
A PROBABILISTIC PROOF OF WALLIS’S FORMULA FOR π

STEVEN J. MILLER

There are many beautiful formulas forπ (see for example [4]). The purpose
of this note is to introduce an alternate derivation of Wallis’s product formula,
equation (1), which could be covered in a first course on probability, statistics,
or number theory. We quickly review other famous formulas forπ, recall some
needed facts from probability, and then derive Wallis’s formula. We conclude by
combining some of the other famous formulas with Wallis’s formula to derive an
interesting expression forlog(π/2) (equation (5)).

Often in a first-year calculus course students encounter the Gregory-Leibniz for-
mula,
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The proof uses the fact that the derivative ofarctanx is 1/(1 + x2), soπ/4 =∫ 1
0 dx/(1 + x2). To complete the proof, expand the integrand with the geometric

series formula and then justify interchanging the order of integration and summa-
tion.

Another interesting formula involves Bernoulli numbers and the Riemann zeta
function. The Bernoulli numbersBk are the coefficients in the Taylor series

t

et − 1
= 1− t

2
+
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k=2

Bkt
k

k!
;

eachBk is rational. The Riemann zeta function isζ(s) =
∑∞

n=1 n−s, which
converges for real part ofs greater than1. Using complex analysis one finds (see
for instance [10, p. 365] or [18, pp. 179–180]) that

ζ(2k) = −(−4)kB2k

2 · 2k!
· π2k,

yielding formulas forπ to any even power.1 In particular,π2/6 =
∑

n n−2 and
π4/90 =

∑
n n−4.
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1An amusing consequence of these formulas is a proof of the infinitude of primes. Using unique

factorization, one can show thatζ(s) also equals
Q

p(1− p−s)−1, wherep runs over all primes. As

π2 is irrational andζ(2) = π2/6, there must be infinitely many primes: if there were only finitely
many thenπ2/6 =

Q
p(1− p−2)−1 would be rational! See [13] for explicit lower bounds onπ(x)

derivable from upper bounds for the irrationality measure ofζ(2), and [14] for more details on the
numerous connections betweenζ(s) and number theory.
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One of the most interesting formulas forπ is a multiplicative one due to Wallis
(1665):

π

2
=

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7

8 · 8
7 · 9 · · · =

∞∏

n=1

2n · 2n

(2n− 1)(2n + 1)
. (1)

Common proofs use the infinite product expansion forsinx (see [18, p. 142]) or
induction to prove formulas for integrals of powers ofsinx (see [3, p. 115]). We
present a mostly elementary proof using standard facts about probability distribu-
tions encountered in a first course on probability or statistics (and hence the title).2

The reason we must write “mostly elementary” is that at one point we appeal to the
Dominated Convergence Theorem. It is possible to bypass this and argue directly,
and we sketch the main ideas for the interested reader.

Recall that a continuous functionf(x) is a continuous probability distribution if
(1) f(x) ≥ 0 and (2)

∫∞
−∞ f(x)dx = 1. We immediately see that ifg(x) is a non-

negative continuous function whose integral is finite then there exists ana > 0 such
thatag(x) is a continuous probability distribution (takea = 1/

∫∞
−∞ g(x)dx). This

simple observation is a key ingredient in our proof, and is an extremely important
technique in mathematics; the proof of Wallis’s formula is but one of many applica-
tions.3 In fact, this observation greatly simplifies numerous calculations in random
matrix theory, which has successfully modeled diverse systems ranging from en-
ergy levels of heavy nuclei to the prime numbers; see [5, 14] for introductions to
random matrix theory and [11] for applications of this technique to the subject.
One of the purposes of this paper is to introduce students to the consequences of
this simple observation.

Our proof relies on two standard functions from probability, the Gamma func-
tion and the Studentt-distribution. The Gamma functionΓ(x) is defined by

Γ(x) =
∫ ∞

0
e−ttx−1dt.

Note that this integral is well defined if the real part ofx is positive. Integrating by
parts yieldsΓ(x + 1) = xΓ(x). This implies that ifn is a nonnegative integer then
Γ(n + 1) = n!; thus the Gamma function generalizes the factorial function (see
[17] for more on the Gamma function, including another proof of Wallis’s formula
involving the Gamma function). We need the following:
Claim: Γ(1/2) =

√
π.

2For a statistical proof involving an experiment and data, see the chapter on Buffon’s needle in
[1] (page 133): if you have infinitely many parallel linesd units apart, then the probability that a
“randomly” dropped rod of length̀≤ d crosses one of the lines is2`/πd. Thus you can calculateπ
by throwing many rods on the grid and counting the number of intersections.

3A nice application of Wallis’s formula is in determining the universal constant in Stirling’s for-
mula forn!; see [15] for some history and applications.
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Proof. In the integral forΓ(1/2), change variables by settingu =
√

t (so dt =
2udu = 2

√
tdu). This yields

Γ(1/2) = 2
∫ ∞

0
e−u2

du =
∫ ∞

−∞
e−u2

du.

This integral is well-known to equal
√

π (see page 542 of [2]). The standard proof
is to square the integral and convert to polar coordinates:

Γ(1/2)2 =
∫ ∞

−∞
e−u2

du

∫ ∞

−∞
e−v2

dv =
∫ ∞

0

∫ 2π

0
e−r2

rdrdθ = π.

¤

In fact, our proof above shows
∫ ∞

−∞

1√
2π

e−t2/2dt = 1. (2)

This density is called the standard normal (or Gaussian). This is one of the most
important probability distributions, and we shall see it again when we look at the
Studentt-distribution. If g is a continuous probability density, then we say that
the random variableY has distributiong if for any interval [a, b] the probabil-
ity that Y takes on a value in[a, b] is

∫ b
a g(y)dy. The celebrated Central Limit

Theorem (see [6, p. 515] for a proof) states that for many continuous densities
g, if X1, . . . , Xn are independent random variables, each with densityg, then as
n → ∞ the distribution of(Yn − µ)/σ converges to the standard normal (where
Yn = (X1 + · · · + Xn)/n is the sample average,µ is the mean ofg, andσ is its
standard deviation4).

The second function we need is the Student5 t-distribution (withν degrees of
freedom):

fν(t) =
Γ

(
ν+1
2

)
√

πν Γ
(

ν
2

) ·
(

1 +
t2

ν

)− ν+1
2

= cν

(
1 +

t2

ν

)− ν+1
2

;

hereν is a positive integer andt is any real number.

Claim: The Student t-distribution is a continuous probability density.

Proof. As fν(t) is clearly continuous and nonnegative, to showfν(t) is a proba-
bility density it suffices to show that it integrates to1. We must therefore show
that

∫ ∞

−∞

(
1 +

t2

ν

)− ν+1
2

dt =
√

πν Γ
(

ν
2

)

Γ
(

ν+1
2

) .

4The meanµ of a distribution is its average value:µ =
R

xg(x)dx. The standard deviationσ
measures how spread out a distribution is about its average value:σ2 =

R
(x− µ)2g(x)dx.

5Student was the pen name of William Gosset.
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As the integrand is symmetric, we may integrate from0 to infinity and double the
result. Lettingt =

√
ν tan θ (sodt =

√
ν sec2 θdθ) we find

∫ ∞

−∞

(
1 +

t2

ν

)− ν+1
2

dt = 2
√

ν

∫ π/2

0

sec2 θdθ

secν+1 θ
= 2

√
ν

∫ π/2

0
cosν−1 θdθ.

The proof follows immediately from two properties of the Beta function (see [2, p.
560]):

B(p, q) = Γ(p)Γ(q)/Γ(p + q)

B(m + 1, n + 1) = 2
∫ π/2

0
cos2m+1(θ) sin2n+1(θ)dθ; (3)

an elementary proof without appealing to properties of the Beta function is given
in Appendix A. ¤

The Studentt-distribution arises in statistical analyses where the sample size
ν is small and each observation is normally distributed with the same mean and
the same (unknown) variance (see [8, 12]). The reason the Studentt-distribution
is used only for small samples sizes is that asν → ∞, fν(t) converges to the
standard normal; proving this will yield Wallis’s formula. While we can prove this
by invoking the Central Limit Theorem, we may also see this directly by recalling
that

ex = lim
N→∞

(
1 +

x

N

)N
.

We therefore have

lim
ν→∞

(
1 +

t2

ν

)−ν/2

=
(
et2

)−1/2
= e−t2/2.

As fν(t) is a probability distribution for all positive integersν, it integrates to1 for
all suchν, which is equivalent to

1
cν

=
√

πν Γ
(

ν
2

)

Γ
(

ν+1
2

) =
∫ ∞

−∞

(
1 +

t2

ν

)− ν+1
2

dt.

Taking the limit asν →∞ yields

lim
ν→∞

1
cν

= lim
ν→∞

∫ ∞

−∞

(
1 +

t2

ν

)− ν+1
2

dt

=
∫ ∞

−∞
lim

ν→∞

(
1 +

t2

ν

)− ν+1
2

dt =
∫ ∞

−∞
e−t2/2dt =

√
2π.

Some work is necessary of course to justify interchanging the integral and the limit;
this justification is why our argument is only “mostly elementary”. A standard
proof uses the Dominated Convergence Theorem (see [7, p. 54] or [9, p. 238]) to
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show that asν →∞ thet-distribution converges to the standard normal;6 one may
take2008 exp(−t2/2008) as the dominating function. We have therefore shown
that

c = lim
ν→∞ cν = lim

ν→∞
Γ

(
ν+1
2

)
√

πν Γ
(

ν
2

) =
1√
2π

. (4)

The fact thatc = 1/
√

2π is the key step in our proof of Wallis’s formula. We have
calculated the limit by using our observation that a probability distribution must
integrate to1; calculating it by brute force analysis of the Gamma factors yields
our main result.

Theorem: Wallis’s formula is true.

Proof. The proof follows from expanding the Gamma functions and substituting
into (4); we highlight the main steps. Letν = 2m. UsingΓ(n + 1) = nΓ(n) and
Γ(1/2) =

√
π we find that

Γ
(

2m + 1
2

)
= (2m− 1)(2m− 3) · · · 5 · 3 · 1 · √π/2m.

As Γ(m) = (m− 1)!, after some algebra we find that

c2m =
1 · 3 · 5 · · · (2m− 3) · (2m− 1)
2 · 4 · 6 · · · (2m− 2) · 2m

√
m√
2

.

Multiplying by 1 · (2m + 1)/(2m + 1) and regrouping, we find

c2m =
(

1 · 3
2 · 2 · 3 · 5

4 · 4 · · · (2m− 1)(2m + 1)
2m · 2m

1
2m + 1

) 1
2
√

m√
2

,

which we rewrite as
m∏

n=1

2n · 2n

(2n− 1)(2n + 1)
=

2 · 2
1 · 3

4 · 4
3 · 5 · · · 2m · 2m

(2m− 1)(2m + 1)
=

m

(4m + 2)c2
2m

.

As limm→∞ 1/c2
2m = 2π andlimm→∞m/(4m + 2) = 1/4, we have

∞∏

n=1

2n · 2n

(2n− 1)(2n + 1)
=

π

2
,

which completes the proof. ¤

By combining the expansion forπ from Wallis’s formula with those involving
the Bernoulli numbers and the zeta function, we obtain a proof of the following
amusing formula forlog(π/2).

6For completeness we sketch how such an argument could proceed. Ift ∈ [− log2 ν, log2 ν] then
|(1 + t2/ν)−(ν+1)/2 − exp(−t2/2)| tends to zero rapidly withν. Further, iff(t) is the density of
the standard normal, then

R
|t|≥log2 ν

f(t)dt and
R
|t|≥log2 ν

fν(t)dt also tend to zero rapidly withν.

Careful bookkeeping shows that the normalization constantscν must therefore approachc = 1/
√

2π.
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Theorem: We have

log
π

2
=

∞∑

k=1

ζ(2k)
4k · k = −

∞∑

k=1

(−1)kB2k

2k · 2k!
· π2k. (5)

Proof. The Taylor series oflog(1 − x) is −∑∞
k=1 xk/k. Thenth factor in Wal-

lis’s formula may be written as
(
1− 1

4n2

)−1
. Thus taking logarithms of Wallis’s

formula and Taylor expanding yields

log
π

2
= −

∞∑

n=1

log
(

1− 1
4n2

)
=

∞∑

n=1

∞∑

k=1

1
k · (4n2)k

=
∞∑

k=1

1
4k · k

∞∑

n=1

1
n2k

.

Then-sum givesζ(2k), and the claim now follows. ¤

Note that the above formula forlog(π/2) converges well. It is easy to see that
|ζ(2k)| ≤ 2 (and limk→∞ ζ(2k) = 1). Thus each additional summand yields at
least one new digit (base4). See [16] for additional formulas forlog(π/2).
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APPENDIX A. ELEMENTARY CALCULATION OF CONSTANTS

For completeness, we provide a more elementary derivation that the stated con-
stant is the correct normalization constant for the Studentt-distribution.

Lemma A.1. We have

2
√

ν

∫ π/2

0
cosν−1 θdθ =

√
πν Γ

(
ν
2

)

Γ
(

ν+1
2

) . (6)

Proof. The claim follows by induction; we sketch the main idea. Assume we have
proven the claim for allν ≤ n. Then
∫ π/2

0
cosn+1 θdθ =

∫ π/2

0
(1− sin2 θ) cosn−1 θdθ

=
∫ π/2

0
cosn−1 θdθ −

∫ π/2

0
sin θ · (cosn−1 θ sin θ

)
dθ.

We integrate the second term on the right by parts, withu = sin θ and dv =
cosn−1 θ sin θdθ. Theuv term vanishes at0 andπ/2 and we are left with

∫ π/2

0
cosn+1 θdθ =

∫ π/2

0
cosn−1 θdθ − 1

n

∫ π/2

0
cosn θ cos θdθ,
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which simplifies to
∫ π/2

0
cosn+1 θdθ =

n

n + 1

∫ π/2

0
cosn−1 θdθ.

The claim now follows from standard properties of the Gamma function (Γ(m +
1) = mΓ(m) andΓ(1/2) =

√
π). ¤
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