Biochemical Calculations

Prepared by Latifa Aljebali

Office: Building 5, $3^{\text {rd }}$ floor, 5 T 250

- Reference:
- Biochemical Calculation
- By Irwin Segel
- Exam dates:
- $\underline{1 s}^{\text {st }}$
- November
- $2^{\text {nd }}$
- December

Solution Composition

- Solute is the substance being dissolved.
- Solvent is the liquid in which the solute is dissolved.
- A solute is dissolved in a solvent.
- an aqueous solution has water as solvent.

Aqueous Solution

- The majority of reactions occur in solutions.
- There are several ways to express the concentration of a
substance in a solution based on:
> The volume

$>$ The weight
> Degree of saturation

Concentrations based on Volume

- Molarity(M)
- Normality (N)
- Activity (a)
- Weight/volume percent (w/v \%)
- Volume/volume percent (v/v\%)
- Milligram percent (mg \%)
- Osmolarity

Molarity

- Molarity $(M)=$ the number of moles of solute per liter of solution $=$ No. of moles of solute $/ \mathrm{V}_{(\mathrm{L})}$
- No. of moles $=\mathrm{wt}_{\mathrm{g}} / \mathrm{MW}$
- It contains Avogadro's number of molecules per liter $\left(6.023 \times 10^{23}\right)$.
- Molar concentrations are usually given in square brackets.
- Example: $[\mathrm{NaOH}]=$ molarity of Sodium Hydroxide.

Molarity Continue

Example:
A solution of NaCL had 0.8 moles of solute in 2 liters of solution. What is its molarity?

- $\mathrm{M}=$ No. of moles / $\mathrm{V}_{(\mathrm{L})}$
- $\mathrm{M}=0.8 / 2$
- $\mathrm{M}=0.4$ molar

Molarity Continue

Example:
How many grams of solid NaOH are required to prepared 500 ml of 0.04 M solution?

- $\mathrm{M}=$ No. of moles $/ \mathrm{V}_{(\mathrm{L})}$
- $500 \mathrm{ml}=500 \div 1000=0.5 \mathrm{~L}$
- no. of moles $=0.04 \times 0.5$
- no. of moles $=0.02$ mole
- MW of $\mathrm{NaOH}=23=16+1=40 \mathrm{~g} / \mathrm{mole}$
- wt in grams $=$ no. of moles $\times \mathrm{MW}$
- wt in grams $=0.02 \times 40$
- wt in grams $=0.8$ grams

Normality

- Normality $(N)=$ the number of equivalents of solute per liter of solution
- $\quad=$ No. of equivalents $/ \mathrm{V}_{(\mathrm{L})}$
- No. of equivalents $=w t_{\mathrm{g}}$ of solute $/$ equivalents weight
- $\mathrm{EW}=\mathrm{MW}$ of solute $/ \mathrm{n}$
- n represents the number of the replaceable hydrogen (in acids) or hydroxyl ions (in bases) per molecule.
- n represents the number of electrons gained or lost per molecule (in oxidizing or reducing agents).
- $N=n * M$
- For example a 0.01 M solution of $\mathrm{H}_{2} \mathrm{So}_{4}$ is 0.02 N

Example:

Normality Continue

What is the normality of $\mathrm{H}_{2} \mathrm{So}_{4}$ solution that contains 24.5 g of solute in a total volume of 100 ml ?

- $N=n * M$
- $n=2$
- $\mathrm{M}=$ No. of moles $/ \mathrm{V}_{(\mathrm{L})}$
- $100 \mathrm{ml}=100 \div 1000=0.1 \mathrm{~L}$
- No. of moles $=\mathrm{wt}_{\mathrm{g}} / \mathrm{MW}$
- MW of $\mathrm{H}_{2} \mathrm{So}_{4}=2+32+(16 * 4)=98 \mathrm{~g}$
- No. of moles $=24.5 / 98$
- No. of moles $=0.25$ mole
- $\mathrm{M}=$ No. of moles $/ \mathrm{V}_{(\mathrm{L})}$
- $\mathrm{M}=0.25 / 0.1=2.5$ molar
- $N=n * M$
- $N=2 * 2.5=5$ normal

Normality Continue

Example:
What is the normality of $\mathrm{H}_{2} \mathrm{So}_{4}$ solution that contains 24.5 g of solute in a total volume of 100 ml ?

- $N=n * M$
- $n=2$
- $\mathrm{M}=$ No. of moles $/ \mathrm{V}_{(\mathrm{L})}$
- $100 \mathrm{ml}=100 \div 1000=0.1 \mathrm{~L}$
- No. of moles $=\mathrm{wt}_{\mathrm{g}} / \mathrm{MW}$
- MW of $\mathrm{H}_{2} \mathrm{So}_{4}=2+32+(16 * 4)=98 \mathrm{~g}$
- No. of moles $=24.5 / 98$
- No. of moles $=0.25$ mole
- $\mathrm{M}=$ No. of moles $/ \mathrm{V}_{(\mathrm{L})}$
- $\mathrm{M}=0.25 / 0.1=2.5 \mathrm{molar}$
- $N=n * M$
- $N=2 * 2.5=5$ normal

Osmolarity

- Osmolarity $=$ the molarity of particles in a solution.
- $\mathrm{KCl}=2$ particals.
- $\mathrm{CaCl}_{2}=3$ particals.
- The osmolarity of non dissociable substance $=$ its molarity.
- The osmolarity of dissociable substance $=\mathrm{n} * \mathrm{M}$
- $\mathrm{n}=$ no. of ions produced per molecule.
- It is used when study living cells and tissues.

Osmolarity Continue

Example:
A solution of KCl with 0.03 M , what would be its osmolarity?

- The osmolarity of dissociable substance $=\mathrm{n} * \mathrm{M}$
- osmolarity $=2 * 0.03$
$=0.06$ osmolar

ISOTONIC

- ISO - means alike
- TONICITY - refers to osmotic activity of body fluids; tells the extent that fluid will allow movement of water in \& out cell.
- Means that solutions on both sides of selectively permeable membrane have established equilibrium.
- Any solution put into body with the same osmolality as blood plasma.

Osmosis	
	Osmosis is the diffusion of water across a membrane. Like other molecules, water will move from an area of high concentration to an area of low concentration. The more solute there is in a solution, the lower the concentration of water in that solution. There is terminology to describe concentration differences between two solutions. A solution with higher solute concentration is hypertonic relative to one with lower solute concentration. Conversely, a solution with lower solute concentration is hypotonic relative to one with higher solute concentration. If two solutions have the same concentration they are isotonic. Water will move from a hypotonic to a hypertonic solution.

Osmolarity Continue

> Example:

When you want to study RBC and its osmolarity in the cytoplasm is 0.308 osmolar. What do you think the osmolarity of the invitro solution should be?

- 0.308 osmolar.

Example:

Classify these solution in regards to the RBC osmolarity
1- 0.56 osmolar
2-0.21 osmolar
3- 0.154 M NaCl

Osmolarity Continue

> Example:
When you want to study RBC and its osmolarity in the cytoplasm is 0.308 osmolar. What do you think the osmolarity of the invitro solution should be?

- 0.308 osmolar.
> Example:
Classify these solution regards the RBC osmolarity
1- 0.56 osmolar
2-0.21 osmolar
$3-0.154 \mathrm{M} \mathrm{NaCl}$

1= Hypertonic
2= Hypotonic
$3=$ osmolarity $=\mathrm{n} * \mathrm{M}=2 * 0.154=0.308$ osmolar so it is isotonic.

Weight / volume percent

- Weight/volume percent $(\mathrm{w} / \mathrm{v} \%)=$ the weight in g of a solute per 100 ml of solution.

Milligram percent

- Milligram percent $(\mathrm{mg} \%)=$ The weight in mg of a solute per 100 ml of solution.
- Mostly used in clinical laboratories.
> Example:
- Blood glucose level of $200 \mathrm{mg} / \mathrm{dl}$ means there is a 200 mg glucose in 100 ml of blood.

Volume / volume percent

- Volume /volume percent $(\mathrm{v} / \mathrm{v} \%)=$ the volume in ml of a solute per 100 ml of solution.

Concentrations based on Weight

- Weight/Weight percent (w/w \%).
- Molality.

Weight/weight percent

- Weight/weight percent $(\mathrm{w} / \mathrm{w} \%)=$ the weight in g of a solute per 100 g of solution.
- The concentration of many commercial acids are given in term of $w / w \%$.
- In order to calculate the volume of a stock solution needed for a certain preparation, we must know the density.

$$
\rho=\text { density }=\text { weight } / \text { volume }
$$

- The following equation is usually used.
$W t(g)$ of pure substance requested $=$ volume of stock solution needed $(\mathrm{ml}) * \rho * \%$ as decimal of the stock solution
- The density of water is $1 \mathrm{gm} / \mathrm{ml}$.

Weight/weight percent Continue

$>$ Example:

Describe the preparation of 2 liters of a 0.4 M HCl solution starting with a concentrated (stock) solution of HCl with 28% $\mathrm{w} / \mathrm{w} \%$, the specific gravity id 1.15 ?

- No. of moles of pure HCl needed $=\mathrm{M}^{*} \mathrm{~V}$

$$
=0.4 * 2=0.8 \mathrm{moles}
$$

MW of $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g} / \mathrm{mole}$

The weight in grams of pure HCl needed $=$ no. of moles* MW

$$
\begin{aligned}
& =0.8 * 36.5 \\
& =29.2 \mathrm{~g}
\end{aligned}
$$

Weight/weight percent Continue

- From the stock, 28 g of pure HCl in 100 grams solution

29.2 g of pure HCl in ? grams solution

$=(29.2 * 100) / 28$
$=104.3$ grams .

- $\rho=$ weight/volume thus volume $=$ weight $/$ density
- volume $=$ weight $/$ density

$$
=104.3 / 1.15
$$

$$
=90.7 \mathrm{ml}
$$

- so the volume of the stock HCl needed is 90.7 ml and make up the volume to 2 liters with distilled water.

Weight/weight percent Continue

$>$ Example:

Describe the preparation of 2 liters of a 0.4 M HCl solution starting with a concentrated (stock) solution of HCl with 28% $\mathrm{w} / \mathrm{w} \%$, the specific gravity id 1.15 ?

- No. of moles of pure HCl needed $=\mathrm{M}^{*} \mathrm{~V}$

$$
=0.4^{*} 2=0.8 \text { moles }
$$

MW of $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g} / \mathrm{mole}$

The weight in grams of pure HCl needed $=$ no. of moles* MW

$$
\begin{aligned}
& =0.8 * 36.5 \\
& =29.2 \mathrm{~g}
\end{aligned}
$$

Weight/weight percent Continue

- Since $\mathrm{Wt}(\mathrm{g})$ of pure substance requested $=$ volume of stock solution needed (ml) $* \rho * \%$ as decimal of the stock solution thus, volume $=\mathrm{wt} /(\rho * \%)$
- The volume $=29.2 /(1.15 * 0.28)$

$$
=90.7 \mathrm{ml}
$$

- so the volume of the stock HCl needed is 90.7 ml and make up
the volume to 2 liters with distilled water.

Molality

- Molality = the number of moles of solute per 1000 grams of solvent.
- Solution $=$ solvent + solute.
> Example:
Calculate the molality of a concentrated HCl stock solution which has a $28 \% \mathrm{w} / \mathrm{w} \%, \mathrm{~S} . \mathrm{G}=1.15$?
- Since the weight of solution $=$ weight of solvent + weight of solute.

Thus, the weight of solvent $=$ weight of solution - weight of solute.

$$
\begin{aligned}
& =100 \mathrm{~g}-28 \mathrm{~g} \\
& =72 \mathrm{~g}
\end{aligned}
$$

MW of $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g} / \mathrm{mole}$
No. of moles of solute $=28 / 36.5$

$$
=0.77 \mathrm{~mole}
$$

Molality Continue

0.77 mole of solute in 72 g of solvent
? mole of solute in 1000 g of solvent

- No. of moles of solute 1000 g of solvent $=(0.77 * 1000) / 72$
$=10.69$ moles
- The molality is 10.69

Saturation Degree

- Saturated solution is one where the concentration is at a maximum - no more solute is able to dissolve at a given temperature.
- A saturated solution represents an equilibrium: the rate of dissolving is equal to the rate of crystallization.
- Unsaturated Solution :less than the maximum amount of solute for that temperature is dissolved in the solvent.
- No solid remains in flask.
- Supersaturated
- Solvent holds more solute than is normally possible at that temperature.

Concentrations based on Saturation Degree

- Percent saturation $=$ the concentration of salt in solution as a
percent of the maximum concentration possible at a given
temperature.

$$
\text { Volume }(\mathrm{ml})=\frac{100(\mathrm{~S} 2-\mathrm{S} 1)}{1-\mathrm{S} 2}
$$

- At the equation above:
- Volume is the volume of the saturated salt needed.
- S1 is the initial low saturation (used as a decimal).
- S2 is the final high saturation (used as a decimal).
- This is to the volume to be added to 100 ml at saturation S1.

Concentrations based on Saturation Degree Continue

$>$ Example:

How many ml of a saturated ammonium sulfate solution must be added to 40 ml of a 20% saturated solution to reach a final solution of 70% ?

- Volume $(\mathrm{ml})=(100 *(\mathrm{~S} 2-\mathrm{S} 1)) /(1-\mathrm{S} 2)$

$$
\begin{aligned}
& =(100 *(0.7-0.2)) /(1-0.7) \\
& =(100 * 0.5) /(0.3) \\
& =50 / 0.3 \\
& =\mathbf{1 6 6 . 6} \mathbf{~ m l}
\end{aligned}
$$

- Since 100 ml of solution need 166.6 ml saturated solution
- $\quad 40 \mathrm{ml}$ of solution need ? ml
- The volume needed is $\left(40^{*} 166.6\right) / 100=66.64 \mathrm{ml}$ of saturated solution needed to be added to 40 ml of 20% saturated ammonium sulfate solution to reach a final solution of 70%.

Units Conversion

Prefix	Symbol	10^{n}
Deci	d	10^{-1}
Centi	c	10^{-2}
Milli	m	10^{-3}
Micro	$\mathrm{\mu}$	10^{-6}
Nano	n	10^{-9}
Pico	p	10^{-12}
Femto	f	10^{-15}

