King Saud University

College of Sciences

Department of Mathematics

151 Math Exercises

(3,2)Methods of Proof

"Mathematical Induction"

(First principle)

Malek Zein AL-Abidin

1440هـ 2018 In general, mathematical induction * can be used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function. A proof by mathematical induction has two parts, a **basis step**, where we show that P(1) is true, and an

inductive step, where we show that for all positive integers k, if P(k) is true, then P(k + 1) is true.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P(n) is true for all positive integers *n*, where P(n) is a propositional function, we complete two steps: *BASIS STEP:* We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k + 1)$ is true for all positive integers *k*.

Exercises

1. Use mathematical induction to Show that

if *n* is a positive integer, then $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

Solution: Let P(n) be the proposition, $P(n): 1 + 2 + \dots + n = \frac{n(n+1)}{2}$, $\forall n \ge 1$

BASIS STEP: P(1), L H S = 1, $R H S = \frac{1(1+1)}{2} = 1$ $\therefore L H S = R H S \Rightarrow \therefore P(1)$ is true.

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary positive integer k. That is, we assume that P(k): $1 + 2 + \dots + k = \frac{k(k+1)}{2}$: $k \ge 1$, is true.

Under this assumption, it must be shown that P(k + 1) is also true. When we add(k + 1) to both sides of the equation in P(k), we obtain

$$P(k+1): 1 + 2 + \dots + k + \frac{(k+1)}{2} = \frac{k(k+1)}{2} + \frac{(k+1)}{2}$$
$$= \frac{k(k+1) + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This completes the inductive step. P(k+1) is true. Then P(n) is true for $\forall n \ge 1$.

$$\frac{1}{1\times3} + \frac{1}{3\times5} + \frac{1}{5\times7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \quad : \forall n \ge 1$$

$$1.2.3 + 2.3.4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3} : \forall n \ge 1$$

$$1.2.3 + 2.3.4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4} : \forall n \ge 1$$
Solution:

Math 151 Discrete Mathematics [Mathematical induction, 1st principle] By: Malek Zein AL-Abidin

5. Use mathematical induction to Show that

if n is a positive integer, then $1 + 3 + 5 + \cdots + (2n - 1) = n^2$

Solution: Let P(n) be the proposition,

$$P(n): 1 + 3 + 5 + \dots + (2n - 1) = n^2$$
, $\forall n \ge 1$

BASIS STEP: P(1): L H S = 1 , R H S = $1^2 = 1$ \therefore L H S = R H S $\Rightarrow \therefore P(1)$ is true.

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary positive integer k. That is, we assume that P(k): $1 + 3 + 5 + \dots + (2k - 1) = k^2$: $k \ge 1$, is true. Under this assumption, it must be shown that P(k + 1) is also true. When we add (2k + 1) to both sides of the equation in P(k), we obtain

$$P(k+1): 1 + 3 + 5 + \dots + (2k - 1) + (2k+1) = k^{2} + (2k + 1)$$
(where $P(k)$ is true) [the term $\# n = k+1$]
$$= k^{2} + 2k + 1$$

 $= (k+1)^2$

$$\therefore P(k+1): 1 + 3 + 5 + \dots + (2k - 1) + (2k+1) = (k+1)^2$$

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This completes the inductive step. P(k+1) is true. Then P(n) is true for $\forall n \ge 1$. #

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n} \qquad : \ \forall n \ge 1$$

Math 151 Discrete Mathematics [Mathematical induction, 1st principle] By: Malek Zein AL-Abidin

7. Use mathematical induction to Show that

 $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$

for all nonnegative integers n.

...

Solution: Let P(n) be the proposition,

$$P(n): 1 + 2 + 2^{2} + \dots + 2^{n} = 2^{n+1} - 1 \quad \forall n \ge 0$$

BASIS STEP: P(0): L H S = $2^0 = 1$, R H S = $2^{0+1} - 1 = 2 - 1 = 1$

```
\therefore L H S = R H S \implies \therefore P(0) \text{ is true}.
```

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary nonnegative integer k. That is, we assume that

$$P(k): 1+2+2^2+\dots+2^k = 2^{k+1}-1: k \ge 0$$
, is true.

Under this assumption, it must be shown that P(k + 1) is also true. When we add 2^{k+1} to both sides of the equation in P(k), we obtain

$$P(k+1): 1 + 2 + 2^{2} + \dots + 2^{k} + (2^{k+1}) = 2^{k+1} - 1 + 2^{k+1}$$
(where $P(k)$ is true) [the term $\# n = k+1$]

$$= 2 2^{k+1} - 1$$

$$= 2^{k+2} - 1$$

$$= 2^{(k+1)+1} - 1$$

$$P(k+1): 1 + 2 + 2^{2} + \dots + 2^{k} + (2^{k+1}) = 2^{(k+1)+1} - 1$$

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This completes the inductive step. P(k+1) is true. Then P(n) is true for $\forall n \ge 0$.

$$2 + 2(-7) + 2(-7)^2 + 2(-7)^3 + \dots + 2(-7)^n = \frac{1 - (-7)^{n+1}}{4} : n \ge 0$$

Solution:

 $1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \dots + n \times 2^n = 2 + (n-1)2^{n+1} : n \ge 1$

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r - 1}$$

where *n* is a nonnegative integer. when $r \neq 1$

Solution: Let P(n) be the proposition,

$$P(n):$$

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r-1}$$
Where $r \neq 1$, $\forall n \ge 0$

BASIS STEP: P(0): L H S = $ar^0 = a$. 1 = a, R H S = $\frac{ar^{0+1}-a}{r-1} = \frac{a(r-1)}{r-1} = a$ \therefore L H S = R H S $\Rightarrow \therefore P(0)$ is true.

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary nonnegative integer k. That is, we assume that

$$P(k): a + ar + ar^2 + \dots + ar^k = \frac{ar^{k+1}-a}{r-1}: k \ge 0$$
, is true.

Under this assumption, it must be shown that P(k + 1) is also true. When we add ar^{k+1} to both sides of the equation in P(k), we obtain

$$P(k+1): \ a + ar + ar^{2} + \dots + ar^{k} + (ar^{k+1}) = \frac{a r^{k+1} - a}{r-1} + ar^{k+1}$$
(where $P(k)$ is true) [the term $\# n = k+1$]

 \Rightarrow

$$\frac{ar^{k+1} - a}{r-1} + ar^{k+1} = \frac{ar^{k+1} - a}{r-1} + \frac{ar^{k+2} - ar^{k+1}}{r-1}$$
$$= \frac{ar^{k+2} - a}{r-1}.$$

Combining these last two equations gives

$$a + ar + ar^{2} + \dots + ar^{k} + ar^{k+1} = \frac{ar^{k+2} - a}{r-1}.$$

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This completes the inductive step . P(k+1) is true. Then P(n) is true for $\forall n \ge 0$.

$$1 + a + a^2 + \dots + a^n = \frac{a^{n+1} - 1}{a-1}$$
, $a \neq 1$: for all nonnegative integers n .

$$2 + 4 + 6 + \dots + 2n = n(n+1) \quad : n \ge 1$$

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 2)}{2} \qquad : n \ge 1$$

$$3 + 3^2 + 3^3 + \dots + 3^n = \frac{3}{2}(3^n - 1) : n \ge 1$$

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n} \quad : n \ge 1$$

 $2 + 2 \times 3 + 2 \times 3^2 + 2 \times 3^3 + \dots + 2 \times 3^n = 3^n - 1 : n \ge 1$

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}: \quad \forall n \ge 1$$

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 : \quad \forall n \ge 1$$

Math 151 Discrete Mathematics [Mathematical induction, 1st principle] By: Malek Zein AL-Abidin **19.** Use mathematical induction to Show that

 $n < 2^n : \forall n \ge 1$

Solution: Let P(n) be the proposition,

 $P(n): \quad n < 2^n \quad : \forall n \ge 1$

BASIS STEP: $P(1): 1 < 2^1 = 2$, $\therefore P(1)$ is true

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary positive integer k. That is, we assume that P(k): $k < 2^k$: $k \ge 1$, is true.

Under this assumption, it must be shown that P(k + 1) is also true.

 $\begin{array}{ll} P(k+1): \ k+1 < 2^k + 1 < 2^k + 2^k = 2 \ 2^k = 2^{k+1} & \text{where } 1 < 2^k \\ \therefore \ k+1 < 2^{k+1} & \Rightarrow \ P(k+1) & \text{is true} \\ \end{array} \quad \begin{array}{l} \text{Then } P(n) & \text{is true for } \forall n \ge 1 \\ & \# \end{array}$

20. Use mathematical induction to Show that

 $2^n < n!$ for every integer *n* with $n \ge 4$.

Solution: Let P(n) be the proposition,

$$P(n): \qquad 2^n < n! \qquad : \forall n \ge 4$$

BASIS STEP: $P(4): 2^4 = 16 < 4! = 24$, $\therefore P(4)$ is true

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary positive integer $k : k \ge 4$.

That is, we assume that P(k): $2^k < k!$: $k \ge 4$, is true. (*)

Under this assumption, it must be shown that P(k + 1) is also true.

$$P(k+1): \ 2^{k+1} = 2 \ 2^k \le 2 \ k! \qquad (\text{ from inductive hypothesis } *)$$

$$< (k+1) \ k! \qquad (\text{ because } 2 < k+1)$$

$$= (k+1)! \qquad (\text{ by definition of factorial function})$$

$$\therefore \ 2^{k+1} < (k+1)! \qquad \Rightarrow \ P(k+1) \text{ is true }. \quad \text{Then } P(n) \text{ is true for } \forall n \ge 4 \ .$$

 $3^n < n!$ for every integer *n* with $n \ge 7$.

Solution:

22. Use mathematical induction to Show that

 $n! < n^n$ for every integer *n* with $n \ge 2$.

 $2^n \ge n + 12$ for every integer *n* with $n \ge 4$.

 $2^n > n^2$ for every integer *n* with $n \ge 5$.

 $n^2 > 4 + n$ for every integer *n* with $n \ge 3$.

Solution: Let P(n) be the proposition,

 $p(n): n^2 > 4 + n : \forall n \ge 3.$

BASIS STEP: $p(3): 3^2 = 9 > 4 + 3 = 7 \implies \therefore p(3)$ is true

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary positive integer k. That is, we assume that $p(k): k^2 > 4 + k : k \ge 3$, is true. (*)

under this assumption, it must be shown that P(k + 1) is also true.

$$p(k + 1): (k + 1)^{2} = k^{2} + 2k + 1$$

$$> 4 + k + 2k + 1 \quad (\text{from inductive hypothesis } *)$$

$$> 4 + k + 1 \quad (\text{because } 2k > 1 : k \ge 3)$$

$$= 4 + (k + 1)$$

$$\therefore (k + 1)^{2} > 4 + (k + 1) \Rightarrow \therefore P(k+1) \text{ is true }.$$
Then $P(n): n^{2} > 4 + n \quad : \forall n \ge 3 \quad \text{is true }.$

#

 $2^n > n^2 + 19$ for every integer *n* with $n \ge 5$.

 $n^3 > 2n + 1$ for every integer *n* with $n \ge 2$.

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$
 for every integer *n* with $n \ge 1$.

Solution: Let P(n) be the proposition,

$$p(n)$$
: $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$: $\forall n \ge 1$.

BASIS STEP: $p(1): \frac{1}{\sqrt{1}} = 1 \ge \sqrt{1} \implies \therefore p(1)$ is true.

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary positive integer k. That is,

we assume that
$$p(k): \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} \ge \sqrt{k} \quad : k \ge 1$$
, is true. (*)

under this assumption, it must be shown that P(k + 1) is also true.

$$p(k+1): \left[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}\right] + \frac{1}{\sqrt{k+1}} \ge \left[\sqrt{k}\right] + \frac{1}{\sqrt{k+1}} \quad (\text{ from inductive hypothesis } *)$$

$$= \frac{\sqrt{k}\sqrt{k+1}+1}{\sqrt{k+1}}$$

$$= \frac{\sqrt{k(k+1)}+1}{\sqrt{k+1}}$$

$$\ge \frac{\sqrt{k(k)}+1}{\sqrt{k+1}} = \frac{\sqrt{k^2}+1}{\sqrt{k+1}} \quad (\text{because } k+1 > k)$$

$$= \frac{k+1}{\sqrt{k+1}} = \sqrt{k+1}$$

$$\therefore \quad \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \ge \sqrt{k+1}$$

 $\therefore p(k+1)$ is true.

Then P(n) : $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$: $\forall n \ge 1$. is true .

#

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1) \quad \text{for every integer } n \text{ with } n \ge 1.$$

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} < 1 \qquad \text{for every integer } n \text{ with } n \ge 1.$$

 $n^2 - 7n + 12 \ge 0$ for every integer *n* with $n \ge 3$.

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n} \qquad \text{for every integer } n \text{ with } n \ge 2.$$

$$3^n \ge 2^{n+2}$$

for every integer *n* with $n \ge 4$.

$$n^2 - 3n + 5$$
 is odd for all nonnegative integers *n*.

Math 151 Discrete Mathematics [Mathematical induction, 1st principle] By: Malek Zein AL-Abidin **35.**Use mathematical induction to Show that

$$3|4^n - 1$$
 for all nonnegative integers *n*.

Solution: Let P(n) be the proposition,

$$p(n)$$
: $3|4^n - 1$: $\forall n \ge 0 \Rightarrow \exists c \in \mathbb{Z} : 4^n - 1 = 3c$

BASIS STEP: p(0): $3 | 4^0 - 1 \Rightarrow 3 | 1 - 1 = 0 \Rightarrow 3 | 0 \Rightarrow \therefore p(0)$ is true.

INDUCTIVE STEP: We assume that P(k) holds for an arbitrary nonnegative integer k. That is, we assume that p(k): $3|4^k - 1$: $k \ge 0$, is true. $\Rightarrow 4^k - 1 = 3c \Rightarrow 4^k = 3c + 1$ (*)

under this assumption, it must be shown that P(k + 1) is also true.

$$p(k + 1): \quad 4^{k+1} - 1 = 4 \quad \frac{4^{k}}{3c + 1} - 1$$

= 4 (3c + 1) - 1 (from inductive hypothesis *)
= 12c + 4 - 1 = 12c + 3
= 3(4c + 1) = 3h : h = (4c + 1) \in \mathbb{Z}
 $\Rightarrow \quad 3|4^{k+1} - 1$

$$\therefore$$
 $p(k+1)$ is true

$$\therefore$$
 $p(n)$ is true for $\forall n \ge 0$.

 $3|(n^3 + 2n)$ for all positive integer *n*

$$5|7^n - 2^n \qquad \forall \ n \ge 1$$

$$3|5^n - 2^{n+2}|$$

for all nonnegative integers n.

$$7|9^{2n} - 5^{2n} \qquad \forall \ n \ge 1$$

40. Use mathematical induction to prove that $n^3 - n$ is divisible by 3 whenever n is a positive integer.

$$3|n^3 - n \qquad \forall \ n \ge 1$$

41. Use mathematical induction to prove that $n(n^2 + 5)$ is divisible by 6 whenever n is a positive integer.

$$6|n(n^2+5) \qquad \forall \ n \ge 1$$

42. Use mathematical induction to prove that $n^3 - n + 3$ is divisible by 3 whenever n is a nonnegative integer.

$$3|n^3 - n + 3 \qquad \forall \ n \ge 0$$

$$5|2^{2n-1} + 3^{2n-1} \qquad \forall \ n \ge 1$$

$$2|n^2 + n \qquad \forall \ n \ge 0$$

45. Use mathematical induction to prove that $n^5 - n$ is divisible by 5 whenever n is a nonnegative integer.

$$5|n^5 - n \qquad \forall n \ge 0$$

Math 151 Discrete Mathematics [Mathematical induction, 1st principle] By: Malek Zein AL-Abidin **46.** Prove that 21 divides $4^{n+1} + 5^{2n-1}$ whenever *n* is a positive integer.

Math 151 Discrete Mathematics [Mathematical induction, 1st principle] By: Malek Zein AL-Abidin **47.** Prove that if *n* is a positive integer, then 133 divides $11^{n+1} + 12^{2n-1}$

48. Use mathematical induction to prove that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for every nonnegative integer *n*.