Introduction to Biomarkers

By
Dr. Gouse Mohiddin Shaik
Introduction

• In this section we will discuss...
• What are biomarkers
• History
• What is a good biomarker
• Types of biomarkers
• Nature of biomarkers
• Biomarker validation
• Role of BMs in health care system
Introduction

• Biomarker
 • Defined as a characteristic that can be objectively measured and evaluated as an indicator of a physiological or a pathological process or pharmacological response to a therapeutic intervention

• Classical biomarkers being blood pressure, glucose....
Introduction

• History

Table 1.1 Historical landmarks in discovery and development of biomarkers

<table>
<thead>
<tr>
<th>Year</th>
<th>Landmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1847</td>
<td>The first laboratory test for a protein cancer biomarker, the Bence Jones protein in urine</td>
</tr>
<tr>
<td>1954</td>
<td>Test for the measurement of transaminases in myocardial infarction (Karmen et al. 1954)</td>
</tr>
<tr>
<td>1960s</td>
<td>The term “biomarker” started to appear in the literature in connection with metabolites and biochemical abnormalities associated with several diseases</td>
</tr>
<tr>
<td>1967</td>
<td>An improved test for myocardial infarction based on a biomarker – serum creatine phosphokinase (Rosalki 1967)</td>
</tr>
<tr>
<td>1971</td>
<td>Report of carcinoembryonic antigen (CEA) as biomarker of cancer (Moore et al. 1971)</td>
</tr>
<tr>
<td>1987</td>
<td>Troponin I as a biomarker for myocardial infarction (Cummins et al. 1987)</td>
</tr>
<tr>
<td>Early 1990s</td>
<td>Accelerator mass spectrometry used for analysis of biological samples for biomarkers</td>
</tr>
<tr>
<td>1995</td>
<td>Applications of proteomics for discovery of biomarkers and use in molecular diagnostics</td>
</tr>
<tr>
<td>1999</td>
<td>Emergence of metabolomics for study of biomarkers</td>
</tr>
<tr>
<td>2000</td>
<td>Sequencing of the human genome completed opening the way for discovery of gene biomarkers</td>
</tr>
<tr>
<td>2005</td>
<td>Discovery and application of biomarkers becomes a major activity in biotechnology and biopharmaceutical industries</td>
</tr>
</tbody>
</table>

DOI 10.1007/978-1-60761-685-6_10
Introduction

• What is a good BM
• Ideal BM must be specifically associated with a particular disease or disease state and should be able to differentiate between similar physiological conditions
• Standard biological sources like serum or urine can be used for identification
• Should have an accurate, simple and cost effective measurement method
• Must have base line reference point
Introduction

• Types of biomarkers
• Predisposition BMs
 • Helpful in identifying likeliness of getting disease
• Screening BMs
 • Helpful in screening who is suffering the disease
• Staging BMs
 • Helpful in categorizing disease severity
• Prognostic BMs
 • Helpful in assessing disease progression
• Prediction BMs
 • Helpful in predicting the course of the disease
• Recurrence monitoring BMs
 • Helpful in identifying recurrence of the disease
Introduction

- Nature of Biomarkers
- Nature of BMs can be as simple as metabolites like glucose, steroids, lipids… and also can be complex such as T cells, auto-antibodies….
- Classically they can be
 - A piece of DNA – gene – genomics
 - RNA – transcriptomics
 - Any protein – proteomics
 - Any metabolite – metabolomics
 - Protein interactions - interactome
Introduction

- Biomarker validation
 - Is the process of assessing the assay or measurement performance characteristics

- Biomarker qualification
 - Is the process of providing evidence to link a BM with biology and clinical end points
Introduction

• Role of BMs in health care
 • Knowledge of BMs can be used by translational medicine (transfer of research findings to clinical applications)
 • BMs play important role if not central
 • Helpful in inventing diagnostic kits ultimately leading to drug development
 • Aid in developing personalized medicine which is the future of health care

• Limitations
Introduction

• Relationship of BMs to health care
Introduction

• Next class…..
• BMs of general tissue functions