King Saud University: Mathematics Department Math-254 Second MidTerm Examination Semester II 1438-1439 H Time: 120 min. Max. Marks 25

Question 1:

Use the simple Gaussian elimination method to find all values of α and β for which the following linear system is consistent or inconsistent. Also, find the solution of the consistent system.

$$
\begin{aligned}
& 2 x_{1}-x_{2}+3 x_{3}=1 \\
& 4 x_{1}+2 x_{2}+2 x_{3}=2 \alpha \\
& 2 x_{1}+x_{2}+x_{3}=\beta
\end{aligned}
$$

Question 2:

Consider the following matrix and its inverse as follows:

$$
A=\left(\begin{array}{rrr}
10 & -1 & 0 \\
-1 & 10 & -2 \\
0 & -2 & 10
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{rrr}
48 / 475 & 1 / 95 & 1 / 475 \\
1 / 95 & 2 / 19 & 2 / 95 \\
1 / 475 & 2 / 95 & 99 / 950
\end{array}\right) .
$$

Show that Gauss-Seidel method converges faster than Jacobi method for the linear system $A \mathbf{x}=[9,7,6]^{T}$. If an approximate solution for this system is $x^{*}=[0.97,0.91,0.74]^{T}$, then find the relative error.

Question 3:

Find α for which the following matrix A is singular using LU decomposition by Doolittle's $\operatorname{method}\left(l_{i i}=1\right)$.

$$
A=\left[\begin{array}{lll}
1 & 2 & \alpha \\
2 & 7 & 3 \alpha \\
\alpha & 3 \alpha & 4
\end{array}\right]
$$

Then use the smallest positive integer value of α to find the solution of the linear system $A \mathbf{x}=[1,0,3]^{T}$ using Doolittle's method.

Question 4:

Let $f(x)=\frac{1}{x}$ be defined in the interval $[2,4]$ and $x_{0}=2, x_{1}=2.5, x_{2}=4$. Compute the value of the unknown point $\eta \in(2,4)$ in the error formula of the quadratic Lagrange interpolating polynomial for the approximation of $f(3)$ using the given points. Also, compute an error bound for the corresponding error.

King Saud University: Mathematics Department Math-254 Solution Second MidTerm Examination Semester II 1438-1439 H
Time: 120 min.
Max. Marks 25

Question 1:

Use the simple Gaussian elimination method to find all values of α and β for which the following linear system is consistent or inconsistent. Also, find the solution of the consistent system.

$$
\begin{aligned}
& 2 x_{1}-x_{2}+3 x_{3}=1 \\
& 4 x_{1}+2 x_{2}+2 x_{3}=2 \alpha \\
& 2 x_{1}+x_{2}+x_{3}=\beta
\end{aligned}
$$

Solution. Writing the given system in the augmented matrix form

$$
\begin{gathered}
\left(\begin{array}{rrrr}
2 & -1 & 3 & 1 \\
4 & 2 & 2 & 2 \alpha \\
2 & 1 & 1 & \beta
\end{array}\right) . \\
\left(\begin{array}{cccc}
2 & -1 & 3 & 1 \\
0 & 4 & -4 & 2 \alpha-2 \\
0 & 2 & -2 & \beta-1
\end{array}\right) . \\
\left(\begin{array}{rrrr}
2 & -1 & 3 & 1 \\
0 & 4 & -4 & 2 \alpha-2 \\
0 & 0 & 0 & \beta-\alpha
\end{array}\right) .
\end{gathered}
$$

We finished with the second column. So third row of the equivalent upper-triangular system is

$$
\begin{equation*}
0 x_{1}+0 x_{2}+0 x_{3}=\beta-\alpha . \tag{1}
\end{equation*}
$$

The linear system is inconsistent if

$$
\beta-\alpha \neq 0
$$

The linear system is consistent if

$$
\beta-\alpha=0
$$

Thus

$$
\begin{aligned}
2 x_{1}-x_{2}+3 x_{3} & =1 \\
4 x_{2}-4 x_{3} & =2 \alpha-2
\end{aligned}
$$

in three unknowns. Let $x_{3}=t$,

$$
x_{2}^{*}=\alpha / 2-1 / 2+t ; \quad x_{1}^{*}=\frac{1}{2}(1+\alpha / 2-1 / 2-2 t) .
$$

Hence

$$
\mathbf{x}^{*}=\left[\frac{1}{2}(1 / 2+\alpha / 2-2 t 3), 1 / 2 \alpha-1 / 2+t, t\right]^{T}
$$

is an approximation solution of consistent system for any value of t.

Question 2:

Consider the following matrix and its inverse as follows:

$$
A=\left(\begin{array}{rrr}
10 & -1 & 0 \\
-1 & 10 & -2 \\
0 & -2 & 10
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{rrr}
48 / 475 & 1 / 95 & 1 / 475 \\
1 / 95 & 2 / 19 & 2 / 95 \\
1 / 475 & 2 / 95 & 99 / 950
\end{array}\right) .
$$

Show that Gauss-Seidel method converges faster than Jacobi method for the linear system $A \mathbf{x}=[9,7,6]^{T}$. If an approximate solution for this system is $x^{*}=[0.97,0.91,0.74]^{T}$, then find the relative error.

Solution

$$
\begin{gathered}
T_{J}=-D^{-1}(L+U)=-\left(\begin{array}{lll}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10
\end{array}\right)^{-1}\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & -2 \\
0 & -2 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
\frac{1}{10} & 0 & \frac{2}{10} \\
0 & \frac{2}{10} & 0
\end{array}\right) . \\
\left\|T_{J}\right\|_{\infty}=\max \left\{\frac{1}{10}, \frac{3}{10}, \frac{2}{10}\right\}=\frac{3}{10}=0.3<1 . \\
T_{G}=-(D+L)^{-1} U=-\left(\begin{array}{rrr}
10 & 0 & 0 \\
-1 & 10 & 0 \\
0 & -2 & 10
\end{array}\right)\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right) \\
T_{G}=-\left(\begin{array}{ccc}
\frac{1}{10} & 0 & 0 \\
\frac{1}{100} & \frac{1}{10} & 0 \\
\frac{1}{500} & \frac{1}{50} & \frac{1}{10}
\end{array}\right)\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & \frac{1}{10} & 0 \\
0 & \frac{1}{100} & \frac{1}{5} \\
0 & \frac{1}{500} & \frac{1}{25}
\end{array}\right) . \\
\left\|T_{G}\right\|_{\infty}=\max \left\{\frac{1}{10}, \frac{21}{100}, \frac{26}{500}\right\}=\frac{21}{100}=0.21<1 .
\end{gathered}
$$

Since $\left\|T_{G}\right\|_{\infty}<\left\|T_{J}\right\|_{\infty}$, which shows that Gauss-Seidel method will converge faster than Jacobi method for the given linear system.
The l_{∞}-norm of both given matrices are

$$
\|A\|_{\infty}=13 \quad \text { and } \quad\left\|A^{-1}\right\|_{\infty}=13 / 95, \quad K(A)=\|A\|_{\infty}\left\|\mid A^{-1}\right\|_{\infty}=(13)(13 / 95)=1.7789 .
$$

$$
\begin{gathered}
\mathbf{r}=\mathbf{b}-A \mathbf{x}^{*}=\left(\begin{array}{l}
9 \\
7 \\
6
\end{array}\right)-\left(\begin{array}{rrr}
10 & 0 & 0 \\
-1 & 10 & 0 \\
0 & -2 & 10
\end{array}\right)\left(\begin{array}{l}
0.97 \\
0.91 \\
0.74
\end{array}\right)=\left(\begin{array}{l}
0.21 \\
0.35 \\
0.42
\end{array}\right), \\
\|\mathbf{r}\|_{\infty}=0.42, \quad\|\mathbf{b}\|_{\infty}=9 . \\
\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|} \leq(1.7789) \frac{(0.42)}{9}=0.0830 .
\end{gathered}
$$

Question 3:

Find α for which the following matrix A is singular using LU decomposition by Doolittle's method ($l_{i i}=1$).

$$
A=\left[\begin{array}{lll}
1 & 2 & \alpha \\
2 & 7 & 3 \alpha \\
\alpha & 3 \alpha & 4
\end{array}\right]
$$

Then use the smallest positive integer value of α to find the solution of the linear system $A \mathbf{x}=[1,0,3]^{T}$ using Doolittle's method.

Solution. We use Simple Gauss-elimination method to convert the following matrix of the given system by using the multiples $m_{21}=2, m_{31}=\alpha$ and $m_{32}=\alpha / 3$,

$$
A=\left(\begin{array}{lll}
1 & 2 & \alpha \\
2 & 3 & \alpha \\
0 & 0 & \left(12-4 \alpha^{2}\right) / 3
\end{array}\right) \equiv U
$$

Thus LU-factorization of A is

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 2 & \alpha \\
2 & 7 & 3 \alpha \\
\alpha & 3 \alpha & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
\alpha & \alpha / 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & \alpha \\
2 & 3 & \alpha \\
0 & 0 & \left(12-4 \alpha^{2}\right) / 3
\end{array}\right)=L U . \\
|A|=|U|=1 \times 3 \times\left(12-4 \alpha^{2}\right) / 3=0, \quad \alpha= \pm \sqrt{3} .
\end{gathered}
$$

Now using $\alpha=1$ and solving the first system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 1 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right) .
$$

Performing forward substitution yields

$$
y_{1}=1, \quad y_{2}=-2, \quad y_{3}=8 / 3 .
$$

Then solving the second system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 1 \\
0 & 0 & 8 / 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
8 / 3
\end{array}\right) .
$$

Performing backward substitution yields

$$
x_{1}=2, \quad x_{2}=-1, \quad x_{3}=1 .
$$

Question 4:

Let $f(x)=\frac{1}{x}$ be defined in the interval $[2,4]$ and $x_{0}=2, x_{1}=2.5, x_{2}=4$. Compute the value of the unknown point $\eta \in(2,4)$ in the error formula of the quadratic Lagrange interpolating polynomial for the approximation of $f(3)$ using the given points. Also, compute an error bound for the corresponding error.

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

$$
p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right),
$$

At the given values of $x_{0}=2, x_{1}=2.5, x_{2}=4$, we have, $f(2)=1 / 2, f(2.5)=1 / 2.5$, and $f(4)=1 / 5$, so using $x=3$, we have

$$
f(3) \approx p_{2}(3)=(1 / 2) L_{0}(3)+(1 / 2.5) L_{1}(3)+(1 / 5) L_{2}(3)
$$

Then

$$
\begin{aligned}
& L_{0}(3)=\frac{(3-2.5)(3-4)}{(2-2.5)(2-4)}=-\frac{1}{2}, \\
& L_{1}(3)=\frac{(3-2)(3-4)}{(2.5-2)(2.5-4)}=\frac{4}{3}, \\
& L_{2}(3)=\frac{(3-2)(3-2.5)}{(4-2)(4-2.5)}=\frac{1}{6} .
\end{aligned}
$$

So

$$
f(3) \approx p_{2}(3)=(1 / 2)(-1 / 2)+(1 / 2.5)(4 / 3)+(1 / 5)(1 / 6)=0.3166
$$

which is the required approximation of $f(3)$ by the quadratic interpolating polynomial. The error is

$$
f(3)-p_{2}(3)=0.333-0.3166=0.0167
$$

Since the error formula of the quadratic Lagrange polynomial is

$$
E=f(x)-p_{2}(x)=\frac{f^{\prime \prime \prime}(\eta)}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right), \quad \eta \in I
$$

and the third derivative of f is

$$
f^{\prime}(\eta)=-1 / \eta^{2}, \quad f^{\prime \prime}(\eta)=2 / \eta^{3}, \quad f^{\prime \prime \prime}(\eta)=-6 / \eta^{4}
$$

Thus

$$
0.0167=f(3)-p_{2}(3)=\left(\frac{(3-2)(3-2.5)(3-4)}{6}\right) \frac{(-6)}{\left(\eta^{4}\right)}=\frac{(0.5)}{\left(\eta^{4}\right)}
$$

and solving for η, we get

$$
\eta^{4}=29.9401, \quad \eta^{2}=5.4718, \quad \eta=2.3392 \in(2,4)
$$

required value of the unknown point η.

