Problem 1: Compute the inverse A^{-1}, where

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \tag{6}\\
1 & 2 & 3 \\
4 & 1 & 2
\end{array}\right)
$$

by solving the system $A B=\mathbf{I}$, using Gauss elimination by partial pivoting where $B=A^{-1}$. Then use it to solve the system $A \mathbf{x}=[1,1,2]^{T}$.

Problem 2: Find all values of α that make the following matrix singular using the LU decomposition by Doolittle's method

$$
A=\left(\begin{array}{ccc}
1 & 2 & \alpha \tag{6}\\
2 & 8 & 2 \alpha \\
\alpha & 2 \alpha & 9
\end{array}\right)
$$

Use the smallest positive integer value of α to find the unique solution of the system $A \mathbf{x}=[1,2,3]^{T}$ using Doolittle's method.

Problem 3: Find the matrix form of the Jacobi method $\mathbf{x}^{(k+1)}=T_{J} \mathbf{x}^{(k)}+\mathbf{c}_{\mathbf{J}}, \quad k \geq 0$, of the following system

$$
\begin{align*}
6 x_{1}-3 x_{2}+x_{3}=11 \tag{7}\\
x_{1}-7 x_{2}+x_{3}=10 \\
2 x_{1}+x_{2}-8 x_{3}=-15
\end{align*}
$$

Then use it to find the second approximation $\mathbf{x}^{(2)}$ of the solution \mathbf{x} using the initial approximation $\mathbf{x}^{(0)}=[0,0,0]^{T}$. Compute an error bound for the error $\left\|x-x^{(10)}\right\|$.

Problem 4: Let $f(x)=\frac{1}{x}$ be defined in the interval $[2,4]$ and $x_{0}=2, x_{1}=2.5, x_{2}=4$. Compute the value of the unknown point η in the error formula of quadratic Lagrange interpolating polynomial for the approximation of $f(3)$ using the given points x_{0}, x_{1}, x_{2}.

