0.0833
(b) 0.0625
(c) 0.1667
(d) None of these

Question 14: Let $f(x)=\frac{1}{x+1}$. The number of iterations n required composite Simpson's rule to approximate the integral $\int_{0}^{1} f(x) d x$ to within 10^{-3} is:
(a) 4
(b) 3
(c) 2
(d) None of these

Question 15: If the actual solution of the initial value problem, $y^{\prime}+y=2 x, y(0)=-1, n=1$, is $y(x)=e^{-x}+2 x-2$, then the absolute error by using Euler's method of $y(0.1)$ is:
(a) 0.0484
(b) 0.0289
(c) 0.0048
(d) None of these

Question 16: Use the quadratic Lagrange interpolating polynomial by selecting the best three points from $\{-1,0.25,0.5,1,2\}$ on the function defined by $f(x)=e^{(x+1)} \cos (x+1)$ (x in radian) to approximate $e^{(1.26)} \cos (1.26)$. Compute the absolute error and an error bound.

Question 17: Use the best integration rule to compute the integral $\int_{0.0}^{1.2} f(x) d x$, where the table for the values of $y=f(x)$ is given below:

$$
\begin{array}{l|lllllllllll}
x & 0.0 & 0.1 & 0.15 & 0.2 & 0.3 & 0.4 & 0.45 & 0.6 & 0.75 & 0.9 & 1.2 \\
\hline f(x) & 2.0000 & 2.1002 & 2.2015 & 2.3052 & 2.4129 & 2.4688 & 2.6475 & 2.8487 & 3.0812 & 3.2586 & 3.6825
\end{array}
$$

The function tabulated is $f(x)=e^{x}+\cos x$ (x in radian), compute absolute error. How many subintervals approximate the given integral to within accuracy of 10^{-4} ?

King Saud University: Mathematics Department Math-254
First Semester 1444 H Final Examination
Maximum Marks $=40$
Time: 180 mins.

Name of the Student:- I.D. No.

Name of the Teacher:- Section No.
Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Question No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(Math)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	c	d	a	c	b	a	a	c	b	a	b	b	c	a

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.(MAth)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	c	b	d	c	b	a	c	b	b	a	c	c	a	b	b

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark \{a, b, c or d\} for the correct answer in the box.(MATh)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	b	a	d	b	a	c	b	c	a	c	b	a	c	a	c

Question 16: Use the quadratic Lagrange interpolating polynomial by selecting the best three points from $\{-1,0.25,0.5,1,2\}$ on the function defined by $f(x)=e^{(1-x)} \cos (1-x)(x$ in radian $)$ to approximate $e^{(0.74)} \cos (0.74)$. Compute the absolute error and an error bound.

Solution. Since the given function is $f(x)=e^{(1-x)} \cos (1-x)$, so by taking $1-x=0.74$, we have $x=0.26$, therefore, the best points for the quadratic polynomial are, $x_{0}=0.25, x_{1}=0.5$, and $x_{2}=1$. Best form of the constructed table for the quadratic Lagrange polynomial is

$$
\begin{array}{c|ccc}
x & 0.25 & 0.5 & 1.0 \\
\hline f(x) & 1.5490 & 1.4469 & 1.0000
\end{array}
$$

Then using these table values and the quadratic Lagrange interpolating polynomial

$$
\begin{gathered}
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right) \\
f(0.26) \approx p_{2}(0.26)=1.5490 L_{0}(0.26)+1.4469 L_{1}(0.26)+1.0000 L_{2}(0.26)
\end{gathered}
$$

The Lagrange coefficients can be calculate as follows:

$$
\begin{aligned}
& L_{0}(0.26)=\frac{(0.26-0.5)(0.26-1)}{(0.25-0.5)(0.25-1)}=0.9472 \\
& L_{1}(0.26)=\frac{(0.26-0.25)(0.26-1)}{(0.5-0.25)(0.5-1)}=0.0592 \\
& L_{2}(0.26)=\frac{(0.26-0.25)(0.26-0.5)}{(1-0.25)(1-0.5)}=-0.0064
\end{aligned}
$$

Using these values of the Lagrange coefficients, we have

$$
f(0.26) \approx p_{2}(0.26)=1.5490(0.9472)+1.4469(0.0592)+1.0000(-0.0064)=1.5465
$$

which is the required approximation of the given exact solution $e^{(0.74)} \cos (0.74)=1.5478$. Thus, we have desired absolute error

$$
\left|f(0.26)-p_{2}(0.26)\right|=|1.5478-1.5465|=0.0013
$$

To compute an error bound for the approximation of the given function in the interval $[0.25,1]$, we use the following quadratic error formula

$$
\begin{aligned}
&\left|f(x)-p_{2}(x)\right|=\frac{\left|f^{(3)}(\eta(x))\right|}{3!}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right| \\
&\left|f^{(3)}(\eta(x))\right| \leq M=\max _{0.25 \leq x \leq 1}\left|f^{(3)}(x)\right| \\
& f(x)= e^{(1-x)} \cos (1-x)=e^{(1-x)} \cos (x-1), \quad(\cos (1-\mathrm{x})=\cos (\mathrm{x}-1)) \\
& f^{\prime}(x)=-e^{(1-x)}(\cos (x-1)+\sin (x-1)), \\
& f^{\prime \prime}(x)= 2 e^{(1-x)} \sin (x-1), \\
& f^{(3)}(x)= 2 e^{(1-x)}(\cos (x-1)-\sin (x-1)) .
\end{aligned}
$$

Thus

$$
M=\max _{0.25 \leq x \leq 1}\left|2 e^{(1-x)}(\cos (x-1)-\sin (x-1))\right|=5.9840
$$

at $x=0.25$. Hence
$\left|f(0.26)-p_{2}(0.26)\right| \leq \frac{5.9840}{6}|(0.26-0.25)(0.26-0.5)(0.26-1)| \leq \frac{5.9840}{6}(0.0018)=0.0017952$, which is the desired error bound.

Question 17: Use the best integration rule to compute the integral $\int_{0.0}^{1.2} f(x) d x$, where the table for the values of $y=f(x)$ is given below:

$$
\begin{array}{l|lllllllllll}
x & 0.0 & 0.1 & 0.15 & 0.2 & 0.3 & 0.4 & 0.45 & 0.6 & 0.75 & 0.9 & 1.2 \\
\hline f(x) & 2.0000 & 2.1002 & 2.2015 & 2.3052 & 2.4129 & 2.4688 & 2.6475 & 2.8487 & 3.0812 & 3.2586 & 3.6825
\end{array}
$$

The function tabulated is $f(x)=e^{x}+\cos x$, compute absolute error. How many subintervals approximate the given integral to within accuracy of 10^{-4} ?

Solution. Since the equally spaced data points are for $h=0.3$,

$$
\begin{array}{l|lllll}
x & 0.0 & 0.3 & 0.6 & 0.9 & 1.2 \\
\hline f(x) & 2.0000 & 2.4129 & 2.8487 & 3.2586 & 3.6825
\end{array}
$$

which gives, $n=4$, so the best integration rule is the composite Simpson's rule and which is

$$
\int_{x_{0}}^{x_{4}} f(x) d x \approx S_{4}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4\left(f\left(x_{1}\right)+f\left(x_{3}\right)\right)+2 f\left(x_{2}\right)+f\left(x_{4}\right)\right]
$$

Using the table values, we get

$$
\begin{gathered}
\int_{0.0}^{1.2}\left(e^{x}+\cos x\right) d x \approx S_{4}(f)=0.1[2.0000+4(2.4129+3.2586)+2(2.8487)+3.6825]=3.4066 \\
\text { Exact Solution }=\int_{0.0}^{1.2}\left(e^{x}+\cos x\right) d x=\left.\left(e^{x}+\sin x\right)\right|_{0} ^{1.2}=3.2522
\end{gathered}
$$

Thus the absolute error $|E|$ in our approximation is given as

$$
|E|=\left|3.2522-S_{4}(f)\right|=|3.2522-3.4066|=0.1544
$$

The fourth derivative of the function $f(x)=e^{x}+\cos x$ can be obtain as

$$
f^{\prime}(x)=e^{x}-\sin x, \quad f^{\prime \prime}(x)=e^{x}-\cos x, \quad f^{\prime \prime \prime}(x)=e^{x}+\sin x, \quad f^{(4)}(x)=e^{x}+\cos x
$$

The bound $\left|f^{(4)}(x)\right|$ on $[0,1.2]$ is

$$
M=\max _{0 \leq x \leq 1.2}\left|f^{(4)(x)}\right|=\max _{0 \leq x \leq 1.2}\left|e^{x}+\cos x\right|=3.6825
$$

at $x=1.2$. To find the minimum subintervals for the given accuracy, we use

$$
\left|E_{S_{n}}(f)\right| \leq \frac{(b-a)^{5}}{180 n^{4}} M \leq 10^{-4}
$$

where $h=(1.2-0) / n$. Since $M=3.6825$, then solving for n^{4},
$n^{4} \geq \frac{(b-a)^{5} M 10^{4}}{180}=\frac{(1.2-0)^{5}(3.6825) 10^{4}}{180}=509.0688, n^{2} \geq 22.5626, n \geq 4.75, n=6($ even $)$.
or
$h^{4} \leq \frac{180}{(b-a) M 10^{4}}=\frac{180}{(1.2-0)^{5}(3.6825) 10^{4}}=0.0041, h^{2} \leq 0.0638, h \leq 0.2526, n=(1.2-0) / 0.2526=4.75$, so $\mathrm{n}=6($ even $)$.

