King Saud University: Mathematics Department
Math-254 First Semester $1439-40$ H Final Examination
Maximum Marks $=40$ Time: 180 mins.

Name of the Student:
I.D. No.

Name of the Teacher:
Section No.
Note: Check the total number of pages are Seven (7). (10 Multiple choice questions and Four (4) Full questions)

The Answer Tables for Q. 1 to Q. 10 : Marks: 2 for each one $(2 \times 10=20)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Quest. No.	Marks Obtained	Marks for Question
Q. 1 to Q. 10		20
Q. 11		5
Q. 12		5
Q. 13		5
Q. 14		5
Total		40

Question 1: The value of c which insures quadratic convergence of $x_{n+1}=x_{n}+c\left(x_{n}^{2}-3\right)$,

(b) $\frac{1}{2 \sqrt{3}}$
(c) $-\frac{1}{\sqrt{3}}$
(d) Non of these

Question 2: If $x_{n+1}=g\left(x_{n}\right)=\ln \left(x_{n}+2\right), x_{0}=1.5$ and $k=\max \left|g^{\prime}(x)\right|=\frac{1}{3}$, then the number of iterations to achieve accuracy 10^{-2} is:
(a) 2
(b) 3
(c) 4
(d) Non of these

Question 3: The second approximation of the square root of 19 using a quadratic convergent method when $x_{0}=5$ is:
(a) 4.4
(b) 4.44
(c) 4.359
(d) Non of these

Question 4: The order of convergence of $x_{n+1}=2 x_{n}^{2}+\frac{4}{x_{n}}-5, n \geq 0$, to $\alpha=1$ is:
(a) linear
(b) Atleast quadratic
(c) quadratic
(d) Non of these

Question 5: The error bound of $\left\|x-x^{(5)}\right\|$ using Jacobi iterative method with $x^{(0)}=(0,0)^{T}$, for solving linear system $A \mathbf{x}=\mathbf{b}, \quad$ where $A=\left(\begin{array}{rr}4 & -1 \\ -1 & 3\end{array}\right), \mathbf{b}=\binom{12}{1}$ is:
(a) 0.01851
(b) 0.0039
(c) 0.0205
(d) Non of these

Question 6: If $f(x)=\frac{2}{x}$, then $f[1,2,1]$ is equal to:
(a) 0
(b) 1
(c) 5
(d) -3

Question 7: If $x_{0}=1, x_{1}=2, x_{2}=3, x_{3}=4$ and $f(x)=\frac{2}{x+1}$, then the absolute error of approximating $f(2.9)$ using linear spline function is:
(a) 0.004
(b) 0.14
(c) 0.03
(d) Non of these

Question 8: The best approximation of $f^{\prime}(1.5)$ using three point difference formula for the function $f(x)=\ln x$ and $h=0.5$ is:
(a) 0.6931
(b) 0.6399
(c) 0.5232
(d) Non of these

Question 9: The error bound of approximating the integral $\int_{1}^{2} \frac{1}{x+1} d x$, using simple zoidal rule is:
(a) 0.0208
(b) 0.00617
(c) 0.0833
(d) Non of these

Question 10: Given $\frac{y^{\prime}}{x}-y^{2}=0, y(1.2)=1.1$, the approximate value of $y(1.4)$ using Taylor's method of order 1 (Euler's method) when $n=1$ is:
(a) 1.245
(b) 1.545
(c) 1.582
(d) Non of these

Question 11: Consider a linear system $A x=b$, where

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 4 & 0 \\
1 & 2 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

Discuss the conditioning of the given linear system. Suppose that $\mathrm{b}=A \mathrm{x}$ is changed to $\mathbf{b}^{*}=A \mathbf{x}^{*}=[1,1,1.99]^{T}$. How large a relative change can this change produce in the solution to $A \mathbf{x}=\mathbf{b}$?

Solution. Since the matrix A and its inverse is

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 4 & 0 \\
1 & 2 & 1
\end{array}\right), \quad A^{-1}=\left(\begin{array}{rrr}
4 / 3 & 1 & -8 / 3 \\
-1 / 3 & 0 & 2 / 3 \\
-2 / 3 & -1 & 7 / 3
\end{array}\right) .
$$

Then

$$
\|A\|_{\infty}=5,\left\|A^{-1}\right\|_{\infty}=5, \quad K(A)=\|A\|_{\infty}\left\|\mid A^{-1}\right\|_{\infty}=(5)(5)=25 .
$$

Since the change from \mathbf{b} to \mathbf{b}^{*} is an error $\delta \mathbf{b}$, that is, $\mathbf{b}^{*}=\mathbf{b}+\delta \mathbf{b}$, so

$$
\delta \mathbf{b}=\left(\begin{array}{r}
-0.01 \\
0 \\
0
\end{array}\right)=-\mathbf{r}
$$

and the l_{∞}-norm of this column matrix is, $\|\delta \mathbf{b}\|_{\infty}=0.01$. From the equation (??), we get

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{25(0.01)}{2}=0.1250
$$

the possible relative change in the solution to the given linear system.

Table 1: Divide differences table for the Example ??.

k	x_{k}	Zeroth Divided Difference	First Divided Difference	Second Divided Difference	Third Divided Difference
0	0	0.6932			
1	1	1.0986	0.4055		
2	2	1.3863	0.2877	-0.0589	
3	3	1.6094	0.2232	- 0.0323	0.0089

Question 12: Construct the divided difference table for the function $f(x)=\ln (x+2)$ in the interval, $0 \leq x \leq 3$ for the stepsize $h=1$. Find second degree Newton divided difference interpolating polynomial to construct the interpolating polynomial degree 3, for the approximation of $\ln (3.5)$. Compute error bound $\left\|f(x)-p_{3}(x)\right\|$.

Solution. The results of the divided differences are listed in Table 1.

Firstly, we construct the second degree polynomial $p_{2}(x)$ by using the quadratic Newton interpolation formula as follows

$$
f(x)=p_{2}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right),
$$

then with the help of the divided differences Table 1, we get

$$
f(x)=p_{2}(x)=0.6932+0.4055(x-0)-0.0589(x-0)(x-1),
$$

which implies that

$$
f(x)=p_{2}(x)=-0.0568 x^{2}+0.4644 x+0.6932 \quad \text { and } \quad p_{2}(1.5)=1.2620
$$

Now to construct the cubic interpolatory polynomial $p_{3}(x)$ that fits at all four points. We only have to add one more term to the polynomial $p_{2}(x)$:

$$
f(x)=p_{3}(x)=p_{2}(x)+f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right),
$$

and this gives
$f(x)=p_{3}(x)=p_{2}(x)+0.0089\left(x^{3}-3 x^{2}+2 x\right)$ and $f(1.5) \approx p_{3}(1.5)=1.2620-0.0033=1.2587$.
We note that the estimated value of $f(1.5)$ by cubic interpolating polynomial is more closer to the exact solution than the quadratic polynomial.
(c) Now to compute the error bound for the approximation $p_{3}(x)$, we use the error formula

$$
\left|f(x)-p_{3}(x)\right|=\frac{\left|f^{(4)}(\eta(x))\right|}{4!}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\right| .
$$

Taking the fourth derivative of the given function, we obtain

$$
f^{(4)}(x)=\frac{-6}{(x+2)^{4}} \quad \text { and } \quad\left|f^{(4)}(\eta(x))\right|=\left|\frac{-6}{(\eta(x)+2)^{4}}\right|, \quad \text { for } \quad \eta(x) \in(0,3)
$$

Since

$$
\left|f^{(4)}(0)\right|=0.375 \quad \text { and } \quad\left|f^{(4)}(3)\right|=0.0096,
$$

so $\left|f^{(4)}(\eta(x))\right| \leq \max _{0 \leq x \leq 3}\left|\frac{-6}{(x+2)^{4}}\right|=0.375$ and it gives

$$
\left|f(1.5)-p_{3}(1.5)\right| \leq(0.5625)(0.375) / 24=0.0088
$$

which is the required error bound for the approximation $p_{3}(1.5)$.

Question 13: Find the approximation of $f^{\prime \prime}(0.8)$ by using the following set of data points using numerical rule:

x	0.0	0.11	0.24	0.3	0.4	0.5	0.6	0.72	0.8	0.9	1.05	1.11	1.2
$f(x)$	1.00	1.10	1.2	1.26	1.32	1.38	1.43	1.47	1.50	1.52	1.55	1.55	1.56

If the function is $f(x)=x+\cos x$, then compute an error bound for your approximation. How many subintervals approximate the given integral to within accuracy of 10^{-6} using this differentiation rule?
Solution. Given $x_{1}=0.8, h=0.4$, then the formula (??) becomes

$$
f^{\prime \prime}(1) \approx \frac{f(0.8+0.4)-2 f(0.8)+f(0.8-0.4)}{(0.4)^{2}}=D_{h}^{2} f(1)
$$

or

$$
f^{\prime \prime}(1) \approx \frac{f(1.2)-2 f(0.8)+f(0.4)}{0.16}=-0.75=D_{h}^{2} f(1) .
$$

To compute the error bound for our approximation in part (a), we use the formula as

$$
\left|E_{C}(f, h)\right|=\left|-\frac{h^{2}}{12}\right|\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right|, \quad \text { for } \quad \eta\left(x_{1}\right) \in(0.9,1.1) .
$$

The fourth derivative of the given function at $\eta\left(x_{1}\right)$ is $f^{(4)}\left(\eta\left(x_{1}\right)\right)=\cos \eta\left(x_{1}\right)$, and it cannot be computed exactly because $\eta\left(x_{1}\right)$ is not known. But one can bound the error by computing the largest possible value for $\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right|$. So bound $\left|f^{(4)}\right|$ on the interval $(0.9,1.1)$ is

$$
\left.M=\max _{0.4 \leq x \leq 1.2} \cos x\right) \mid=0.921061,
$$

at $x=1.1$, Thus, for $\left|f^{(4)}(\eta(x))\right| \leq M$, we have the possible maximum error as

$$
\left|E_{C}(f, h)\right| \leq \frac{h^{2}}{12} M \leq \frac{(0.1)^{2}}{12}(0.4536)=0.000767
$$

(d) Since the given accuracy required is 10^{-2}, so

$$
\left|E_{C}(f, h)\right|=\left|-\frac{h^{2}}{12} f^{(4)}\left(\eta\left(x_{1}\right)\right)\right| \leq 10^{-2}
$$

for $\eta\left(x_{1}\right) \in(0.4,1.2)$. Then for $\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right| \leq M$, we have

$$
\frac{h^{2}}{12} M \leq 10^{-2}, \quad h^{2} \leq \frac{\left(12 \times 10^{-2}\right)}{M}=\frac{\left(12 \times 10^{-2}\right)}{0.92106}=0.013, \quad h \leq 0.3609 .
$$

Question 14: Determine the number of subintervals n required to approximate the absolute error.

Solution. we have to use the error formula (??) which is

Given the integrand is $f(x)=\frac{1}{x+4}$, and we have $f^{(4)}(x)=\frac{24}{(x+4)^{5}}$. The maximum value of $\left|f^{(4)}(x)\right|$ on the interval $[0,2]$ is $3 / 128$, and thus $M=\frac{3}{128}$. Using the above error formula, we get

$$
\frac{3}{(90 \times 128)} h^{4} \leq 10^{-4}, \quad \text { or } \quad h \leq \frac{2}{5} \sqrt[4]{15}=0.7872
$$

Since $n=\frac{2}{h}=\frac{2}{0.7872}=2.5407$, so the number of even subintervals n required is $n \geq 4$. Thus the approximation of the given integral using $h=\frac{2-0}{4}=\frac{1}{2}=0.5$ is

$$
\begin{gathered}
\int_{0}^{2} \frac{1}{x+4} \approx \frac{0.5}{3}[f(0)+4[f(0.5)+f(1.5)]+2 f(1)+f(2)] \\
\int_{0}^{1} \frac{1}{x+4} \approx \frac{1}{6}[0.25+4(0.2222+0.1818)+2(0.2)+0.1667]=0.4055
\end{gathered}
$$

which is equal to the true value of the given integral $\alpha=\ln (1.5)=0.4055$ upto 4 decimal places.

The Answer Table for Q. 1 to Q. 10 : Math

| Q. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a,b,c,d | a | c | c | c | a | b | a | b | c | a |

The Answer Table for Q. 1 to Q. 10 : MATH

Check the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	b	a	a	b	c	c	b	a	b	c

