

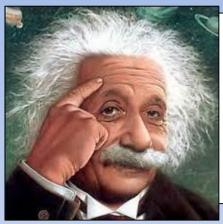
College of Engineering GE106:Introduction to Engineering Design

Need Analysis

By

Matthew Amao

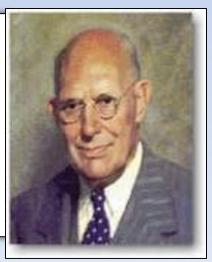
Outline


- Opening Statements
- The Big Picture
- Importance of Communication
- The Design Process
- Client's Need Statement
- Problem Statement
- How to Assess Needs (Need Analysis)
- Types of Specifications
- Design Objectives
- Design Constraints
- Design Criteria
- Problem Definition
- Summary

<u>a o o</u>l

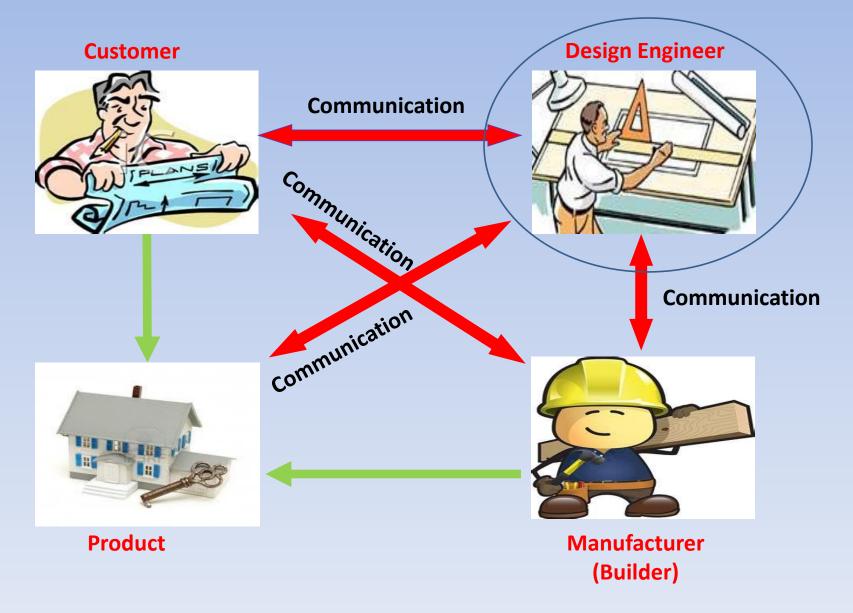
College of Engineering

Opening Statements



"If I had only one hour to save the world, I'd spend <u>55 min defining</u> the <u>problem</u> and <u>5 minutes</u> finding a <u>solution</u>"*

"A problem properly stated


is half-solved"

Charles Kettering (American inventor and the holder of over 300 engineering patents)

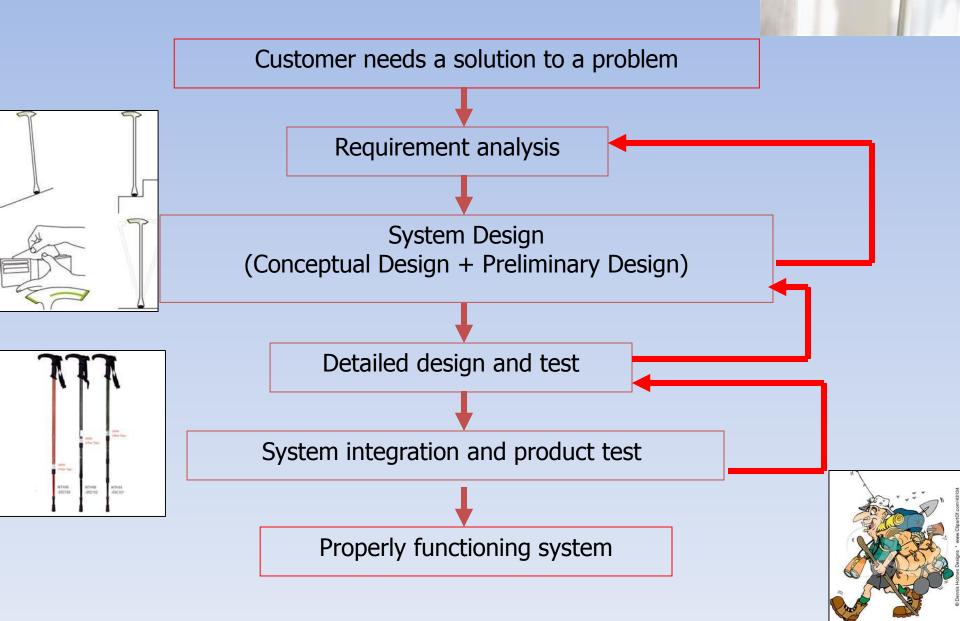
The Role Of The Design Engineer in a civil engineering context

The Design Process

This lecture

<u>Customer</u> needs a solution→ (<u>Client statement</u>)

<u>Analyze the Needs</u> → problem <u>definition</u> and <u>formulation</u>


> <u>System Design</u> (Conceptual + Detailed)

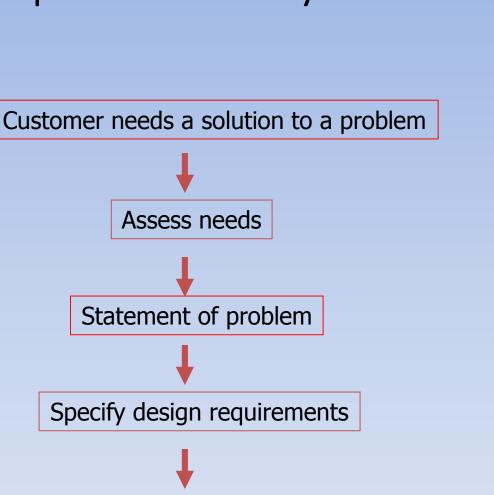
> > System integration and product

test

Properly functioning system

Design Process

Requirement Analysis is usually done by upper management


An approximation for the boundary-layer shape in Figs. 1.6b and P1.51 is the formula $u(y) = U \sin\left(\frac{\pi y}{2\delta}\right), \quad 0 \le y \le \delta$ where U is the stream velocity far from the wall and δ is the boundary layer thickness, as in Fig. P151. If the fluid is belium at 20°C and 1 atm, and if U = 10.8 m/s and δ = 3 cm, use the formula to (a) estimate the wall shear stress τ_u in Pa, and (b) find the position in the boundary layer where τ is one-half of τ_u .

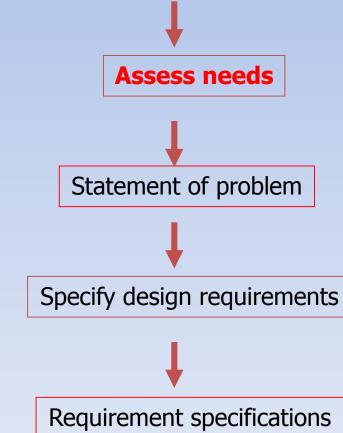
Exam Problem Definition

So What are my Requirements?

Requirement Analysis

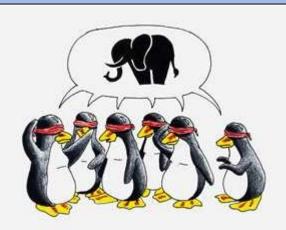
جـــامــعــة الملك سعود King Saud University

College of Engineering


Requirement specifications

Requirement Analysis

Customer needs a solution to a problem



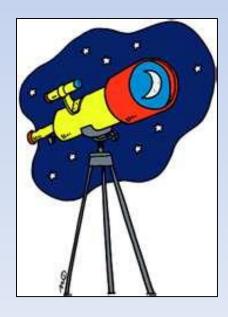
Needs Assessment

- The aim is not to solve the problem but to understand what the problem is;
 - What does this client want?
 - What is the problem that the design is to solve?
- The objectives (goals) and constraints of the problem should be identified
 - <u>Objectives:</u> summary of the needs that the design is to satisfy
 - <u>Constraints:</u> what the design <u>must</u> satisfy. This limits the Engineers flexibility. (takes logical values 0 or 1, helps to decide acceptable or not)

Who is my Neighbor?

Constraints!

Client's Need Statement

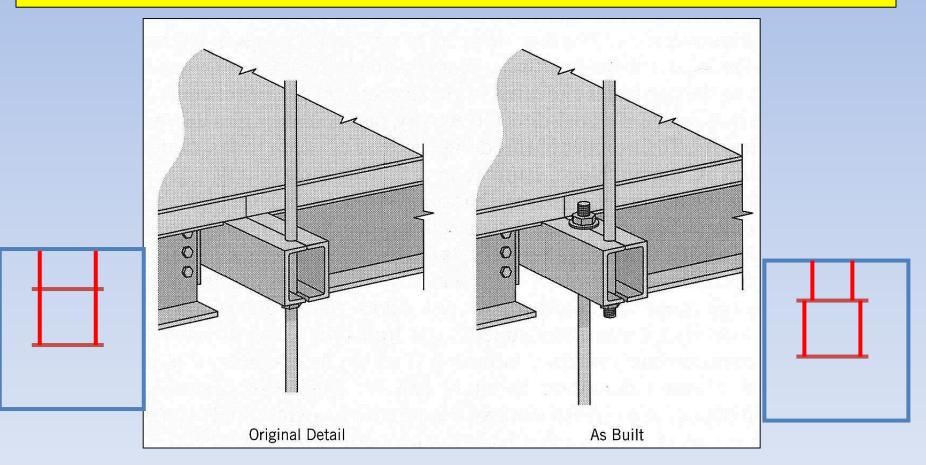

- جامعة الملك سعود King Saud University College of Engineering
- First <u>understand</u> what <u>the problem</u> is (i.e. what does the customer want?)
- Often, the <u>customer does not know exactly</u> what he/she wants nor what is achievable.
- Client Statements usually have <u>limitations</u> such as:
 - <u>Bias</u> (e.g. reconsider admission strategy; whereas the problem could be managing classrooms)
 - Implied solutions (e.g., replace the door; whereas another solution can be better*)
- <u>Make sure</u> that the <u>correct problem</u> is being addressed

How to Assess Needs? (1/2)

- Question the customer
 - To define the design problem
 - To understand budget and schedule constraints
 - Reliability and maintenance constraints
- Explore resources
 - Expertise (knowledge and experience)
 - Technical literature (books, journals, www)
 - Measurement and testing equipments (equipment suppliers)
 - Similar designs (competitors, patent search)

How to Assess Needs? (2/2)

- Search legal and regulatory restrictions
 - Allocation of frequency bands
 - Restriction on tower heights
 - Environmental impacts
 - Safety
- Manufacturability issues: How easy it is to manufacture the design/product?

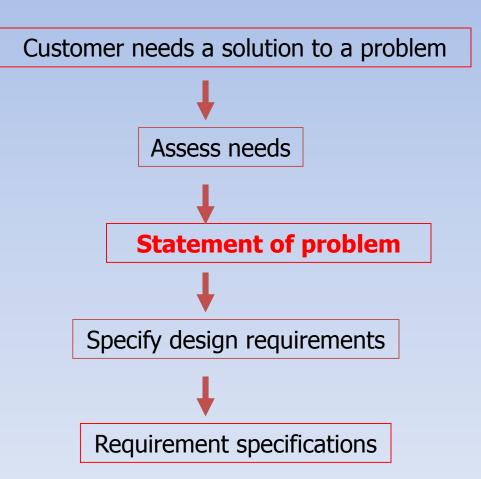

Environment

Importance of Manufacturability and Communication

جامعة الملك سعود King Saud University

A miscommunication within a building construction team lead to this accident due to the wrongful interpretation of the design.

Second floor collapsed, 114 people died



Requirement Analysis

Homer: Oh my God, I'm gonna be eaten alive be a SHARK!

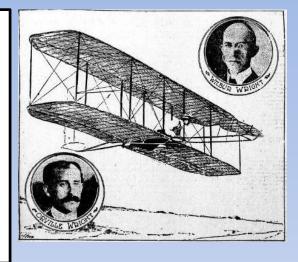
The SHARK: Oh my God, Homer Simpson is gonna land on my head!!

Problem Statement

- The statement is a very <u>short paragraph</u> providing answers to (What? Why? How?).
 - Written in the language of the customer.
 - Normally <u>straightforward</u>, <u>non-technical</u> and non-quantifiable.
- It is constructed in response to an expressed need. Engineer should identify, understand and validate the need before designing, failure to do this could lead to a failure of the design process.

The Engineer must translate the Customer's need into engineering terms. The results are expressed as a **problem statement** and a **list of specifications**.

NOTE: Problem definition and problem statement are similar but problem definition has more details about the problem, while a problem statement is just a very short paragraph answering what, why and how a problem will be solved.


The Wright Brothers' Example

 The problem addressed by the Wright brothers at the turn of the 20th century was:
 Need a manned machine capable of

achieving powered flight¹

• This means that²:

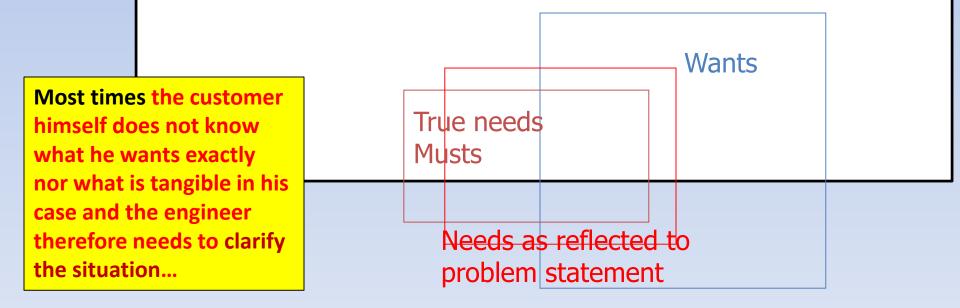
- **1.** They wanted to design a <u>flying</u> machine.
- 2. It must carry a person (which rules out model/prototype aircraft).
- 3. An onboard <u>power source</u> must be used to take off (which eliminates hot air balloons or gliders)

Statement of the Problem (1/3)

 In the language of the customer, normally straightforward, non-technical and non quantifiable (measurable).


When Asked to Write a Problem Statement, the student should...

Problem Statement: Re-write the original problem in your own words without using highly technical terms (as if it's the language of the customer). However, since it is you the engineer who questioned the customer about what he/she wants exactly, more will be added that resemble parts of the objectives and the need analyses but in a paragraph format.


The problem statement paragraph should be at least 3-5 lines long!

Statement of the Problem (2/3)

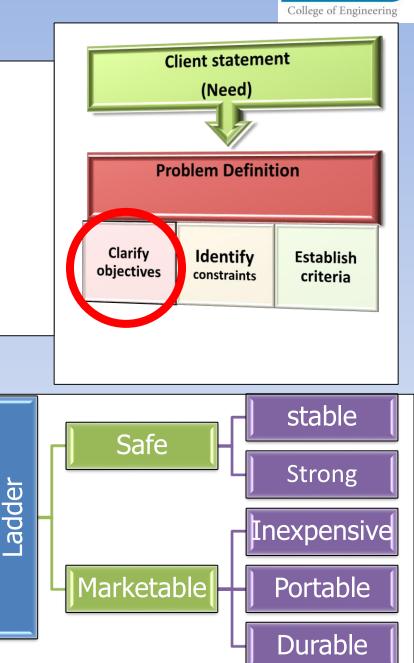
- Question the customer
- Differentiate Needs and Wants

Statement of the Problem (3/3)

Make Input/Output Analysis

Preview the user interface and operation of the device

Internet User Interface


Design Objectives

<u>Objectives</u> are the <u>requirements</u> that the <u>design</u> must <u>satisfy</u>.

The objectives should be *SMART*, i.e. (<u>Specific</u>, <u>Measurable</u>, <u>A</u>chievable, <u>R</u>ealistic, <u>T</u>ime bound)

Construct an <u>Objective Tree</u> by:

- <u>Listing</u> objectives according to the assessed needs
- <u>Grouping</u> the relevant objectives
- Forming a hierarchical tree structure

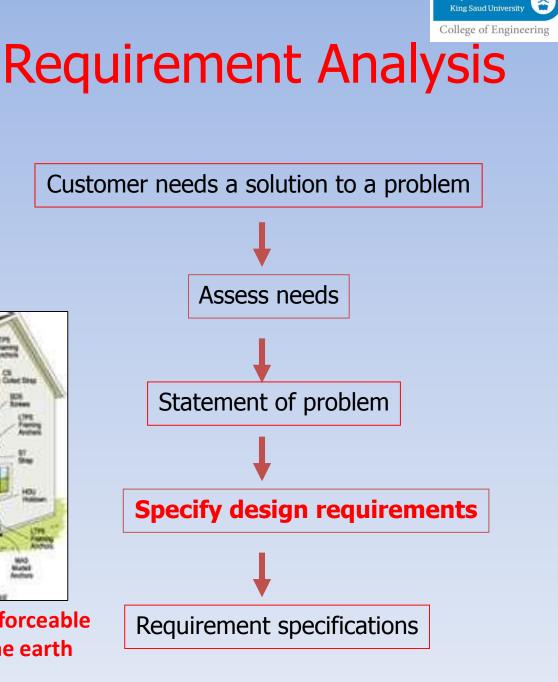
പ്രചി

الملك سعود King Saud University

Design Objectives: Need vs. Wish

- The Design Objectives can be <u>divided into</u>:
 - <u>Primary</u> (need/must)
 - <u>Secondary</u> (wish/<u>want</u>)
- The Primary Objective is what the customer/client really needs.
 - <u>Without</u> the <u>primary</u> objective the <u>design</u> is a <u>failure</u>.
- The <u>Secondary</u> (less important): objectives are not necessarily specified; but can have an <u>added value</u> to the <u>product</u> (e.g., safety, simplicity, beauty), etc.

College of Engineering



Buildings zoning requirements

Some design requirements might be Enforceable by the State such as this western home earth quake requirements

u o D

Types of Specifications¹ (Specs)

- <u>Design</u> Specifications : provide <u>basis for</u> evaluating the <u>design</u> (e.g., safe, light, inexpensive, simple)
- <u>Functional</u> Specifications : describe what the product <u>must do</u> (e.g., drilling, grinding, polishing)
- <u>Performance</u> Specifications: to judge <u>how good</u> is the design (e.g., speed, energy, accuracy)

Specifications – "an act of identifying something precisely or of stating a precise requirement" "a detailed description of the design and materials used to make something"

A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. There are different types of technical or engineering specifications, and the term is used differently in different technical contexts. Wikipedia

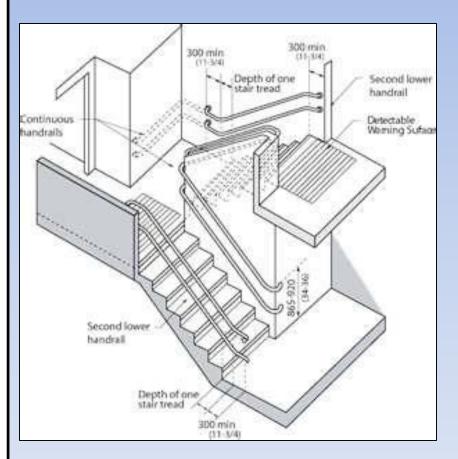
 Use (but <u>don't confuse</u>) "<u>Demanded</u>" design elements and "<u>Wished for</u>²" design elements

Be as <u>specific</u> as possible by using <u>numbers</u> where possible (e.g., not "heavy" but "2.5 kg")

GARDEN EQUIPMENT COMPANY		DESIGN SPECIFICATION	Issued: 11/1/1999 Page: 1
		Grass Cutter Project	
D/W	Wt	REQUIREMENTS	Keyword
W D W	M M	 GEOMETRY Maximum storage size: 600x600x300 mm Minimum width of cut: 300 mm Adjustable cutting depth: 5 - 50 mm 	Storage Cut width Cut depth
W W	H L	KINEMATICS • Easily manoeuvred • Cutting speed up to 2 m/s	Manoeuvre Cut speed
W W W	H M M	 FORCES Maximum weight not greater than 100 N Force to move not greater than 50 N Withstand fall onto hard surface from 2 m 	Weight Move force Robust
W W D	M M	 ENERGY Power requirement - maximum up to 1 kW Power source - electricity Maximum noise level not to exceed 85 dB 	Power P/source Noise
W W	L L	MATERIALSuitable for a life expectancy of 5 yearsMust not corrode within design life	Life Corrosion
D W W	L L	 SIGNALS Simple to start/stop Indication when cuttings storage need emptying Maintenance instructions on the machine 	Start/stop Storage Maint instr
D D D W	М	 SAFETY Electrical safety to BSI standards No accessible sharp edges or hot spots Cutting blade protection Automatic electrical cut-out 	Elec safety Sharp/hot Blade prot Auto cut-out
D W W	M H	ERGONOMICSEasy to operate and controlSimple cutting height adjustment in under 1 minPleasant appearance	Easy operation Cut adjust Appearance
w	н	ECONOMICS Target selling price not more than £75 	Price

Figure 9: Part of a design specification for a grass cutter

جامعة الملك سعود King Saud University


Requirement Specifications

Can be a long list of required specifications detailing what is required from the design to achieve...

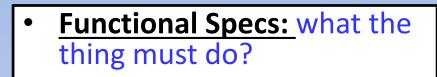
Specify Design Requirements

- Translating client and user needs into terminology that helps us find ways to realize those needs and measure how well we met them;
 - How will everyone that take part in the design know that it is done?
 - It turns the problem statement into a technical, quantified specification.
- Sets out criteria for verifying that the design meets its intended objectives.
- Describes the test for verification (confirmation).

Stair Design Criteria Sketched

Specifications

- How can I express what the client wants in terms that helps me as an engineer?
- Expressible as numbers and measures.
- Precise description of the properties of the object being designed.


Specification Types

 <u>Design Specs</u> : provide basis for <u>evaluating</u> the design

Example: Pin Remover The pin-remover is to be light. The pin-remover must work in a wet, cold, and dusty environment. The Pin-remover must be safe The Pin-remover must have a 3-year warranty. The Pin-remover is to be rugged. ... must work with air pressure. ... is be easy to use. ... is to pass "HTS" tests. ... is to last 5 years in normal usage. ... is to be easy to carry ... is to sell for less than \$150. ... is to cost less than \$50 to make. ... is to have low maintenance needs. ... is to be difficult to use as a hammer. ... must not infringe on patented devices. ... Production volume is to be 300 per year

Specification Types...

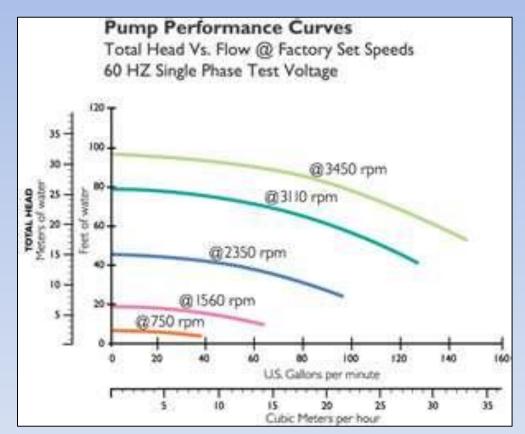
Example: Power Drill

- Functions
- Used with Drill Bits to create or enlarge holes
- Other uses including
- Grinding
- Buffing/Polishing
- Wire brushing
- Power screw driver

0

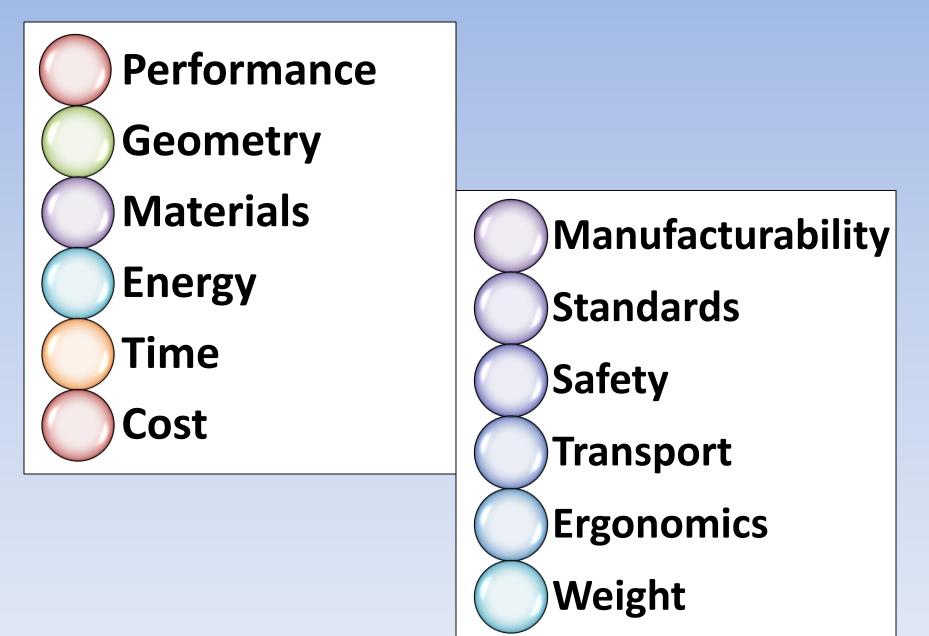
College of Engineering

Functional Specification


- Drill size
- Speed
- Power
- Size
- Weight
- Battery charging time
- Cost

Specification Types ...

- Performance specs: tells us <u>how well</u> the design is
- <u>Metrics</u>: Tools for testing and measuring the performance


Metrics: Are indicators of performance

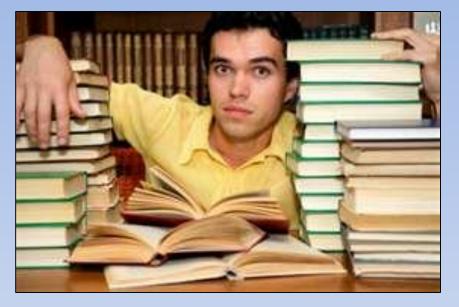
Water Pump Performance

Common Categories for <u>Specifications</u>*

 I don't want my iron to tip over easily causing water to spill out and possibly breaking the iron should it fall off the ironing table.

Example 1: Solution Need Analysis

- Can be retrofitted to existing irons
- Does not damage ironing table
- Easy to install and remove
- Cannot occupy a large area on ironing table
- Cannot interfere with operation of iron
- Cannot be damaged by iron (heat, water)
- Should not cost more than \$2, should probably be included with ironing table or iron.
- Target market: People who iron clothes on an unstable ironing surface


These could be the ideas coming to your mind on how to achieve the objective

Example 2: Problem

 I want to store books in my car while providing plenty of room for passengers

A smart student wondering what to do with his books

Example 2: Solution

- Must store typical load and size of books for a college student (10 kg)
- Must resist degradation from sunlight, moisture, extreme cold and heat.
- Cannot occupy floor or seat space
- Cannot interfere with operation of any controls (radio, a/c, steering, gearshift, pedals, movement of seats) or passengers' freedom of movement.
- Easy to install and remove
- Cannot damage the car
- Should not allow books to eject during a severe crash
- Should not cost more than \$15

These could be the ideas coming to your mind on how to achieve the objective

Target market: People who transport books and other people at the same time

Example 3: Problem

- There is a need in underdeveloped countries for building materials. One approach is to make building blocks (10x15x30 cm) from highly compacted soil.
- Your assignment is to design a block-making machine with the capacity for producing 1000 blocks per day at a capital cost of less than SR 5000.
- Develop need analysis, a definitive problem statement, and a plan for the information that will be needed to complete the design.

Brick making in Pakistan

Brick making by a young boy

Example 3: Solution

Needs Analysis:

- Must be capable of being constructed with local materials and labor.
- Blocks of 10x15x30 cm
- Total cost is less than SR 5000.
- Should be easily transported to different locations.
- Powered with human labor.
- Cannot count on availability of electricity.
- Hydraulic components may be invalid because cost and/or maintenance (sand in seals, etc.)

Notice how the need analysis is extracted from the problem while expanding it to include how the solution would be in this case, therefore, you will find some more information in it that was not given in the original problem!

This is how we can assess how good did you understand the problem "Scenario" which is why open ended problems are usually disliked by some students!

Example 3: Solution (Analyses of Need)

• Musts

- Cost less than SR 5000
- Weight less than 700 N.
- Human powered
- Made from local materials
- Easily manufactured.
- Produce 10x15x30 cm blocks
- Produce 600 blocks/day

• Wants

- Able to make tiles of 5x15x30 cm
- Easily maintained.
- Easy and safe operation.
- Available to a variety of soil mixes.

Analyses of the need to determine what we must have and what is nice to have!

Example 3: Solution (Problem Definition)

The objective of this project is the design and construction of a prototype model of a block-making machine. The blocks are to be made of soil cement and are 10 x15 x 30 cm. The machine must be human powered, weigh less than 700 N, cost less than SR 5000, and be capable of producing 1000 blocks per day with a 5 person crew. The machine should be easily constructed of local materials with local labor. The machine also should be capable to a variety of soil cement mixtures and to making tiles 5cmx10 cmx30 cm. A crew of three persons should be capable of operating the machine to produce 600 blocks per day.

Notice how the problem statement when it is to be written by you, the student is simply re-writing the original problem with added information that you probably obtained from the imaginary customer.

Note how some of the points added are really suitable to be objectives and others may have come from the need analyses!!

Example 3: Solution (Information Needed)

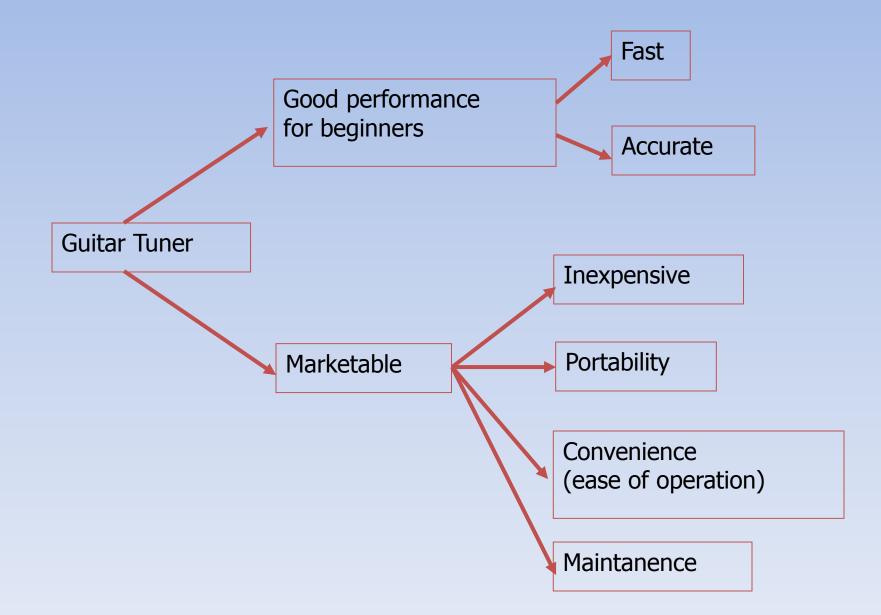
- Determination of the processing conditions for making blocks.
 - What pressures must be generated? Curing temperature and time? Effect of different soil mixes on pressure.
- Mechanism for generating pressure.
- Human factors in design: Magnitude of force that can be exerted without causing human fatigue.
- Materials handling.
- Available construction materials and properties.

What manufacturing, product, safety, legal, market and technical information do we need to succeed in our design?

Example 4: Problem

 Customer needs a solution to a problem
 of designing a guitar tuner

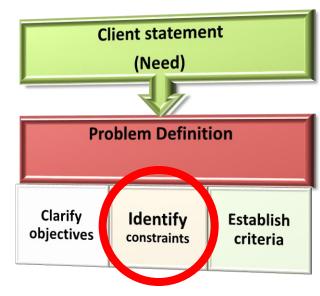
Example 4: Solution (Problem Statement)


– The accuracy of the device will be measured by the difference between the pitch of a tuned string and the correct pitch. The limits should be well within those of a guitar that has been professionally tuned and then played for one week without further tuning (correction).

جامعة الملكسعود King Saud University

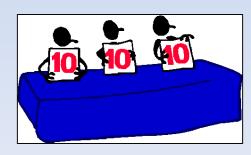
Notice how little information the original problem gave you about the tuner and yet this is the answer. Therefore, you need to be creative in your answers, unlimited in your thinking, and of course, it doesn't hurt if you knew how to play the guitar to answer the problem!

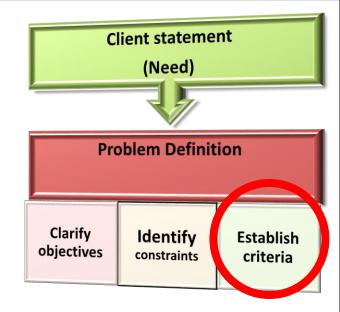
Example 4...Objective trees



Constraints

- Constraints are <u>boundaries</u> that limit the engineer's <u>flexibility</u>; they form the <u>design</u> <u>envelope</u> (feasible design <u>space</u>).
- They help to identify <u>acceptable designs</u>
- Should be <u>measurable</u>
- Should be <u>answered with</u>: True/False; <u>Yes/No</u>
 - Example: Cost <1000 SAR? Weight <500 N? Flexible system (yes/no)?

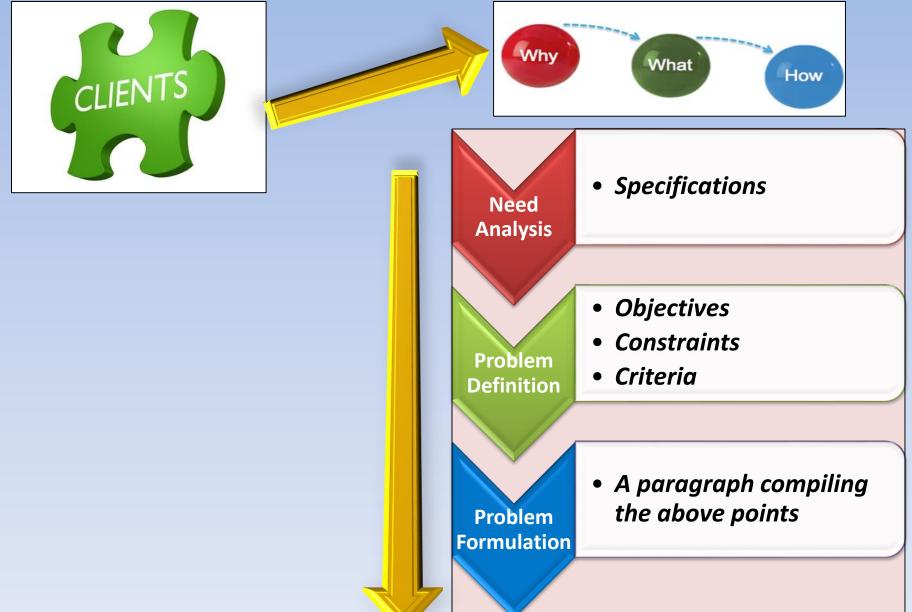

Sources of Constraints


- Cost: cost of design, production, maintenance, support
- Time: <u>delivery</u> dates, <u>processing</u>, time to market
- Legal, ethical: patents, intellectual property, product <u>reliability</u>, <u>safety</u> requirements
- **Physical**: <u>size</u>, <u>weight</u>, power, durability
- Natural factors: topography, <u>climate</u>, resources
- Company practices: common parts, manufacturing processes
- Human Factors/Ergonomics
- Sustainability
- Environment: <u>bio-degradable</u> materials, recycled materials, green energy

Design Criteria

- Criteria are indicators <u>defining</u> the <u>success</u> of achieving the objectives.
- Criteria define the product <u>physical</u> and <u>functional characteristics.</u>
- They represent <u>descriptive adjectives</u> that can be <u>qualified on a <u>given scale</u>: examples: <u>beautiful</u>, <u>low cost</u>, <u>low noise</u>, smart, <u>low weight.</u>
 </u>
- Might be used for judging between <u>different designs.</u>

Examples of Criteria


- High <u>safety</u>
- <u>Environment</u> friendliness
- <u>Public</u> Acceptance
- Performance
- Ease of <u>operation</u>
- Durability
- Cost

- Ease of <u>Maintenance</u>
- Ease of <u>Manufacturing</u>
- <u>Aesthetic</u> design (Appearance)
- Geometry
- Physical Features
- Reliability
- <u>Use</u> Environment

These criteria (or whatever criteria you have) are to be qualified (ranked) say <u>on a scale 1 to 10, where</u> 1 (worst) and 10 (best) *

Problem Definition

Summary

Need Analysis

- Needs that are well understood
- A well stated <u>objective</u>
- A list of <u>Demanded</u> and <u>Wished</u> for <u>Specifications</u>
- A set of criteria
- A set of <u>constraints</u>

Problem Definition

- Turn the problem statement into a <u>technical</u>, <u>quantified</u> problem definition
- Precise <u>description</u> of the <u>properties</u> of the object being designed
- Can be a long list

Problem Formulation

 A compiled carefully written paragraph

College of Engineering GE106:Introduction to Engineering Design

Need Analysis

By

Matthew Amao