Questions :

Q1: Use LU-factorization with Doolittle's method $\left(l_{i i}=1\right)$ to find the value of α for which the following linear system has infinitely many solutions, and write down this solution.

$$
\begin{array}{rlr}
x_{1}+x_{2} & =5 / 9 \\
3 x_{1}+\alpha x_{2}+5 x_{3} & =0 \\
7 x_{2}+3 x_{3} & =-1
\end{array}
$$

Solution. Using Simple Gauss-elimination method, we can easily find fatorization of A as

$$
A=L U=\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & \alpha & 5 \\
0 & 7 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 7 /(\alpha-3) & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 0 \\
0 & (\alpha-3) & 5 \\
0 & 0 & (3 \alpha-44) /(\alpha-3)
\end{array}\right) .
$$

Since

$$
|A|=|U|=(\alpha-3)(3 \alpha-44) /(\alpha-3)=3 \alpha-44, \quad \alpha \neq 3 .
$$

So $|A|=0$, gives, $\alpha=44 / 3$ and for this value of α we have infinitely many solutions. By solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ of the form

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 3 / 5 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
5 / 9 \\
0 \\
-1
\end{array}\right),
$$

we obtained the solution $\mathbf{y}=[5 / 9,-5 / 3,0]^{T}$. Now solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ of the form

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 35 / 3 & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
5 / 9 \\
-5 / 3 \\
0
\end{array}\right) .
$$

If we choose $x_{3}=t \in R, t \neq 0$, then, $x_{2}=(-1 / 7-3 t / 7)$ and $x_{1}=(44 / 9+3 t / 7)$, the required solutions.

Q2: Rearrange the following linear system of equations

$$
\begin{array}{r}
x_{1}+6 x_{2}-3 x_{3}=4 \\
2 x_{1}+2 x_{2}+6 x_{3}=7 \\
5 x_{1}+2 x_{2}-x_{3}=6
\end{array}
$$

such that the convergence of Jacobi iterative method is guaranteed. Then, use the initial solution $\mathbf{x}^{(\mathbf{0})}=[0,0,0]^{T}$, compute the second approximation $\mathbf{x}^{(\mathbf{2})}$. Also, compute an error bound for the error $\left\|\mathrm{x}-\mathbf{x}^{(\mathbf{1 0)}}\right\|$.

Solution. For the guarantee convergence of iterative methods, the system must be SDD form, so rearrange the given system in the following form

$$
\begin{array}{r}
5 x_{1}+2 x_{2}-x_{3}=6 \\
x_{1}+6 x_{2}-3 x_{3}=4 \\
2 x_{1}+2 x_{2}+6 x_{3}=7
\end{array}
$$

The Jacobi iterative formula for the given system is

$$
\begin{aligned}
x_{1}^{(k+1)} & =0.2\left(6-2 x_{2}^{(k)}+x_{3}^{(k)}\right) \\
x_{2}^{(k+1)} & =0.1667\left(4-x_{1}^{(k)}+3 x_{3}^{(k)}\right) \\
x_{3}^{(k+1)} & =0.1667\left(7-2 x_{1}^{(k)}-2 x_{2}^{(k)}\right)
\end{aligned}
$$

Starting with $\mathbf{x}^{(\mathbf{0})}=[0,0,0]^{T}$, we obtain the first and the second approximations as

$$
\mathrm{x}^{(1)}=[1.200,0.667,1.167]^{\mathrm{T}} \quad \text { and } \quad \mathrm{x}^{(2)}=[1.167,1.050,0.544]^{\mathrm{T}} .
$$

Since we know that error bound formula for $k=10$ is

$$
\begin{gathered}
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{1 0})}\right\| \leq \frac{\left\|T_{J}\right\|^{10}}{1-\left\|T_{J}\right\|}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(\mathbf{0})}\right\| . \\
T_{J}=-D^{-1}(L+U)=-\left(\begin{array}{rrr}
5 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right)\left(\begin{array}{rrr}
0 & 2 & -1 \\
1 & 0 & -3 \\
2 & 2 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & -2 / 5 & 1 / 5 \\
-1 / 6 & 0 & 3 / 6 \\
-2 / 6 & -2 / 6 & 0
\end{array}\right) . \\
\left\|T_{J}\right\|_{\infty}=\max \{3 / 5,4 / 6,4 / 6\}=4 / 6=2 / 3<1 . \\
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{1 0})}\right\| \leq \frac{(2 / 3)^{10}}{1-2 / 3}\left\|\left(\begin{array}{l}
1.200 \\
0.667 \\
1.167
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\| \leq \frac{(2 / 3)^{10}}{1-2 / 3}(1.2)=0.0628 .
\end{gathered}
$$

Q3: If $\mathbf{x}^{*}=[-1.99,2.99]^{T}$ is an approximate solution of the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & 1 / 2
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-0.5
\end{array}\right]
$$

then find an upper bound for the relative error.

Solution. We can easily find the inverse of the given matrix as

$$
A^{-1}=\left[\begin{array}{rr}
-1 & 2 \\
2 & -2
\end{array}\right]
$$

Then the l_{∞}-norm of both matrices A and A^{-1} are

$$
\|A\|_{\infty}=2 \quad \text { and } \quad\left\|A^{-1}\right\|_{\infty}=4
$$

and so the condition number of the matrix can be computed as follows:

$$
K(A)=\|A\|_{\infty}\left\|\mid A^{-1}\right\|_{\infty}=(2)(4)=8 .
$$

The residual vector (by taking $n=2$) can be calculated as

$$
\mathbf{r}=\mathbf{b}-A_{2} \mathbf{x}^{*}=\binom{1}{-0.5}-\left(\begin{array}{rr}
1 & 1 \\
1 & 0.5
\end{array}\right)\binom{-1.99}{2.99}=\binom{0.000}{-0.005},
$$

and it gives $\|\mathbf{r}\|_{\infty}=0.005$. Now using formula, we obtain

$$
\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|} \leq K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}=(8) \frac{0.005}{1}=0.0400
$$

which is the required upper bound for the relative error.

Q4: Let $f(x)=\sqrt{x-x^{2}}$ and $p_{2}(x)$ be the quadratic Lagrange interpolating polynomial which interpolates f at $x_{0}=0, x_{1}=\alpha$ and $x_{2}=1$. Find the largest value of α, in the interval $(0,1)$, for which

$$
f(0.5)-p_{2}(0.5)=-0.25
$$

Solution. Consider the quadratic Lagrange interpolating polynomial as follows:

$$
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right) .
$$

At the given values of $x_{0}=0, x_{1}=\alpha, x_{2}=1$, we have, $f(0)=0, f(\alpha)=\sqrt{\alpha-\alpha^{2}}$ and $f(1)=0$, gives

$$
p_{2}(x)=L_{0}(x)(0)+L_{1}(x)\left(\sqrt{\alpha-\alpha^{2}}\right)+L_{2}(x)(0),
$$

where

$$
L_{1}(x)=\frac{(x-0)(x-1)}{(\alpha-0)(\alpha-1)}=\frac{x^{2}-x}{\alpha^{2}-\alpha} .
$$

Thus

$$
p_{2}(x)=\frac{x^{2}-x}{\alpha^{2}-\alpha} \sqrt{\alpha-\alpha^{2}} \quad \text { and } \quad p_{2}(0.5)=\frac{-0.25}{\alpha^{2}-\alpha} \sqrt{\alpha-\alpha^{2}}=\frac{0.25}{\sqrt{\alpha-\alpha^{2}}} .
$$

Given

$$
f(0.5)-p_{2}(0.5)=-0.25, \quad \text { gives } \quad p_{2}(0.5)=f(0.5)+0.25=0.5+0.25=0.75
$$

so

$$
\frac{0.25}{\sqrt{\alpha-\alpha^{2}}}=0.75, \quad \text { or } \quad \sqrt{\alpha-\alpha^{2}}=\frac{1}{3} .
$$

Thus, taking square on both sides, we get

$$
\alpha-\alpha^{2}=\frac{1}{9}, \quad \text { or } \quad 9 \alpha^{2}-9 \alpha+1=0 .
$$

Solving this equation for α, we get, $\alpha=0.127322$ or $\alpha=0.872678$. Thus $\alpha=0.872678$, the required largest value of α in the given interval $(0,1)$.

Q5: Let $f(x)=(x+1) \ln (x+1)$ be the function defined over the interval [1, 2]. Compute the error bound for fifth degree Lagrange interpolating polynomial for equally spaced data points for the approximation of $(2.9 \ln 2.9)$.

Solution. For the fifth degree Lagrange polynomial, we have $h=\frac{2-1}{5}=0.2$, so using the following points:

$$
x_{0}=1, x_{1}=1.2, x_{2}=1.4, x_{3}=1.6, x_{4}=1.8, x_{5}=2 .
$$

and $x=1.9$.
For error bound of fifth degree Lagrange polynomial, we use the formula

$$
\left|E_{5}\right| \leq \frac{M}{6!}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)\left(x-x_{5}\right)\right|,
$$

where

$$
M=\max _{1 \leq x \leq 2}\left|f^{(6)}(x)\right| .
$$

The six derivatives of the given function $f(x)=(x+1) \ln (x+1)$ are as follows:

$$
\begin{array}{ll}
f^{\prime}(x)=1+\ln (x+1), & f^{\prime \prime}(x)=\frac{1}{x+1},
\end{array} f^{\prime \prime \prime}(x)=-\frac{1}{(x+1)^{2}}, ~ 子 r(x)=\frac{-6}{(x+1)^{4}}, \quad f^{(6)}(x)=\frac{24}{(x+1)^{5}} .
$$

Thus

$$
M=\max _{1 \leq x \leq 2}\left|f^{(6)}(x)\right|=\max _{1 \leq x \leq 2}\left|\frac{24}{(x+1)^{5}}\right|=\frac{24}{32}=\frac{3}{4}
$$

So

$$
\left|E_{5}\right| \leq \frac{(3 / 4)(9.4500 e-004)}{720}=9.8437 e-007 .
$$

