Summer Semester Maximum Marks $=25$

1438-39 H
Second Examination Time: 90 mins.

Name of the Student:
I.D. No.

Name of the Teacher:-_ Section No.
Note: Check the total number of pages are Five (5). (Six (6) Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 6 : Marks: 2 for each one $(2 \times 6=12)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6
a,b,c,d						

Quest. No.	Marks
Q. 1 to Q. 6	
Q. 7	
Q. 8	
Total	

Question 1: For the Linear System $A x=b$, where

$$
A=\left[\begin{array}{rr}
1 & 0.5 \\
-2 & 1
\end{array}\right]
$$

In the $L U$ factorization with $u_{i i}=1, i=1,2$ of the matrix A, the matrix L is given by:
(a) $\left[\begin{array}{rr}1 & 0 \\ 0.5 & 2\end{array}\right]$
(b) $\left[\begin{array}{rr}1 & 0 \\ -2 & 2\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$

Question 2: The norm of the Jacobi iteration matrix for the linear system

$$
2 x-y+z=1, \quad x-y-2 z=-1, \quad x+y+3 z=2
$$

is:
(a) 1.0
(b) 0.33
(c) 3.0
(d) 0.5

Question 3: The relative error of the linear system $\quad x_{1}+2 x_{2}=3, \quad 1.01 x_{1}+2 x_{2}=3.01$ with approximate solution $x^{*}=[3,0]$ is:
(a) 4.0
(b) 3.04
(c) 5.5
(d) 4.5

Question 4: The value of α such that the approximation of $f(2)$ is equal to 0 using a linear interpolation at $(1,2)$ and $(3, \alpha)$ is:
(a) 2.0
(b) 1.0
(c) -1.0
(d) -2.0

Question 5: If $f(x)=\frac{1}{x}$, then the second order divided difference $f[1,2,1]$ is equal to:
(a) 1.0
(b) 0.25
(c) 0.5
(d) -1.5

Question 6: If $f(x)=x^{3}, x_{0}=0, x_{1}=1$ and $p_{1}(1.5)=4.5$ is the approximation of $f(x)$ using linear polynomial, then the value of η in the error formula is:
(a) 1.325
(b) -0.5
(c) 0.125
(d) 0.25

Question 7: Use LU-factorization method with Doolittle's method to find the solutions of the following consistent linear system using best value of α.

$$
\begin{aligned}
x_{1}+0.5 x_{2}+\alpha x_{3} & =0.5 \\
2 x_{1}-3 x_{2}+ & x_{3}
\end{aligned}=-1.1 .2 .5 x_{3}=-1 .
$$

Question 8: Let $f(x)=(x+1) \ln (x+1)$ be the function defined over the interval [1, 2]. Find the approximation of $(2.9 \ln 2.9)$ using quadratic Lagrange interpolating polynomial for equally spaced data points defined over the interval $[1,2]$ and find absolute error. Compute the error bound for fifth degree Lagrange interpolating polynomial for equally spaced data points for the approximation of $(2.9 \ln 2.9)$.
[7 points]

