Questions :

(6+6+7+6)

Q1: Show that the iterative procedure for evaluating $N^{\frac{1}{p}}$ by using secant method can be written

$$x_{n+1} = \frac{x_n x_{n-1} (x_n^{p-1} - x_{n-1}^{p-1}) + N(x_n - x_{n-1})}{x_n^p - x_{n-1}^p}$$

Then use it to find the second approximation x_3 of the square root of 9 using the initial approximations $x_0 = 2$, $x_1 = 2.5$. Compute the absolute error.

- **Q2:** Consider the nonlinear equation $e^x 1 = x$, which has a multiple root. Use a quadratic convergent method to find the second approximation x_2 of this root using the initial approximation $x_0 = 0.5$.
- **Q3:** Consider solving the nonlinear equation $x^3 1 = 3x$ in the interval [1, 2].
 - (a) Show that the iterative scheme $x_{n+1} = (3x_n + 1)^{\frac{1}{3}}$, $n \ge 0$ is suitable for solving this equation.
 - (b) Use this iterative scheme to compute the third approximation x_3 when $x_0 = 1.0$.
 - (c) Compute an error bound of your approximation.
- **Q4:** Consider the iterative scheme $x_{n+1} = x_n + \lambda(1 2e^{-x_n})$.
 - (a) Show that this iterative scheme converges to the root $\alpha = \ln(2)$ for $\lambda = -1$.
 - (b) Find the values of λ for which the scheme converges.
 - (c) Find the values of λ giving a quadratic convergence of the scheme in (b).

Questions :

$$(6+6+7+6)$$

Q1: Show that the iterative procedure for evaluating $N^{\frac{1}{p}}$ by using secant method can be written

$$x_{n+1} = \frac{x_n x_{n-1} (x_n^{p-1} - x_{n-1}^{p-1}) + N(x_n - x_{n-1})}{x_n^p - x_{n-1}^p}.$$

Then use it to find the second approximation x_3 of the square root of 9 using the initial approximations $x_0 = 2$, $x_1 = 2.5$. Compute the absolute error.

Solution. We shall compute $x = N^{1/p}$ by finding a positive root for the nonlinear equation

$$x^p - N = 0.$$

where N > 0 is the number whose root is to be found. If f(x) = 0, then $x = \alpha = N^{1/p}$ is the exact zero of the function

$$f(x) = x^p - N.$$

Since the secant formula is

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})f(x_n)}{f(x_n) - f(x_{n-1})}, \qquad n \ge 1.$$

Hence, assuming the initial estimates to the root, say, $x = x_0, x = x_1$, and by using the Secant iterative formula, we have

$$x_{2} = x_{1} - \frac{(x_{1} - x_{0})(x_{1}^{p} - N)}{(x_{1}^{p} - N) - (x_{0}^{p} - N)} = x_{1} - \frac{(x_{1} - x_{0})(x_{1}^{p} - N)}{(x_{1} - x_{0})(x_{1} + x_{0})} = \frac{x_{1}x_{0}(x_{1}^{p-1} - x_{0}^{p-1}) + N(x_{1} - x_{0}^{p-1})}{x_{1}^{p} - x_{0}^{p}}$$

In general, we have

$$x_{n+1} = \frac{x_n x_{n-1} (x_n^{p-1} - x_{n-1}^{p-1}) + N(x_n - x_{n-1})}{x_n^p - x_{n-1}^p}, \qquad n = 1, 2, \dots,$$

the Secant formula for approximation of the square root of number N. Now using this formula for approximation of the square root of N = 9, taking $x_0 = 2$ and $x_1 = 2.5$, we have

$$x_2 = 3.1111$$
 and $x_3 = 2.9901$.

Hence

Absolute Error =
$$|9^{1/2} - x_3| = |3 - 2.9901| = 0.0099$$
,

is the possible absolute error.

Q2: Consider the nonlinear equation $e^x - 1 = x$, which has a multiple root. Use a quadratic convergent method to find the second approximation x_2 of this root using the initial approximation $x_0 = 0.5$.

Solution. Since $f(x) = e^x - x - 1$, we have $f'(x) = e^x - 1$ and $f''(x) = e^x$. Now using the Modified Newton's formula (second modified)

$$x_{n+1} = x_n - \frac{f(x_n)f'(x_n)}{[f'(x_n)]^2 - [f(x_n)][f''(x_n)]}, \qquad n \ge 0.$$

we have

$$x_{n+1} = x_n - \frac{(e^{x_n} - x_n - 1)(e^{x_n} - 1)}{[e^{x_n} - 1]^2 - (e^{x_n} - x_n - 1)(e^{x_n})}, \qquad n \ge 0.$$

For n = 0 and the initial approximation $x_0 = 0.5$, we have

$$x_1 = x_0 - \frac{(e^{x_0} - x_0 - 1)(e^{x_0} - 1)}{[e^{x_0} - 1]^2 - (e^{x_0} - x_0 - 1)(e^{x_0})} = -0.0493,$$

and

$$x_2 = x_1 - \frac{(e^{x_1} - x_1 - 1)(e^{x_1} - 1)}{[e^{x_1} - 1]^2 - (e^{x_1} - x_1 - 1)(e^{x_1})} = -0.0004$$

which is the required second approximation.

Q3: Consider solving the nonlinear equation $x^3 - 1 = 3x$ in the interval [1, 2].

- (a) Show that the iterative scheme $x_{n+1} = (3x_n + 1)^{\frac{1}{3}}$, $n \ge 0$ is suitable for solving this equation.
- (b) Use this iterative scheme to compute the third approximation x_3 when $x_0 = 1.0$.
- (c) Compute an error bound of your approximation.

Solution. Since, we observe that f(1)f(2) < 0, then the solution we seek is in the interval [1, 2].

- (a) For $g(x) = (3x+1)^{\frac{1}{3}}$, g is increasing function of x, as $g(1) = (4)^{\frac{1}{3}} = 1.5874$ and $g(2) = (7)^{\frac{1}{3}} = 1.9129$ both lie in the interval [1, 2]. Thus $g(x) \in [1, 2]$, for all $x \in [1, 2]$. Also, we have $g'(x) = 1/(3x+1)^{\frac{2}{3}} < 1$, for all x in the given interval [1, 2]., so from fixed-point theorem the g(x) has a unique fixed-point.
- (b) using the given initial approximation $x_0 = 1.5$, we have the other approximations as

$$x_1 = g(x_0) = 1.5874, \quad x_2 = g(1.5874) = 1.7928, \quad x_3 = g(1.7928) = 1.8545.$$

(c) Since a = 1 and b = 2, then the value of k can be found as follows

$$k_1 = |g'(1)| = |1/(4)^{\frac{2}{3}}| = 0.3969$$
 and $k_2 = |g'(2)| = |1/(7)^{\frac{2}{3}}| = 0.2733$,

which give $k = \max\{k_1, k_2\} = 0.3969$. Thus using the error formula (??), we have

$$|\alpha - x_3| \le \frac{(0.3969)^3}{1 - 0.3969} |1.5874 - 1.0| = 0.0609$$

Q4: Consider the iterative scheme $x_{n+1} = x_n + \lambda(1 - 2e^{-x_n})$.

- (a) Show that this iterative scheme converges to the root $\alpha = \ln(2)$ for $\lambda = -1$.
- (b) Find the values of λ for which the scheme converges.
- (c) Find the values of λ giving a quadratic convergence of the scheme in (b).

Solution. (a) Given $\lambda = -1$,

$$g(x) = x - (1 - 2e^{-x}),$$

and at fixed-point $\alpha = \ln(2)$, we have

$$g(\ln(2)) = \ln(2).$$

Also

$$g'(x) = 1 - 2e^{-x}, \quad |g'(\ln(2))| = |1 - 2e^{-\ln(2)}| = |1 - 1| = 0,$$

so the iterative scheme converges to the root $\alpha = \ln(2)$. (b) Given

$$g(x) = x + \lambda(1 - 2e^{-x}), \quad g'(x) = 1 + \lambda(2e^{-x}).$$

Since

$$|g'(\ln(2))| < 1, \quad |1 + \lambda(2e^{-\ln(2)})| < 1.$$

 \mathbf{SO}

 $|1+\lambda| < 1$, gives $-2 < \lambda < 0$.

(c) Given

$$g'(\ln(2)) = 0$$
, gives $1 + \lambda = 0$, $\lambda = -1$.

Note that

$$g''(x) = -2\lambda e^{-x}$$
 and $g''(\ln(2)) = -\lambda \neq 0.$