Problem 1: Compute the inverse A^{-1} , where

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix},$$

by solving the system $AB = \mathbf{I}$, using Gauss elimination by partial pivoting where $B = A^{-1}$. Then use it to solve the system $A\mathbf{x} = [1, 1, 2]^T$.

Problem 2: Find all values of α that make the following matrix singular using the LU decomposition by Doolittle's method (6)

$$A = \begin{pmatrix} 1 & 2 & \alpha \\ 2 & 8 & 2\alpha \\ \alpha & 2\alpha & 9 \end{pmatrix}.$$

Use the smallest positive integer value of α to find the unique solution of the system $A\mathbf{x} = [1, 2, 3]^T$ using Doolittle's method.

Problem 3: Find the matrix form of the Jacobi method $\mathbf{x}^{(k+1)} = T_J \mathbf{x}^{(k)} + \mathbf{c}_J, \ k \ge 0,$ of the following system (7)

Then use it to find the second approximation $\mathbf{x}^{(2)}$ of the solution \mathbf{x} using the initial approximation $\mathbf{x}^{(0)} = [0, 0, 0]^T$. Compute an error bound for the error $\|\mathbf{x} - \mathbf{x}^{(10)}\|$.

Problem 4: Let $f(x) = \frac{1}{x}$ be defined in the interval [2, 4] and $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$. Compute the value of the unknown point η in the error formula of quadratic Lagrange interpolating polynomial for the approximation of f(3) using the given points x_0, x_1, x_2 . (6)

(6)