Name of the Teacher: ______ Section No. _____

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Question No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: The first approximation of the square root of 19 using a quadratic convergent method with $x_0 = 5$ is:

(a) 4.44 (b) 4.4 (c) 4.36 (d) None of these

Question 2: The first approximation of the double root of $x^3 - 3x^2 + 4 = 0$, by quadratic convergent iterative method using $x_0 = 1.5$ is:

(a) 2.056 (b) 2.255 (c) 1.250 (d) None of these

Question 3: The first approximation of the solution of the system of nonlinear equations $4x^3 + y = 6$ and $yx^2 = 1$ using Newton's method with initial approximation $(x_0, y_0) = (1, 1)$ is:

(a)
$$(x_1, y_1) = (0.91, 1.09)$$
 (b) $(x_1, y_1) = (1.09, 0.91)$ (c) $(x_1, y_1) = (1.5, 0.5)$ (d) None of these

Question 4: If the matrix $A = \begin{pmatrix} 3 & 1 \\ 6 & 1 \end{pmatrix}$ is factored as LU using Doollitle's method, where L is a lower triangular matrix, and U is an upper triangular matrix, then the solution of the system $L\mathbf{y} = [-1, 0]^T$ is:

(a)
$$[-1, -2]^T$$
 (b) $[-1, 2]^T$ (c) $[-1, 6]^T$ (d) None of these

Question 5: The second approximation for solving linear system $A\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ using Jacobi iterative method where $A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ and $\mathbf{x}^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is :

(a)
$$\mathbf{x}^{(2)} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$
 (b) $\mathbf{x}^{(2)} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ (c) $\mathbf{x}^{(2)} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ (d) None of these

Question 6: The number of iterations needed to achieve accuracy 10^{-4} using Gauss-Seidel iterative method if $||T_G|| = \frac{1}{3}$, $\mathbf{x}^{(0)} = [1, 0, -1]^T$ and $\mathbf{x}^{(1)} = [1.2, 2.3, 3.1]^T$ is :

(a) 8 (b) 9 (c) 11 (d) None of these

Question 7: Let $x_0 = 2.0$, $x_1 = 3.0$, $x_2 = 4.0$, and $f(x) = x \ln x + e^{-x}$. Then error bound for the approximation of f(2.5) using best Lagrange interpolating polynomial is:

(a) 0.25 (b) 0.024 (c) 0.204 (d) None of these

Question 8: Absolute error $|f(0.3) - p_1(0.3)|$ in approximating f(0.3) by using linear Lagrange polynomial passing through $x_0 = 0$ and $x_1 = 1$ where $f(x) = x - 10x^2$ is:

(a) 0.1 (b) 0.05 (c) 2.1 (d) None of these

Question 9: Let $f(x) = e^{-x}$ and $x_0 = 0, x_1 = 0, x_2 = 1$, then the approximation of $1/e^{0.5}$ by using quadratic Newton's polynomial is:

(a) 0.5920 (b) 0.6920 (c) 0.4920 (d) None of these

Question 10: Let $f(x) = \ln (2x + 1)$, and $x_0 = 0, x_1 = 1$. Then, the largest possible value of h needed to approximate $f'(x_0)$ accurate to within 10^{-2} using these points and the 2-point forward difference formula is approximately:

Question 11: Let $f(x) = x^2 + \cos x$ (x in radian) and h = 0.1. Then, using the best 3-point formula for the approximation of f'(1), the absolute error is:

(a)
$$0.0134$$
 (b) 0.0014 (c) 0.0125 (d) None of these

Question 12: Let f(x) be a differentiable function satisfies f''(x) = (x+1)f(x). If f(0.5) = -1 and f(1.5) = 3, then, using 3-point central difference formula for the second derivative, the approximate value of f''(1) is equals to:

(a) 1.6 (b) 0.8 (c) 0.25 (d) None of these

Question 13: Let $f(x) = x \ln (x+1)$. Then, the upper bound for approximating the integral $\int_0^1 f(x) dx$ by using the simple trapezoidal rule is:

(a)
$$0.0833$$
 (b) 0.0625 (c) 0.1667 (d) None of these

Question 14: Let $f(x) = \frac{1}{x+1}$. The number of iterations *n* required composite Simpson's rule to approximate the integral $\int_0^1 f(x) dx$ to within 10^{-3} is:

Question 15: If the actual solution of the initial value problem, y' + y = 2x, y(0) = -1, n = 1, is $y(x) = e^{-x} + 2x - 2$, then the absolute error by using Euler's method of y(0.1) is:

(a) 0.0484 (b) 0.0289 (c) 0.0048 (d) None of these

Question 16: Use the quadratic Lagrange interpolating polynomial by selecting the best three points from $\{-1, 0.25, 0.5, 1, 2\}$ on the function defined by $f(x) = e^{(x+1)} \cos(x+1)$ (x in radian) to approximate $e^{(1.26)} \cos(1.26)$. Compute the absolute error and an error bound.

Question 17: Use the best integration rule to compute the integral $\int_{0.0}^{1.2} f(x) dx$, where the table for the values of y = f(x) is given below:

x	0.0	0.1	0.15	0.2	0.3	0.4	0.45	0.6	0.75	0.9	1.2
f(x)	2.0000	2.1002	2.2015	2.3052	2.4129	2.4688	2.6475	2.8487	3.0812	3.2586	3.6825

The function tabulated is $f(x) = e^x + \cos x$ (x in radian), compute absolute error. How many subintervals approximate the given integral to within accuracy of 10^{-4} ?

.

Name of the Student:——	I.D. No	_

Name of the Teacher: ______ Section No. _____

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d															

Question No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

1 0 1/101	in la	, <i>o</i> , c	or u	101	0110 00	51100		101 11	0110	002.(1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	с	d	а	с	b	a	a	с	b	a	b	b	с	a

Ps. : Mark {a, b, c or d} for the correct answer in the box.(Math)

The Answer Tables for Q.1 to Q.15 : Marks: 2 for each one $(2 \times 15 = 30)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.(MAth)

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	с	b	d	с	b	a	с	b	b	a	с	с	a	b	b

The Answer Tables	s for Q).1 to	Q.15	: Marks:	2 for each one	$(2 \times 15 = 30)$
-------------------	----------------	---------------	------	----------	----------------	----------------------

 \mathbf{c}

 \mathbf{a}

 \mathbf{c}

b

 \mathbf{a}

 \mathbf{c}

 \mathbf{a}

15

 \mathbf{c}

 Q. No.
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

 \mathbf{c}

 \mathbf{b}

Ps. : Mark {a, b, c or d} for the correct answer in the box.(MATh)

 \mathbf{a}

a,b,c,d

b

 \mathbf{a}

d

 \mathbf{b}

Question 16: Use the quadratic Lagrange interpolating polynomial by selecting the best three points from $\{-1, 0.25, 0.5, 1, 2\}$ on the function defined by $f(x) = e^{(1-x)} \cos(1-x)$ (x in radian) to approximate $e^{(0.74)} \cos(0.74)$. Compute the absolute error and an error bound.

Solution. Since the given function is $f(x) = e^{(1-x)} \cos(1-x)$, so by taking 1 - x = 0.74, we have x = 0.26, therefore, the best points for the quadratic polynomial are, $x_0 = 0.25, x_1 = 0.5$, and $x_2 = 1$. Best form of the constructed table for the quadratic Lagrange polynomial is

Then using these table values and the quadratic Lagrange interpolating polynomial

$$f(x) = p_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2),$$

 $f(0.26) \approx p_2(0.26) = 1.5490L_0(0.26) + 1.4469L_1(0.26) + 1.0000L_2(0.26).$

The Lagrange coefficients can be calculate as follows:

$$L_0(0.26) = \frac{(0.26 - 0.5)(0.26 - 1)}{(0.25 - 0.5)(0.25 - 1)} = 0.9472,$$

$$L_1(0.26) = \frac{(0.26 - 0.25)(0.26 - 1)}{(0.5 - 0.25)(0.5 - 1)} = 0.0592,$$

$$L_2(0.26) = \frac{(0.26 - 0.25)(0.26 - 0.5)}{(1 - 0.25)(1 - 0.5)} = -0.0064.$$

Using these values of the Lagrange coefficients, we have

$$f(0.26) \approx p_2(0.26) = 1.5490(0.9472) + 1.4469(0.0592) + 1.0000(-0.0064) = 1.5465,$$

which is the required approximation of the given exact solution $e^{(0.74)}\cos(0.74) = 1.5478$. Thus, we have desired absolute error

$$|f(0.26) - p_2(0.26)| = |1.5478 - 1.5465| = 0.0013.$$

To compute an error bound for the approximation of the given function in the interval [0.25, 1], we use the following quadratic error formula

$$|f(x) - p_2(x)| = \frac{|f^{(3)}(\eta(x))|}{3!} |(x - x_0)(x - x_1)(x - x_2)|.$$

$$|f^{(3)}(\eta(x))| \le M = \max_{0.25 \le x \le 1} |f^{(3)}(x)|,$$

$$f(x) = e^{(1-x)} \cos(1-x) = e^{(1-x)} \cos(x-1), \quad (\cos(1-x) = \cos(x-1))$$

$$f'(x) = -e^{(1-x)} (\cos(x-1) + \sin(x-1)),$$

$$f''(x) = 2e^{(1-x)} \sin(x-1),$$

$$f^{(3)}(x) = 2e^{(1-x)} (\cos(x-1) - \sin(x-1)).$$

Thus

$$M = \max_{0.25 \le x \le 1} \left| 2e^{(1-x)} (\cos(x-1) - \sin(x-1)) \right| = 5.9840,$$

at x = 0.25. Hence

$$|f(0.26) - p_2(0.26)| \le \frac{5.9840}{6} |(0.26 - 0.25)(0.26 - 0.5)(0.26 - 1)| \le \frac{5.9840}{6} (0.0018) = 0.0017952,$$
 which is the desired error bound.

1.2**Question 17:** Use the best integration rule to compute the integral $\int f(x) dx$, where the table 0.0 for the values of y = f(x) is given below:

The function tabulated is $f(x) = e^x + \cos x$, compute absolute error. How many subintervals approximate the given integral to within accuracy of 10^{-4} ?

Solution. Since the equally spaced data points are for h = 0.3,

which gives, n = 4, so the best integration rule is the composite Simpson's rule and which is

$$\int_{x_0}^{x_4} f(x)dx \approx S_4(f) = \frac{h}{3} \Big[f(x_0) + 4(f(x_1) + f(x_3)) + 2f(x_2) + f(x_4) \Big].$$

Using the table values, we get

$$\int_{0.0}^{1.2} (e^x + \cos x) dx \approx S_4(f) = 0.1 \Big[2.0000 + 4(2.4129 + 3.2586) + 2(2.8487) + 3.6825 \Big] = 3.4066.$$

Exact Solution =
$$\int_{0.0}^{1.2} (e^x + \cos x) dx = (e^x + \sin x) \Big|_0^{1.2} = 3.2522.$$

Thus the absolute error |E| in our approximation is given as

$$|E| = |3.2522 - S_4(f)| = |3.2522 - 3.4066| = 0.1544.$$

The fourth derivative of the function $f(x) = e^x + \cos x$ can be obtain as

$$f'(x) = e^x - \sin x$$
, $f''(x) = e^x - \cos x$, $f'''(x) = e^x + \sin x$, $f^{(4)}(x) = e^x + \cos x$.

The bound $|f^{(4)}(x)|$ on [0, 1.2] is

$$M = \max_{0 \le x \le 1.2} |f^{(4)(x)}| = \max_{0 \le x \le 1.2} |e^x + \cos x| = 3.6825,$$

at x = 1.2. To find the minimum subintervals for the given accuracy, we use

$$|E_{S_n}(f)| \le \frac{(b-a)^5}{180n^4} M \le 10^{-4},$$

where h = (1.2 - 0)/n. Since M = 3.6825, then solving for n^4 ,

$$n^{4} \ge \frac{(b-a)^{5}M10^{4}}{180} = \frac{(1.2-0)^{5}(3.6825)10^{4}}{180} = 509.0688, \ n^{2} \ge 22.5626, \ n \ge 4.75, \ n = 6(even).$$

$$h^{4} \leq \frac{180}{(b-a)M10^{4}} = \frac{180}{(1.2-0)^{5}(3.6825)10^{4}} = 0.0041, \ h^{2} \leq 0.0638, \ h \leq 0.2526, \ n = (1.2-0)/0.2526 = 4.75$$
so n = 6(even).