King Saud University: Mathematics Department M-254 Semester II (2nd Midtern Exam) 1439-1440 H Maximum Marks=25 Time Allowed: 90 Mins.

Questions: (5+5+5+5+5)

Q1: Use LU-factorization with Doolittle's method ($l_{ii} = 1$) to find the value of α for which the following linear system has infinitely many solutions, and write down this solution.

$$\begin{array}{rcl} x_1 & + & x_2 & = & 5/9 \\ 3x_1 & + & \alpha x_2 & + & 5x_3 & = & 0 \\ & & 7x_2 & + & 3x_3 & = & -1 \end{array}$$

Q2: Rearrange the following linear system of equations

such that the convergence of Jacobi iterative method is guaranteed. Then, use the initial solution $\mathbf{x}^{(0)} = [0, 0, 0]^T$, compute the second approximation $\mathbf{x}^{(2)}$. Also, compute an error bound for the error $\|\mathbf{x} - \mathbf{x}^{(10)}\|$.

Q3: If $\mathbf{x}^* = [-1.99, 2.99]^T$ is an approximate solution of the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1/2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$,

then find an upper bound for the relative error.

Q4: Let $f(x) = \sqrt{x - x^2}$ and $p_2(x)$ be the quadratic Lagrange interpolating polynomial which interpolates f at $x_0 = 0$, $x_1 = \alpha$ and $x_2 = 1$. Find the largest value of α , in the interval (0, 1), for which

$$f(0.5) - p_2(0.5) = -0.25.$$

Q5: Let $f(x) = (x+1)\ln(x+1)$ be the function defined over the interval [1,2]. Compute the error bound for fifth degree Lagrange interpolating polynomial for equally spaced data points for the approximation of $(2.9 \ln 2.9)$.