Chapter 2

Linear Time-Invariant Systems

(LTI Systems)

Linear Time-Invariant Systems

- A system is said to be Linear Time-Invariant (LTI) if it possesses the basic system properties of linearity and time-invariance.
- The input-output relationship for LTI systems is described in terms of a convolution operation.

DT Signal Decomposition in terms of shifted unit impulses

$$
\xrightarrow{x[n]} \text { LTI System } y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \longrightarrow y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Convolution 1

Example:

Convolution

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

There are only two non-zero values for the input

$$
y[n]=x[0] h[n-0]+x[1] h[n-1]=0.5 h[n]+2 h[n-1]
$$

Convolution 2

Example:

$x[n]=\left\{\begin{array}{lr}3 & n=0 \\ 2 & n=1 \\ 1 & n=2 \\ 0 & \text { elsewhere }\end{array}\right.$

Solution:
Convolution sum using the table method.

$k:$	-2	-1	0	1	2	3	4	5	
$x(k):$			3	1	2				
$h(-k):$	1	2	3						$y(0)=3 \times 3=9$
$h(1-k)$		1	2	3				$y(1)=3 \times 2+1 \times 3=9$	
$h(2-k)$			1	2	3				$y(2)=3 \times 1+1 \times 2+2 \times 3=11$
$h(3-k)$				1	2	3			$y(3)=1 \times 1+2 \times 2=5$
$h(4-k)$				1	2	3		$y(4)=2 \times 1=2$	
$h(5-k)$					1	2	3	$y(5)=0$ (no overlap)	

Convolution Length $=N_{1}+N_{2}-1=3+3-1=5$

Convolution 3

Example: Find the output of an LTI system having a unit impulse response $h[n]=u[n]$, for the input $x[n]=\propto^{n} u[n]$

The Representation of Continuous-Time Signals in Terms of Impulses

$$
\text { At } t=\Delta
$$

$$
\hat{x}(\Delta)=x(\Delta) \Delta \delta_{\Delta}(t-\Delta)=\left\{\begin{array}{cc}
x(\Delta) & \Delta \leq t \leq 2 \Delta \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\text { In general } \quad \text { At } t=k \Delta
$$

$\hat{x}(k \Delta)=x(k \Delta) \Delta \delta_{\Delta}(t-k \Delta)=\left\{\begin{array}{cc}x(k \Delta) & k \Delta \leq t \leq(k+1) \Delta \\ 0 & \text { otherwise }\end{array}\right.$

Defining:

$$
\begin{gathered}
\delta_{\Delta}(t)=\left\{\begin{array}{cc}
1 / \Delta & 0 \leq t \leq \Delta \\
0 & \text { otherwise }
\end{array}\right. \\
\Rightarrow \Delta \delta_{\Delta}(t)=\left\{\begin{array}{cc}
1 & 0 \leq t \leq \Delta \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

$\Delta \delta_{\Delta}(t)$ has a unit amplitude

The complete pulse/staircase approximation of $x(t)$ is the sum
$\hat{x}(t)=\cdots+\hat{x}(-\Delta)+\hat{x}(0)+\hat{x}(\Delta)+\cdots$
$\hat{x}(t)=\sum_{k=-\infty}^{\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta$

The Representation of $C T$ Signals in Terms of Impulses $_{2}$

If we let Δ approach $0 \hat{x}(t)$ becomes closer and closer and equals $x(t)$ in the limit of 0
$x(t)=\lim _{\Delta \rightarrow 0} \hat{x}(t)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta$
In the limiting case the sum approaches integral (area):

$x(\tau) \delta(t-\tau)=x(t) \delta(t-\tau)$

$$
\begin{aligned}
& \Delta \rightarrow 0 ; \delta_{\Delta}(t) \rightarrow \delta(t) \\
& \sum_{k=-\infty}^{\infty} \cdots \Delta \rightarrow \int_{\tau=-\infty}^{\infty} \cdots d \tau
\end{aligned}
$$

Consequently:

$$
x(t)=\int_{\tau=-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau
$$

- The impulse response $h(t)$ of a continuous-time LTI system S

$$
h(t)=S\{\delta(t)\} \quad \text { Sum (Integral) of weighted shifted impulses }
$$

$$
y(t)=S\{x(t)\}=S\left\{\int_{\tau=-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right\} \stackrel{\text { linearity }}{=} \int_{\tau=-\infty}^{\infty} x(\tau) S\{\delta(t-\tau)\} d \tau
$$

For the input $x(t)$:

- Since the system is time-invariant:

$$
S\{\delta(t-\tau)\}=h(t-\tau) \quad{ }^{\text {Time-invariance }}
$$

$$
y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)
$$

Example 1

Let, the input $\mathrm{x}(\mathrm{t})$ to an LTI system with unit impulse response $h(t)$ be given as $x(t)=e^{-a t} u(t)$ for $a>0$
 and $h(t)=u(t)$. Find the output $y(t)$ of the system.

$$
y(t)=x(t) * h(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

$$
\begin{aligned}
& \text { he system. } \\
& \qquad \begin{array}{l}
d \tau \quad x(t) \neq 0 \text { for } t \geq 0 \\
\\
h(t)=u(t) \\
h(t-\tau)= \begin{cases}1 & 0<\tau<t \\
0 & \tau>t\end{cases}
\end{array} .
\end{aligned}
$$

Thus, for all t, we can write
$=\int_{0}^{t} e^{-a \tau} d \tau=\left.\frac{1}{-a} e^{-a \tau}\right|_{0} ^{t}=\frac{1}{a}\left(1-e^{-a t}\right)$

$$
y(t)=\frac{1}{a}\left(1-e^{-a t}\right) \longrightarrow
$$

Example 2

Find $y(t)=x(t) * h(t)$, where

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{0} e^{2 \tau} d \tau=\frac{1}{2} \quad \text { For } t \geq 3 \\
& \Longleftrightarrow \quad y(t)= \begin{cases}\frac{1}{2} e^{2(t-3)} & \text { For } t \leq 3 \\
1 / 2 & \text { For } t \geq 3\end{cases}
\end{aligned}
$$

For $\boldsymbol{t}-\mathbf{3} \leq \mathbf{0}$: nonzero overlap for $-\infty \leq \tau \leq t-3$

$$
y(t)=\int_{-\infty}^{t-3} e^{2 \tau} d \tau=\frac{1}{2} e^{2(t-3)} \quad \text { For } t \leq 3
$$

For $\boldsymbol{t}-\mathbf{3} \geq \mathbf{0}$: nonzero overlap for $-\infty \leq \tau \leq 0$
The system response is $y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$ these two signals have regions of nonzero overlap

$y(t)=\int_{\tau=-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \quad$ The Convolution Integral 3

The Convolution Integral $_{4}$

Properties of LTI Systems

- The characteristics of an LTI system are completely determined by its impulse response. This property holds in general only for LTI systems only.
- The unit impulse response of a nonlinear system does not completely characterize the behavior of the system.

Consider a discrete-time system with unit impulse response:

$$
h[n]=\left\{\begin{array}{cc}
1, & n=0,1 \\
0, & \text { othenwise }
\end{array}\right.
$$

If the system is LTI, we get the system output (by convolution): $y[n]=x[n]+x[n-1]$
There is only one such LTI system for the given h[n].
However, there are many nonlinear systems with the same response, $h[n]$.
Two different Non-Linear systems with same impulse response

$$
\begin{aligned}
& y[n]=(x[n]+x[n-1])^{2} \longrightarrow h[n]=(\delta[n]+\delta[n-1])^{2} \longrightarrow h[n]=\left\{\begin{array}{cc}
1, & n=0,1 \\
0, & \text { otherwise }
\end{array}\right. \\
& y[n]=\max (x[n], x[n-1]) \longrightarrow h[n]=\operatorname{Max}(\delta[n], \delta[n-1]) \longrightarrow h[n]=\left\{\begin{array}{cc}
1, & n=0,1 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

1 Commutative Property

$$
\begin{aligned}
& x(t) * h(t)=h(t) * x(t) \\
& x[n]^{*} h[n]=h[n]^{*} x[n]
\end{aligned}
$$

Proof: (discrete domain)

$$
\begin{aligned}
& x[n]^{*} h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& \text { Put } r=n-k \Rightarrow k=n-r \\
& x[n]^{*} h[n]=\sum_{r=-\infty}^{\infty} x[n-r] h[r]=\sum_{r=-\infty}^{\infty} h[r] x[n-r]=h[n]^{*} x[n]
\end{aligned}
$$

Similarly, we can prove it for continuous domain.

2 Distributive Property

Convolution is distributive over addition,

in discrete time

$$
x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n]
$$

in continuous time

$$
x(t) *\left[h_{1}(t)+h_{2}(t)\right]=x(t) * h_{1}(t)+x(t) * h_{2}(t)
$$

IF

THEN

$$
\mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{h}_{1}[\mathrm{n}]+\mathrm{h}_{2}[\mathrm{n}] \longrightarrow \mathrm{y}[\mathrm{n}]
$$

Example:

$$
\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}] \quad x[n]=\left(\frac{1}{2}\right)^{n} u[n]+2^{n} u[-n] \quad \text { and } \quad h[n]=u[n]
$$

$\mathrm{x}[\mathrm{n}]$ in nonzero for entire n , so direct convolution is difficult. Therefore, we will use commutative property.

$$
\begin{aligned}
& y[n]=x[n] * h[n]=\left(x_{1}[n]+x_{2}[n]\right) * h[n]=\left(x_{1}[n] * h[n]+x_{2}[n] * h[n]\right)=y_{1}[n]+y_{2}[n] \\
& y_{1}[n]=x_{1}[n]^{*} h[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] h[n-k]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{k} u[k] u[n-k]=\left(\frac{1-(1 / 2)^{n+1}}{1-(1 / 2)}\right) u[n]=2\left(1-(1 / 2)^{n+1}\right) u[n]
\end{aligned}
$$

3 Associative Property

in continuous time

$$
x(t) *\left[h_{1}(t) * h_{2}(t)\right]=\left[x(t) * h_{1}(t)\right]^{*} h_{2}(t)
$$

In discrete time

$$
x[n] *\left[h_{1}[n] * h_{2}[n]\right]=\left[x[n] * h_{1}[n]\right] * h_{2}[n]
$$

(B)

Proof:
From (A), $y[n]=w[n] * h_{2}[n]=\left(x[n] * h_{1}[n]\right) * h_{2}[n]$
From (B), $y[n]=x[n] * h[n]=x[n]^{*}\left(h_{1}[n]^{*} h_{2}[n]\right)$

4 LTI Systems With and Without Memory

A system is memory-less if its output at any time depends only on the value of the input at that same time.
System output: $\quad y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k] \quad \longleftarrow y[n]$ depends on only $x[n]$ only if $\mathrm{k}=n$, so for $h[n]=0$ for $n \neq 0$ A discrete-time LTI system can be memory-less if only: $h[n]=0$, for $n \neq 0 \quad \begin{array}{r}\text { impulse response } x[n]=\delta[n \\ y\end{array}$

Thus, the impulse response have the form:

$$
h[n]=K \delta[n], \text { with } K=h[0] \text { is a constant }
$$

the convolution sum reduces to $y[n]=K x[n]$

$$
\text { If } \mathrm{k}=1 \text {, then the system is called identity system. }
$$

Similarly for continuous LTI systems.
a continuous-time LTI system is memory-less if $h(t)=0$ for $t \neq 0$,

$$
h(t)=K \delta(t) . \quad y(t)=K x(t)
$$

5 Invertibility of LTI Systems

A system is invertible only if an inverse system exists
The system with impulse response $h_{1}(t)$ is inverse of the system with impulse response $h(t)$ if:

$$
h(t) * h_{1}(t)=\delta(t)
$$

Example:

Consider the LTI system consisting of a pure time shift $y(t)=x\left(t-t_{0}\right)$

$$
t_{0}>0 \quad \text { delay }
$$

$$
t_{0}<0 \text { advance }
$$

The impulse response for the system (for $x(t)=\delta(t)$): $\quad h(t)=\delta\left(t-t_{0}\right) \longleftarrow \quad$ impulse response $x(t)=\delta(\mathrm{t})$ the system's output (the convolution): $y(t)=x(t) * h(t)=x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$

To recover the input from the output (invert the system), all that is required is to shift the output back.
The inverse system impulse response: $\quad h_{1}(t)=\delta\left(t+t_{0}\right)$
then

$$
h(t) * h_{1}(t)=\delta\left(t-t_{0}\right) * \delta\left(t+t_{0}\right)=\delta(t) \longleftarrow \text { identity system }(y(t)=x(t) * \delta(t)=x(t))
$$

Invertibility of LTI Systems: Example 2

Consider an LTI system with impulse response: $h[n]=u[n]$
$u[n-k]=0$ for $k>n$
Response of this system (convolution sum): $y[n]=\sum_{k=-\infty}^{\infty} x[k] u[n-k] \quad y y[n]=\sum_{k=-\infty}^{n} x[k]$ first difference equation $\Rightarrow y[n]=x[n]+\sum_{k=-\infty}^{n-1} x[k] \Rightarrow y[n]=x[n]+y[n-1] \Rightarrow x[n]=y[n]-y[n-1] \stackrel{\text { Inverse system }}{\Rightarrow} y[n]=x[n]-x[n-1]$ Impulse response $(x[n]=\delta[n]): h_{1}[n]=\delta[n]-\delta[n-1]$

Verification: $h[n] * h_{1}[n]=\delta[n]$

$$
\begin{aligned}
h[n] * h_{1}[n] & =u[n] *\{\delta[n]-\delta[n-1]\} \\
& =\{u[n] * \delta[n]\}-\{u[n] * \delta[n-1]\} \quad \Longrightarrow h[n] * h_{1}[n]=\delta[n] \\
& =u[n]-u[n-1] \quad \\
& =\delta[n] \quad \text { the impulse responses are inverses of each other }
\end{aligned}
$$

6 Causality of LTI Systems

- The output of a causal system depends only on the present and past values of the input to the system.

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \quad y[n] \text { must not depend on } x[k] \text { for } k>n \text { to be causal }
$$

Therefore, for a discrete-time LTI system to be causal: $x[k] h[n-k]=0$ for $k>n \Rightarrow h[n-k]=0$ for $k>n$

$$
\text { for } k>n \rightarrow n-k<0 \quad \Rightarrow \quad h[n]=0 \quad \text { for } n<0
$$

Causality for LTI system is equivalent to the condition of initial rest (output must be 0 before applying the input)

$$
y[n]=\sum_{k=-\infty}^{n} x[k] h[n-k]=0 \quad \text { for } k<0 h[k]=0
$$

- Similarly, for a continuous-time LTI system to be causal:

$$
y(t)=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau
$$

Both the accumulator $(h[n]=u[n])$ and its inverse $(h[n]=\delta[n]-\delta[n-1])$ are causal.

Inverse system of the accumulator

$$
\begin{aligned}
h[n] * h_{1}[n] & =u[n] *\{\delta[n]-\delta[n-1]\} \\
& =u[n] * \delta[n]-u[n] * \delta[n-1] \\
& =u[n]-u[n-1] \\
& =\delta[n] .
\end{aligned}
$$

7 Stability of LTI Systems

- A system is stable if every bounded input produces a bounded output (BIBO).

Consider, an input $\mathrm{x}[\mathrm{n}]$ to an LTI system that is bounded in magnitude:

$$
|x[n]|<B, \text { for all } n
$$

Suppose that we apply this to the LTI system with impulse response $\mathrm{h}[\mathrm{n}]$.

$$
|y[n]|=\left|\sum_{k=-\infty}^{\infty} h[k] x[n-k]\right| \leq \sum_{k=-\infty}^{\infty}|h[k] \| x[n-k]| \leq B \sum_{k=-\infty}^{\text {We take } x[n]=B}|h[k]| \text { for all } n
$$

Therefore, if $\quad \sum_{k=-\infty}^{\infty}|h[k]|<\infty$, then $|y[n]|<\infty$
The system is stable if the impulse response $h[n]$ is absolutely summable.

- Similar case in continuous-time LTI system.
the system is stable if the impulse response is absolutely integrable.

Example:

An LTI system with pure time shift is stable.

$$
\sum_{n=-\infty}^{\infty}|h[n]|=\sum_{n=-\infty}^{\infty}\left|\delta\left[n-n_{0}\right]\right|=1
$$

An accumulator (DT domain) system is unstable.

$$
\sum_{n=-\infty}^{\infty}|h[n]|=\sum_{n=-\infty}^{\infty}|u[n]|=\sum_{n=0}^{\infty}|u[n]|=\infty
$$

Similarly, an integrator (CT domain) system is unstable.

8 Unit Step Response of An LTI System

- the unit step response, $s[n]$ or $s(t)$, the output corresponding to the input $x[n]=u[n]$ or $x(t)=u(t)$.
- it is worthwhile relating the unit step response to the impulse response
commutative property

$$
s[n]=u[n]^{*} h[n]=h[n]^{*} u[n]
$$

Response to the input $h[n]$ of a LTI system with unit impulse response $u[n]$.
$u[n]$ is the unit impulse response of the accumulator. impulse response of an accumulator

$$
-2-2
$$

$$
h[n]=\sum_{k=-\infty}^{n} \delta[k]=\left\{\begin{array}{ll}
1 & n \geq 0 \\
0 & n<0
\end{array}=u[n]\right.
$$

Discrete-

$$
\Rightarrow s[n]=\sum_{k=-\infty}^{n} h[k]
$$

Running Sum time domain

$$
\Rightarrow h[n]=s[n]-s[n-1]
$$

Continuoustime domain

$$
\begin{array}{ll}
s(t)=\int_{-\infty}^{t} h(\tau) d \tau & \text { Running Integral } \\
h(t)=\frac{d s(t)}{d s}=s^{\prime}(t) \longleftarrow & \text { First Derivative }
\end{array}
$$

LTI Systems Described by Differential Equation

(Linear Constant-Coefficient Differential Equation)
A general N^{th}-order linear constant-coefficient differential equation that relates the input $x(t)$ to the output $y(t)$ is given by

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}
$$

Example1:

consider a first-order differential equation $\quad \frac{d y(t)}{d t}+2 y(t)=x(t)$
where the input to the system is: $\quad x(t)=K e^{3 t} u(t) \quad$ Solve for $\mathrm{y}(\mathrm{t})$.
The complete solution is $\quad y(t)=y_{p}(t)+y_{h}(t) \longleftarrow \begin{gathered}y_{p}(t) \text { the particular solution } \\ y_{h}(t) \text { The homogeneous solution },\end{gathered}$

- Finding the particular solution $y_{p}(t)$ (signal of the same form as the input)
forced response $\quad y_{p}(t)=Y e^{3 t} \longleftarrow \quad$ Determine Y
From differential equation:
$3 Y e^{3 t}+2 Y e^{3 t}=K e^{3 t} \Rightarrow 3 Y+2 Y=K \Rightarrow Y=\frac{K}{5}$
$\Rightarrow y_{p}(t)=\frac{K}{5} e^{3 t}, K$ real and $t>0$
- Finding the homogeneous solution(hypothesize a solution)

$$
y_{h}(t)=A e^{s t} \longleftarrow \text { Determine } s \text { and } \mathrm{A}
$$

From differential equation:

$$
\begin{aligned}
& s A e^{s t}+2 A e^{s t}=0 \Rightarrow A(s+2) e^{s t}=0 \Rightarrow s=-2 \\
& y_{h}(t)=A e^{-2 t} \\
& \begin{array}{l}
\text { Complete } \\
\text { solution: }
\end{array} \Rightarrow y(t)=\frac{K}{5} e^{3 t}+A e^{-2 t}
\end{aligned}
$$

Example_contd

- To find A suppose that the auxiliary condition is $y(0)=0$, i.e., at $\mathrm{t}=0, y(t)=0$

Using this condition into the complete solution, we get:

$$
\begin{aligned}
y(t) & =\frac{K}{5} e^{3 t}+A e^{-2 t} \text { with } y(0)=0 \\
0 & =\frac{K}{5}+A \Rightarrow A=-\frac{K}{5}
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =\frac{K}{5}\left[e^{3 t}-e^{-2 t}\right], t>0 \\
& =\frac{K}{5}\left[e^{3 t}-e^{-2 t}\right] u(t)
\end{aligned}
$$

Example2:

Find $y[n]$ of the system with the difference equation $y[n]-\frac{1}{2} y[n-1]=x[n]$
We have the output $y[n]=x[n]+\frac{1}{2} y[n-1]$
Consider the input $x[n]=k \delta[n]$ and initial condition $y[-1]=0$ (rest)

$$
\begin{aligned}
y[0] & =x[0]+\frac{1}{2} y[-1]=k \\
y[1] & =x[1]+\frac{1}{2} y[0]=\frac{1}{2} k \\
y[2]= & x[2]+\frac{1}{2} y[1]=\left(\frac{1}{2}\right)^{2} k \\
& \vdots \\
y[n]= & x[n]+\frac{1}{2} y[n-1]=\left(\frac{1}{2}\right)^{n} k
\end{aligned}
$$

Setting $k=1$ we obtain the impulse response for the system

$$
h[n]=\left(\frac{1}{2}\right)^{n} u[n]
$$

impulse response with infinite duration
\Rightarrow infinite impulse response (IIR) systems.

Block Diagram Representations of Systems

systems described by linear constant -coefficient difference and differential equations can be represented in terms of block diagram interconnections of elementary operations (adder, scaler, unit delay).

Example:

Consider the causal system described by the first-order difference equation

$$
y[n]+a y[n-1]=b x[n]
$$

Consider the causal continuous-time system described by a first-order differential equation

$$
\frac{d y(t)}{d t}+a y(t)=b x(t)
$$

