فسيولوجيا الأحياء الدقيقة **Microbial Physiology**

What is "Microbial Physiology"?

- Physiology: is the understanding of the processes of life as mediated by its structures, operating together to accomplish the common tasks of life.
- Microbial Physiology: is an understanding of cell structure, growth factors, metabolism and genetic composition of microorganisms.
 - introduces the inter-relatedness of Microbiology, Biochemistry, and Genetics while understanding the functioning of the bacterial cell.
 - looks at the simpler single-cell organisms as a model for trying to understand much more complex organisms.

Microbial Physiology

We can understand:

- how the cell functions in the environment.
- how it can alter to suit changes in the environment.
- how it can produce a new cell from very simple substrates available in the environment.

$ \begin{array}{c} A \\ B \\ C \\ E \\ \hline \\ \hline \\ F \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$		Archaea Euko Bacteria AGCT AUG GUC	
1687	1944 (1941 1946 1953	198 1966 1977 19	5 86 1995 2006
van Pasteur Koch, Leeuwenhoek Winogradsky	DNA is Bacterial Structure genetic genetics of DNA material Streptomycin	Genetic 1. DNA sequencing PCF code 2. Discovery of Archaea	First Over Molecular genome 500 microbial genomes ecology
Early Days: Discovery, Medical and General Microbiology	ys: Discovery, dical and Microbiology Microbiology		

The Importance of Microorganisms

• Ubiquitous:

• Found (present) in almost all environmental niche.

• Extreme Environments:

- Found in environments with extreme temperature, salinity, pressure, etc.
 - Under the ice at the north and south poles at -10°C.
 - Sea water and Hot Springs.
 - Solid Rocks and Volcanically heated pools (100°C).
 - Deep seas where barometric pressures can easily squash a human.

Important in environmental Processes:

- Microbiota (normal flora) in the guts of ruminants animals.
- Essential to element cycling on Earth, carbon and nitrogen.

The Importance of Microorganisms

Important in Industrial Processes:

- Antibiotics.
- Reduce the hazards of wastewaters.
- Degrade hardy and dangerous compounds (bio-remediation).
- Ferment substrates to produce important metabolites.

Community Structures in Microorganisms:

- Individual bacteria may start a process or do a particular step.
- A complete community is required for completing the process.

Eukaryotes:

- All multi-cellular, and some single-celled organisms.
- Membrane-bound nucleus within the cell.

Prokaryotes: Bacteria & Archaea.

- Single-celled organisms.
- No membrane-bound nucleus.
- Generally much smaller genome and simpler structure <u>VS.</u> Eukaryotes.

• **Microorganisms** are described by their phenotype (physical characteristics). Growth optima for temperature, pH, salinity, solute availability, pressure, type of metabolism, and morphological characteristics.

 Caloramator indicus is described as a gram-positive rod to filamentous non-motile cell that does not sporulate. It is chemo-organo-trophic and obligately anaerobic. It is an alkalinophilic thermophile that can ferment a wide variety of carbohydrates.

Some of the more commonly used terms:

Temperature:

- Psychrophile: -12 to 20°C.
- Mesophile: 14 to 45°C.
- Moderate thermophile: 42 to 69°C
- Extreme thermophile: 66 to 105°C.

• pH:

- Acidophile: Low pH (~ 3.0 and below).
- Neutrophil: pH ~7.
- Alkaliphile: High pH (9-11).

Some of the more commonly used terms:

- Salinity:
 - Halophile.
- Solutes:
 - Osmophile.
- Water:
 - Xerophile.
- Pressure:
 - Barophile.

Some of the more commonly used terms:

Metabolism:

- •Obligate aerobe: require O₂.
- Facultative anaerobe: O₂ not required, but better growth when present.
- Aerotolerant: O₂ not required and growth not improved when present.
- Microaerophile: Low levels of O₂ required.
- Obligate anaerobe: O₂ inhibits bacterial growth.
- Morphological Characteristics: Shape, Size, Gram Stain, Sporulation.
- Nutrition: Chemo- (organo-, litho-), photo-, auto-, hetero-troph.
 - Energy source: Light vs. Chemical.
 - Carbon source: Organic vs. Inorganic.
 - Terminal electron accepter: Respiration vs. Fermentation.

Table 27.1 Major Nutritional Modes				
Mode of Nutrition	Energy Source	Carbon Source	Types of Organisms	
Autotroph				
Photo- autotroph	Light	CO ₂	Photosynthetic prokaryotes, including cyanobacteria; plants; certain protists (algae)	
Chemo- autotroph	Inorganic chemicals	CO ₂	Certain prokaryotes (for example, <i>Sulfolobus</i>)	
Heterotroph				
Photo- heterotroph	Light	Organic com- pounds	Certain prokaryotes	
Chemo- heterotroph	Organic com- pounds	Organic com- pounds	Many prokaryotes and protists; fungi; animals; some parasitic plants	

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

The Importance of Microorganisms in Physiology:

- Short generation time.
- Small Size.
- Small genome Size.
- Nutritional Diversity.

QUESTIONS??

