King Saud University:	Mathematics Department	MATh-254
Summer Semester	1438-39 H	Second Examination
Maximum Marks $= 25$,	Time: 90 mins.

Name of the Teacher:-------Section No. -----

Note: Check the total number of pages are Five (5). (Six (6) Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.6 : Marks: 2 for each one $(2 \times 6 = 12)$

5 IVIAII	a (a, b,	c or uj	IOI THE C	offect a	ISWEI III	THE DOA.
Q. No.	1	2	3	4	5	6
a,b,c,d						

Quest. No.	Marks
Q. 1 to Q. 6	
Q. 7	
Q. 8	
Total	

Ps. : Mark {a, b, c or d} for the correct answer in the box

Question 1: For the Linear System Ax = b, where

$$A = \left[\begin{array}{rrr} 1 & 0.5 \\ -2 & 1 \end{array} \right].$$

In the LU factorization with $u_{ii} = 1$, i = 1, 2 of the matrix A, the matrix L is given by:

(a)
$$\begin{bmatrix} 1 & 0 \\ 0.5 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 \\ -2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$

Question 2: The norm of the Jacobi iteration matrix for the linear system 2x - y + z = 1, x - y - 2z = -1, x + y + 3z = 2 is:

(a) 1.0 (b) 0.33 (c) 3.0 (d) 0.5

- Question 3: The relative error of the linear system $x_1 + 2x_2 = 3$, $1.01x_1 + 2x_2 = 3.01$ with approximate solution $x^* = [3,0]$ is:
 - (a) 4.0 (b) 3.04 (c) 5.5 (d) 4.5
- **Question 4:** The value of α such that the approximation of f(2) is equal to 0 using a linear interpolation at (1, 2) and $(3, \alpha)$ is:
 - (a) 2.0 (b) 1.0 (c) -1.0 (d) -2.0

Question 5: If $f(x) = \frac{1}{x}$, then the second order divided difference f[1,2,1] is equal to:

- (a) 1.0 (b) 0.25 (c) 0.5 (d) -1.5
- Question 6: If $f(x) = x^3$, $x_0 = 0$, $x_1 = 1$ and $p_1(1.5) = 4.5$ is the approximation of f(x) using linear polynomial, then the value of η in the error formula is:
 - (a) 1.325 (b) -0.5 (c) 0.125 (d) 0.25

Question 7:Use LU-factorization method with Doolittle's method to find the solutions of the
following consistent linear system using best value of α .[6 points]

.

x_1	+	$0.5x_2$	+	αx_3	=	0.5	
$2x_1$		$3x_2$	+	x_3	=	-1	
$-x_1$	_	$1.5x_2$	+	$2.5x_{3}$	=	-1	

Question 8: Let $f(x) = (x + 1) \ln(x + 1)$ be the function defined over the interval [1, 2]. Find the approximation of $(2.9 \ln 2.9)$ using quadratic Lagrange interpolating polynomial for equally spaced data points defined over the interval [1, 2] and find absolute error. Compute the error bound for fifth degree Lagrange interpolating polynomial for equally spaced data points for the approximation of $(2.9 \ln 2.9)$. [7 points]