King Saud University: Mathematics Department Math-254

Second Semester
Maximum Marks $=40$
$1439-40 \mathrm{H}$
Final Examination Time: 180 mins.
Name of the Student:
I.D. No.
\qquad

Name of the Teacher:
Section No.
Note: Check the total number of pages are Six (6). (10 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q. 1 to Q. 10 : Marks: 2 for each one $(2 \times 10=20)$

Q. No.	1	2	3		4		5			7	8	9	10
a,b,c,d													

Quest. No.	Marks
Q. 1 to Q. 10	
Q. 11	
Q. 12	
Q. 13	
Total	

Question 1: The number of bisections required to solve the equation $x^{3}+x=1$ in $[0,1]$ accurate to within 10^{-3} is:
(a) 8
(b) 10
(c) 9
(d) 7

Question 2: Given $x_{0}=0$ and $x_{1}=1$, then the next approximation x_{2} of the solution of the equation $x^{4}+2 x=1$ using the Secant method is:
(a) 0.333
(b) 0.500
(c) 0.250
(d) 0.225

Question 3: The order of multiplicity of the root $\alpha=0$ of the equation $e^{x}-\frac{x^{2}}{2}=x+1$ is:
(a) 2
(b) 1
(c) 3
(d) 4

Question 4: The goal of forward elimination steps in simple Gauss elimination is to reduce the coefficient matrix to a matrix of the form:
(a) Upper-triangular
(b) Lower-triangular
(c) Identity
(d) Diagonal

Question 5: Let $A=\left(\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right)$ and $\alpha>2$. If the condition number $k(A)$ of the matrix A is 6 , then α equals to:
(a) 3
(b) 5
(c) 4
(d) 6

Question 6: If $f(x)=x e^{x}$, then $f[0,1,0]$ equals to:
(a) $e+2$
(b) $e+1$
(c) $e-2$
(d) $e-1$

Question 7: Using data points: $(0.0,-2.0),(0.1,-1.0),(0.15,1.0),(0.2,2.0),(0.3,3.0)$, the best approximate value of the function $f(0.11)$ by a linear Lagrange polynomial is:
(a) -0.4
(b) -0.5
(c) -0.6
(d) -0.3

Question 8: If $f(0)=3, f(1)=\frac{\alpha}{2}, f(2)=\alpha$, and Simpson's rule for $\int_{0}^{2} f(x) d x$ gives 2 , then the value of α is:
(a) 1.0
(b) 2.0
(c) 0.5
(d) 3.0

Question 9: When using the two-point formula (forward) with $h=0.2$ for approximating the value of $f^{\prime}(1)$, where $f(x)=\ln (x+1)$, we have the computed approximation (accurate to 4 decimal places):
(a) 0.4766
(b) 0.4966
(c) 0.4666
(d) 0.4866

Question 10: Given $x y^{\prime}+y=1, y(1)=0$, the approximate value of $y(2)$ using Euler's method when $n=1$ is:
(a) 0.0
(b) 1.0
(c) 2.0
(d) 3.0

Solution of the Final Examination

The Answer Tables for Q. 1 to Q. 10 : Math

Check the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	b	a	c	a	b	d	c	a	a	b

The Answer Tables for Q. 1 to Q. 10 : MAth

Check the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	c	d	a	b	d	c	a	b	d	a

The Answer Tables for Q. 1 to Q. 10 : MATh

Check the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	a	b	d	c	c	b	d	c	b	d

Question 11: Consider the following nonhomogeneous linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
5 & 0 & -1 \\
-1 & 3 & 0 \\
0 & -1 & 4
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

Find the matrix form of Jacobi and Gauss-Seidel iterative methods and show that Gauss-Seidel method converges faster than Jacobi method for the given system.

Solution. Here we will show that the l_{∞}-norm of the Gauss-Seidel iteration matrix T_{G} is less than the l_{∞}-norm of the Jacobi iteration matrix T_{J}, that is

$$
\left\|T_{G}\right\|_{\infty}<\left\|T_{J}\right\|_{\infty}
$$

The Jacobi iteration matrix T_{J} can be obtained from the given matrix A as follows

$$
T_{J}=-D^{-1}(L+U)=-\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)^{-1}\left(\begin{array}{rrr}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & 0 & 1 / 5 \\
1 / 3 & 0 & 0 \\
0 & 1 / 4 & 0
\end{array}\right)
$$

Thus the matrix form of Jacobi iterative method is

$$
\mathbf{x}^{(\mathbf{k}+\mathbf{1})}=\left(\begin{array}{rrr}
0 & 0 & 1 / 5 \\
1 / 3 & 0 & 0 \\
0 & 1 / 4 & 0
\end{array}\right) \mathbf{x}^{(\mathbf{k})}+\left(\begin{array}{r}
1 / 5 \\
2 / 3 \\
1
\end{array}\right), \quad k \geq 0
$$

Similarly, Gauss-Seidel iteration matrix T_{G} is defined as

$$
T_{G}=-(D+L)^{-1} U=-\left(\begin{array}{rrr}
5 & 0 & 0 \\
-1 & 3 & 0 \\
0 & -1 & 4
\end{array}\right)^{-1}\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and it gives

$$
T_{G}=-\left(\begin{array}{rrr}
1 / 5 & 0 & 0 \\
1 / 15 & 1 / 3 & 0 \\
1 / 60 & 1 / 15 & 1 / 4
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & 0 & 1 / 5 \\
0 & 0 & 1 / 15 \\
0 & 0 & 1 / 60
\end{array}\right)
$$

So the matrix form of Gauss-Seidel iterative method is

$$
\mathbf{x}^{(\mathbf{k}+\mathbf{1})}=\left(\begin{array}{rrr}
0 & 0 & 1 / 5 \\
0 & 0 & 1 / 15 \\
0 & 0 & 1 / 60
\end{array}\right) \mathbf{x}^{(\mathbf{k})}+\left(\begin{array}{r}
1 / 5 \\
11 / 15 \\
71 / 60
\end{array}\right), \quad k \geq 0
$$

Since the l_{∞}-norm of the matrix T_{J} is

$$
\left\|T_{J}\right\|_{\infty}=\max \left\{\frac{1}{5}, \frac{1}{3}, \frac{1}{4}\right\}=\frac{1}{3}=0.3333<1
$$

and the l_{∞}-norm of the matrix T_{G} is

$$
\left\|T_{G}\right\|_{\infty}=\max \left\{\frac{1}{5}, \frac{1}{15}, \frac{1}{60}\right\}=\frac{1}{5}=0.2000<1
$$

Since $\left\|T_{G}\right\|_{\infty}<\left\|T_{J}\right\|_{\infty}$, which shows that Gauss-Seidel method will converge faster than Jacobi method for the given linear system.

Question 12: Given $f(x)=x^{1 / 3}$, and $x_{0}=0, x_{1}=1, x_{2}=27, x_{3}=64$. Construct the divided differences table for the function. Find the linear splines which interpolate this data. Find the best approximation of $f(8)$ and the absolute error.

Solution: The divided differences table for the given function $f(x)=x^{1 / 3}$, and at the points $x_{0}=0, x_{1}=1, x_{2}=27, x_{3}=64$ is as follows:

		Zeroth Divided Difference	First Divided Difference	Second Divided Difference	Third Divided Difference
\mathbf{k}	x_{k}	Din			
0	$x_{0}=0$	$f\left[x_{0}\right]=0$			
1	$x_{1}=1$	$f\left[x_{1}\right]=1$	$f\left[x_{0}, x_{1}\right]=1$		
2	$x_{2}=27$	$f\left[x_{2}\right]=3$	$f\left[x_{1}, x_{2}\right]=0.0769$	$f\left[x_{0}, x_{1}, x_{2}\right]=-0.0342$	
3	$x_{3}=64$	$f\left[x_{3}\right]=4$	$f\left[x_{2}, x_{3}\right]=0.0270$	$f\left[x_{1}, x_{2}, x_{3}\right]=-0.0008$	$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=0.0005$

Linear spline:

$$
s_{k}(x)=A_{k}+B_{k}\left(x-x_{k}\right)
$$

where the values of the coefficients A_{k} and B_{k} are given as

$$
A_{k}=y_{k} \quad \text { and } \quad B_{k}=f\left[x_{k}, x_{k+1}\right]=\frac{\left(y_{k+1}-y_{k}\right)}{\left(x_{k+1}-x_{k}\right)}
$$

Given $x_{0}=0, x_{1}=1, x_{2}=27, x_{3}=64$, then we have

$$
\begin{aligned}
& A_{0}=y_{0}=0 \\
& A_{1}=y_{1}=1 \\
& A_{2}=y_{2}=3 \\
& A_{3}=y_{3}=4
\end{aligned}
$$

and

$$
\begin{aligned}
B_{0} & =f\left[x_{0}, x_{1}\right]=1 \\
B_{1} & =f\left[x_{1}, x_{2}\right]=0.0769 \\
B_{2} & =f\left[x_{2}, x_{3}\right]=0.0270
\end{aligned}
$$

Now the linear spline for three subintervals are define as
$s(x)=\left\{\begin{array}{lll}s_{0}(x)=A_{0}+B_{0}\left(x-x_{0}\right)=0+1(x-0)=x, & 0 \leq x \leq 1 \\ s_{1}(x)=A_{1}+B_{1}\left(x-x_{1}\right)=1+0.0769(x-1)=0.9231+0.0769 x, & 1 \leq x \leq 27 \\ s_{2}(x)=A_{2}+B_{2}\left(x-x_{2}\right)=3+0.0270(x-27)=2.2710+0.0270 x, & 27 \leq x \leq 64\end{array}\right.$
The value $x=8$ lies in the interval $[1,27]$, so

$$
f(8) \approx s_{1}(8)=0.9231+0.0769(8)=1.5383
$$

Absolute error $=\left|f(8)-s_{1}(8)\right|=|2-1.5383|=0.4615$.

Question 13: Find the largest value of the step size h (one decimal place) that can be used of to estimate the integral $\int_{1}^{2} \frac{e^{-x}}{x} d x$ to an accuracy of 0.5×10^{-2} using the composite Trapezoidal rule. Then, find the corresponding approximate value of the integral.
[6 points]

Solution. Given $f(x)=\frac{e^{-x}}{x}$ and its derivatives can be obtained as

$$
f^{\prime}(x)=-e^{-x}\left[\frac{1}{x}+\frac{1}{x^{2}}\right] \quad \text { and } \quad f^{\prime \prime}(x)=e^{-x}\left[\frac{1}{x}+\frac{2}{x^{2}}+\frac{2}{x^{3}}\right]
$$

Since $f^{\prime \prime}$ is decreasing function on $[1,2]$, it takes its largest value at $x=1$ in the interval. Hence

$$
\left|f^{\prime \prime}(x)\right| \leq e^{-1}(1+2+2)=5 e^{-1} \approx 1.84
$$

Thus using the error formula of (composite Trapezoidal rule

$$
|E| \leq \frac{h^{2}}{12}(M), \quad \text { where } \quad M=\max _{1 \leq x \leq 2}\left|f^{\prime \prime}(x)\right|
$$

we have

$$
|E| \leq \frac{h^{2}}{12}(1.84), \quad \frac{h^{2}}{12}(1.84) \leq 0.5 \times 10^{-2}, \quad \text { gives } \quad h=0.1806
$$

(rounded $h=0.2$). Thus the Trapezoidal rule for six points or $n=5$ has the form

$$
\int_{1}^{2} f(x) d x \approx T_{5}(f)=\frac{h}{2}\left[f\left(x_{0}\right)+2\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right]+f\left(x_{5}\right)\right]
$$

which is equal to

$$
\int_{1}^{2} f(x) d x \approx 0.1[0.3679+2(0.2510+0.1761+0.1262+0.0918)+0.0677]=0.1726
$$

and gives the approximation of the exact value 0.1705 of the given integral.

