King Saud University

College of Sciences
Department of Mathematics

151 Math Exercises

$$
(3,2)
$$

Methods of Proof

"Mathematical Induction"
(First principle)

Malek Zein AL-Abidin

1440

Mathematical Induction

In general, mathematical induction $*$ can be used to prove statements that assert that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function. A proof by mathematical induction has two parts, a basis step, where we show that $P(1)$ is true, and an inductive step, where we show that for all positive integers k, if $P(k)$ is true, then $P(k+1)$ is true.
PRINCIPLE OF MATHEMATICAL INDUCTION To prove that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function, we complete two steps: BASIS STEP: We verify that $P(1)$ is true.
INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

Exercises

1. Use mathematical induction to Show that

$$
\text { if } n \text { is a positive integer, then } 1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Solution: Let $P(n)$ be the proposition , $P(n): 1+2+\cdots+n=\frac{n(n+1)}{2} \quad, \forall n \geq 1$
BASIS STEP: $\quad P(1), \quad \mathrm{LHS}=1, \quad \mathrm{RHS}=\frac{1(1+1)}{2}=1$

$$
\because \mathrm{LHS}=\mathrm{RHS} \Rightarrow \therefore P(1) \text { is true } .
$$

INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary positive integer k. That is, we assume that $P(k): 1+2+\cdots+k=\frac{k(k+1)}{2}: k \geq 1$, is true.

Under this assumption, it must be shown that $P(k+1)$ is also true. When we $\operatorname{add}(k+1)$ to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
P(k+1): 1+2+\cdots+k+(k+1)= & \frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

This last equation shows that $P(k+1)$ is true under the assumption that $P(k)$ is true. This completes the inductive step. $\quad P(k+1)$ is true. Then $P(n)$ is true for $\forall n \geq 1$.

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
2. Use mathematical induction to Show that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} \quad: \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
3. Use mathematical induction to Show that

$$
1.2 .3+2.3 .4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}: \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
4. Use mathematical induction to Show that
$1.2 .3+2.3 .4+\cdots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}: \forall n \geq 1$ Solution:
5. Use mathematical induction to Show that
if n is a positive integer, then $1+3+5+\cdots+(2 n-1)=n^{2}$
Solution: Let $P(n)$ be the proposition,

$$
P(n): 1+3+5+\cdots+(2 n-1)=n^{2} \quad, \forall n \geq 1
$$

BASIS STEP: $\quad P(1): \quad$ L H S $=1, ~ \mathrm{RHS}=1^{2}=1$

$$
\because \mathrm{LHS}=\mathrm{RHS} \Rightarrow \therefore P(1) \text { is true } .
$$

INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary positive integer k. That is, we assume that $\quad P(k): 1+3+5+\cdots+(2 k-1)=k^{2} \quad: k \geq 1$, is true. Under this assumption, it must be shown that $P(k+1)$ is also true. When we add $(2 k+1)$ to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
& P(k+1): 1+3+\underbrace{5+\cdots)}_{\text {(where } P} \text { is true) } \quad \text { [the term } \# n=k+1 \text {] } \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2} \\
& \therefore \quad P(k+1): 1+3+5+\cdots+(2 k-1)+(2 k+1)=(k+1)^{2}
\end{aligned}
$$

This last equation shows that $P(k+1)$ is true under the assumption that $P(k)$ is true. This completes the inductive step. $\quad P(k+1)$ is true. Then $P(n)$ is true for $\forall n \geq 1$.

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
6. Use mathematical induction to Show that

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}} \quad: \forall n \geq 1
$$

Solution:
7. Use mathematical induction to Show that

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

for all nonnegative integers n.

Solution: Let $P(n)$ be the proposition,

$$
P(n): \quad 1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1 \quad, \forall n \geq 0
$$

BASIS STEP: $\quad P(0): \quad$ LHS $=2^{0}=1 \quad, \quad$ RHS $=2^{0+1}-1=2-1=1$

$$
\because \mathrm{LHS}=\mathrm{RHS} \Rightarrow \therefore P(0) \text { is true } .
$$

INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary nonnegative integer k. That is, we assume that

$$
P(k): \quad 1+2+2^{2}+\cdots+2^{k}=2^{k+1}-1: k \geq 0, \text { is true } .
$$

Under this assumption, it must be shown that $P(k+1)$ is also true. When we add 2^{k+1} to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
& P(k+1): 1+2+2^{2}+\cdots+2^{k}+\left(2^{2 k+1}\right)=\underbrace{2^{k+1}-1}+2^{k+1} \\
& =22^{k+1}-1 \\
& =2^{k+2}-1 \\
& \\
& =2^{(k+1)+1}-1
\end{aligned} \begin{aligned}
\therefore \quad P(k+1): 1+2+2^{2}+\cdots+2^{k}+\left(2^{k+1}\right)=2^{(k+1)+1}-1
\end{aligned}
$$

This last equation shows that $P(k+1)$ is true under the assumption that $P(k)$ is true. This completes the inductive step. $\quad P(k+1)$ is true. Then $P(n)$ is true for $\forall n \geq 0$.

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
8. Use mathematical induction to Show that

$$
2+2(-7)+2(-7)^{2}+2(-7)^{3}+\cdots+2(-7)^{n}=\frac{1-(-7)^{n+1}}{4}: n \geq 0
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
9. Use mathematical induction to Show that

$$
1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+n \times 2^{n}=2+(n-1) 2^{n+1}: n \geq 1
$$

Solution:

10. Use mathematical induction to Show that

$$
\sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+\cdots+a r^{n}=\frac{a r^{n+1}-a}{r-1}
$$

where n is a nonnegative integer. , when $r \neq 1$
Solution: Let $P(n)$ be the proposition,

$$
\begin{aligned}
& P(n): \\
& \qquad \sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+\cdots+a r^{n}=\frac{a r^{n+1}-a}{r-1} \\
& \quad \text { Where } r \neq 1, \quad \forall n \geq 0
\end{aligned}
$$

BASIS STEP: $\quad P(0): \quad \mathrm{LHS}=a r^{0}=a .1=a \quad, \quad \mathrm{RHS}=\frac{a r^{0+1}-a}{r-1}=\frac{a(r-1)}{r-1}=a$ $\because \mathrm{LHS}=\mathrm{RHS} \Rightarrow \therefore P(0)$ is true .

INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary nonnegative integer k. That is, we assume that

$$
P(k): a+a r+a r^{2}+\cdots+a r^{k}=\frac{a r^{k+1}-a}{r-1}: k \geq 0, \text { is true }
$$

Under this assumption, it must be shown that $P(k+1)$ is also true. When we add $a r^{k+1}$ to both sides of the equation in $P(k)$, we obtain

Combining these last two equations gives

$$
a+a r+a r^{2}+\cdots+a r^{k}+a r^{k+1}=\frac{a r^{k+2}-a}{r-1}
$$

This last equation shows that $P(k+1)$ is true under the assumption that $P(k)$ is true. This completes the inductive step . $P(k+1)$ is true. Then $P(n)$ is true for $\forall n \geq 0$.

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
11. Use mathematical induction to Show that
$1+a+a^{2}+\cdots+a^{n}=\frac{a^{n+1}-1}{a-1}, a \neq 1 \quad:$ for all nonnegative integers n.
Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
12. Use mathematical induction to Show that

$$
2+4+6+\cdots+2 n=n(n+1) \quad: n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
13. Use mathematical induction to Show that

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-2)}{2} \quad: n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
14. Use mathematical induction to Show that

$$
3+3^{2}+3^{3}+\cdots+3^{n}=\frac{3}{2}\left(3^{n}-1\right): n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
15. Use mathematical induction to Show that

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}} \quad: n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
16. Use mathematical induction to Show that

$$
2+2 \times 3+2 \times 3^{2}+2 \times 3^{3}+\cdots+2 \times 3^{n}=3^{n}-1: n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
17. Use mathematical induction to Show that

$$
1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}: \quad \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
18. Use mathematical induction to Show that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}: \quad \forall n \geq 1
$$

Solution:

19. Use mathematical induction to Show that

$$
n<2^{n} \quad: \forall n \geq 1
$$

Solution: Let $P(n)$ be the proposition,

$$
P(n): \quad n<2^{n} \quad: \forall n \geq 1
$$

BASIS STEP: $\quad P(1): \quad 1<2^{1}=2, \quad \therefore P(1)$ is true

INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary positive integer k. That is, we assume that $P(k): k<2^{k}: k \geq 1$, is true.

Under this assumption, it must be shown that $P(k+1)$ is also true.
$P(k+1): k+1<2^{k}+1<2^{k}+2^{k}=22^{k}=2^{k+1} \quad$ where $1<2^{k}$
$\therefore \quad k+1<2^{k+1} \Rightarrow P(k+1)$ is true . Then $P(n)$ is true for $\forall n \geq 1$.
\#
20. Use mathematical induction to Show that

$$
2^{n}<n!\text { for every integer } n \text { with } n \geq 4
$$

Solution: Let $P(n)$ be the proposition,

$$
P(n): \quad 2^{n}<n!\quad: \forall n \geq 4
$$

BASIS STEP: $\quad P(4): 2^{4}=16<4!=24, \quad \therefore P(4)$ is true
INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary positive integer $k: k \geq 4$.
That is, we assume that $\quad P(k): 2^{k}<k!\quad: k \geq 4, \quad$ is true . (*)

Under this assumption, it must be shown that $P(k+1)$ is also true.

$$
\begin{aligned}
P(k+1): & 2^{k+1} & =22^{k}<2 k! & \\
& <(k+1) k! & & \text { (from inductive hypothesis *) } \\
& =(k+1)! & & (\text { be definition of factorial function) } 2<k+1)
\end{aligned}
$$

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
21. Use mathematical induction to Show that

$$
3^{n}<n!\text { for every integer } n \text { with } n \geq 7
$$

Solution:

22. Use mathematical induction to Show that

$$
n!<n^{n} \quad \text { for every integer } n \text { with } n \geq 2
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
23. Use mathematical induction to Show that

$$
2^{n} \geq n+12 \text { for every integer } n \text { with } n \geq 4
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
24.Use mathematical induction to Show that

$$
2^{n}>n^{2} \quad \text { for every integer } n \text { with } n \geq 5
$$

Solution:
25.Use mathematical induction to Show that

$$
n^{2}>4+n \quad \text { for every integer } n \text { with } n \geq 3
$$

Solution: Let $P(n)$ be the proposition,

$$
p(n): \quad n^{2}>4+n: \forall n \geq 3
$$

BASIS STEP: $p(3): 3^{2}=9>4+3=7 \Rightarrow \therefore$ (3) is true
INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary positive integer k. That is, we assume that $\quad p(k): k^{2}>4+k \quad: k \geq 3, \quad$ is true.$\left({ }^{*}\right)$ under this assumption, it must be shown that $P(k+1)$ is also true .

$$
\begin{aligned}
p(k+1):(k+1)^{2}= & k^{2}+2 k+1 \\
& >4+k+2 k+1 \quad \text { (from inductive hypothesis *) } \\
& >4+k+1 \\
& =4+(k+1) \\
\therefore(k+1)^{2} & >4+(k+1) \Rightarrow \therefore P(k+1) \text { is true } .
\end{aligned}
$$

Then $P(n): \quad n^{2}>4+n \quad: \forall n \geq 3 \quad$ is true.

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
26.Use mathematical induction to Show that

$$
2^{n}>n^{2}+19 \quad \text { for every integer } n \text { with } n \geq 5
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, ${ }^{\text {st }}$ principle] By: Malek Zein AL-Abidin
27.Use mathematical induction to Show that

$$
n^{3}>2 n+1 \quad \text { for every integer } n \text { with } n \geq 2
$$

Solution:

28. Use mathematical induction to Show that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n} \quad \text { for every integer } n \text { with } n \geq 1
$$

Solution: Let $P(n)$ be the proposition,

$$
p(n): \quad \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n} \quad: \forall n \geq 1
$$

BASIS STEP: $p(1): \frac{1}{\sqrt{1}}=1 \geq \sqrt{1} \Rightarrow \therefore \quad p(1)$ is true.
INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary positive integer k. That is, we assume that $\quad p(k): \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}} \geq \sqrt{k} \quad: k \geq 1, \quad$ is true.$\left({ }^{*}\right)$ under this assumption, it must be shown that $P(k+1)$ is also true .

$$
\begin{aligned}
p(k+1):\left[\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}\right]+\frac{1}{\sqrt{k+1}} & \geq[\sqrt{k}]+\frac{1}{\sqrt{k+1}} \quad(\text { from inductive hypothesis } *) \\
& =\frac{\sqrt{k} \sqrt{k+1}+1}{\sqrt{k+1}} \\
& =\frac{\sqrt{k(k+1)}+1}{\sqrt{k+1}} \\
& \geq \frac{\sqrt{k(k)}+1}{\sqrt{k+1}}=\frac{\sqrt{k^{2}}+1}{\sqrt{k+1}} \quad(\text { because } k+1>k) \\
& =\frac{k+1}{\sqrt{k+1}}=\sqrt{k+1} \\
\therefore \quad \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots & +\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} \geq \sqrt{k+1}
\end{aligned}
$$

$\therefore p(k+1)$ is true .
Then $P(n): \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n} \quad: \forall n \geq 1$. is true .

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
29. Use mathematical induction to Show that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1) \quad \text { for every integer } n \text { with } n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
30.Use mathematical induction to Show that

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}<1 \quad \text { for every integer } n \text { with } n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
31.Use mathematical induction to Show that

$$
n^{2}-7 n+12 \geq 0 \quad \text { for every integer } n \text { with } n \geq 3
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
32. Use mathematical induction to Show that

$$
1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{\mathrm{n}^{2}}<2-\frac{1}{\mathrm{n}} \quad \text { for every integer } n \text { with } n \geq 2
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
33.Use mathematical induction to Show that

$$
3^{n} \geq 2^{n+2} \quad \text { for every integer } n \text { with } n \geq 4
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
34.Use mathematical induction to Show that

$$
n^{2}-3 n+5 \quad \text { is odd } \quad \text { for all nonnegative integers } n
$$

Solution:

35.Use mathematical induction to Show that

$$
3 \mid 4^{n}-1 \quad \text { for all nonnegative integers } n
$$

Solution: Let $P(n)$ be the proposition,

$$
p(n): \quad 3 \mid 4^{\mathrm{n}}-1 \quad: \forall n \geq 0 \Rightarrow \exists c \in \mathbb{Z}: 4^{\mathrm{n}}-1=3 \mathrm{c}
$$

BASIS STEP: $p(0): \quad 3\left|4^{0}-1 \Rightarrow 3\right| 1-1=0 \Rightarrow 3 \mid 0 \Rightarrow \therefore \quad p(0)$ is true.
INDUCTIVE STEP: We assume that $P(k)$ holds for an arbitrary nonnegative integer k.
That is, we assume that $p(k): 3 \mid 4^{\mathrm{k}}-1 \quad: k \geq 0$, is true .

$$
\begin{equation*}
\Rightarrow 4^{\mathrm{k}}-1=3 c \Rightarrow 4^{\mathrm{k}}=3 \mathrm{c}+1 \tag{*}
\end{equation*}
$$

under this assumption, it must be shown that $P(k+1)$ is also true .

$$
\begin{aligned}
& p(k+1): \quad 4^{k+1}-1=44^{k}-1 \\
& = \\
& =4(3 c+1)-1 \quad(\text { from inductive hypothesis *) } \\
& = \\
& =3(4 c+1)=3 h \quad: h=(4 c+1) \in \mathbb{Z} \\
& \\
& \Rightarrow \quad 3 \mid 4^{k+1}-1 \\
& \therefore \quad p(k+1) \text { is true } \\
& \therefore \quad p(n) \quad \text { is true for } \forall n \geq 0 .
\end{aligned}
$$

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
36.Use mathematical induction to Show that

$$
3 \mid\left(n^{3}+2 n\right) \quad \text { for all positive integer } n
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
37.Use mathematical induction to Show that

$$
5 \mid 7^{\mathrm{n}}-2^{n} \quad \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
38. Use mathematical induction to Show that

$$
3 \mid 5^{\mathrm{n}}-2^{\mathrm{n}+2} \quad \text { for all nonnegative integers } n
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
39.Use mathematical induction to Show that

$$
7 \mid 9^{2 n}-5^{2 n} \quad \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
40. Use mathematical induction to prove that $n^{3}-n$ is divisible by 3 whenever n is a positive integer .

$$
3 \mid n^{3}-n \quad \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
41. Use mathematical induction to prove that $n\left(n^{2}+5\right)$ is divisible by 6 whenever n is a positive integer .

$$
6 \mid n\left(n^{2}+5\right) \quad \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, ${ }^{\text {st }}$ principle] By: Malek Zein AL-Abidin
42. Use mathematical induction to prove that $n^{3}-n+3$ is divisible by 3 whenever n is a nonnegative integer .

$$
3 \mid n^{3}-n+3 \quad \forall n \geq 0
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
43. Use mathematical induction to Show that

$$
5 \mid 2^{2 \mathrm{n}-1}+3^{2 \mathrm{n}-1} \quad \forall n \geq 1
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
44. Use mathematical induction to Show that

$$
2 \mid n^{2}+n \quad \forall n \geq 0
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
45. Use mathematical induction to prove that $n^{5}-n$ is divisible by 5 whenever n is a nonnegative integer .

$$
5 \mid n^{5}-n \quad \forall n \geq 0
$$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin 46. Prove that 21 divides $4^{n+1}+5^{2 n-1}$ whenever n is a positive integer .

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin 47. Prove that if n is a positive integer, then 133 divides $11^{n+1}+12^{2 n-1}$

Solution:

Math 151 Discrete Mathematics [Mathematical induction, $1^{\text {st }}$ principle] By: Malek Zein AL-Abidin
48. Use mathematical induction to prove that $7^{n+2}+8^{2 n+1}$ is divisible by 57 for every nonnegative integer n.

Solution:

