

Human Anatomy and Physiology

CLS 224

Reem Alkhamis

Email: ralkhamis@ksu.edu.sa 3rd floor/ office # 113

Muscular system

The Muscular System

- The only body tissue able to *contract*. As a result, muscles are responsible for all body movement.
- "The machine of the body"
- There are three basic types of muscle
 - Skeletal
 - Cardiac
 - Smooth

3 Types of Muscles

Classification of Muscle

Skeletal- (muscle fiber)	Cardiac- (x)	Smooth- (muscle fiber)
found attach to the body's	found in heart.	Found in viscera
Skeleton.		(stomach, urinary bladder, large arteries)
Striated, multi- nucleated	Striated, 1nucleus	Not striated, 1 nucleus
Controlled by CNS	Regulated by ANS	Controlled by ANS
voluntary	involuntary	involuntary
move, maintain posture and generate heat	Heart beating	Peristalsis
Slow to fast	slow	Very slow

Skeletal Muscles

- Skeletal muscles are sheathed by a tough layer of connective tissue called the **epimysium**. The epimysium joins muscle tissue to tendons at each end, It also protects muscles from friction against other muscles and bones.
- Within the epimysium are multiple bundles of muscle fibers called fasicles, each of which contains 10 to 100 or more muscle fibers collectively protected by a perimysium. The perimysium is a pathway for nerves and the flow of blood within the muscle.
- The thread like muscle fibers are the individual muscle cells (myocytes), and each cell is encased within its own **endomysium** of delicate connective tissue.

Reprinted, by permission, from W. Whiting and S. Rugg, 2005, Dynatomy (Champaign, IL: Human Kinetics).

Microanatomy of **Skeletal Muscles**

- An individual muscle cell is called a muscle fiber
- A muscle fiber is enclosed by a plasma membrane called the **sarcolemma**.
- The cytoplasm of a muscle fiber is called a **sarcoplasm**.
- Nuclei pushed aside by organelles called **myofibrils** that fill the cytoplasm,

- Myofibrils are chains of tiny contractile units called **sarcomeres**.
- sarcomeres are the smallest functional units of a muscle.
- A sarcomere is composed of two types of threadlike protein filaments : Myosin and Actin, which are responsible for muscle contraction. Myosin is

a thick filament, Actin is a thin filament.

Another important muscle fiber organelle

 The sarcoplasmic reticulum (SR), is smooth ER.
It releases calcium ions during contraction and absorbs them during relaxation.

• Within the sarcoplasm, there are **T-tubules** that allow transport of substances throughout the muscle fiber.

Troponin and Tropomyosin

• Troponin and tropomyosin are regulatory proteins complexs involved in muscle contraction.

Lies within the actin filaments.

Troponin-Ca²⁺ complex pulls tropomyosin away,

b. exposing myosin binding sites.

- All skeletal muscle fibers are stimulated by motor neurons.
- These neurons <u>release acetylcholine</u> Ach (neurotransmitter) that <u>binds to receptors on the sarcolemma</u>
- The <u>permeability of the sarcolemma changes</u> allowing <u>sodium ions to enter the muscle cell</u> through the T tubules.
- An <u>electrical current (action potential)</u> that flows across the entire sarcolemma <u>is generated</u>
- <u>Calcium ions are released</u> from SR. Calcium ions are the final trigger for muscle fiber contraction.

- The <u>Ca² binds to troponin</u> present on the thin filaments (actin) and <u>exposes myosin binding sites</u>. <u>myosin heads</u> on the thick filament can now can <u>attach to the actin filament</u>.
- Contraction occurs

• ATP provides the energy for the sliding process

• Muscle contraction ends when calcium is pumped out of the sarcoplasm to the sarcoplasmic reticulum for storage.