King Saud University College of Science Department of Statistics and Operations Research

STAT 340 Theory of Statistics 1

Exercises

Dr. Samah Alghamdi

Chapter 1 Exercises: Introduction

1.1 Suppose that 4 out of 12 buildings in a certain city violate the building code. A building engineer randomly inspects a sample of 3 new buildings in the city.

- (a) Find the probability distribution function of the random variable *X* representing the number of buildings that violate the building code in the sample.
- (b) Find the probability that
 - (i) none of the buildings in the sample violating the building code.
 - (ii) one building in the sample violating the building code.
 - (iii) at lease one building in the sample violating the building code.
- (c) Find the expected number of buildings in the sample that violate the building code.
- (d) Find Var(X).
- 1.2 On average, a certain intersection results in 3 traffic accidents per day. Assuming Poisson distribution,
 - (i) what is the probability that at this intersection:
 - (a) no accidents will occur in a given day?
 - (b) More than 3 accidents will occur in a given day?
 - (c) Exactly 5 accidents will occur in a period of two days?
 - (ii) what is the average number of traffic accidents in a period of 4 days?
- 1.3 If the random variable X has a uniform distribution on the interval (0,10), then
 - (a) P(X < 6) equals to
 - (b) The mean of X is
 - (c) The variance X is
- 1.4 Suppose that Z is distributed according to the standard normal distribution. Then,
 - (a) the area under the curve to the left of 1.43 is:
 - (b) the area under the curve to the right of 0.89 is:
 - (c) the area under the curve between 2.16 and 0.65 is:
 - (d) the value of *k* such that P(0.93 < Z < k) = 0.0427 is:
- 1.5 The finished inside diameter of a piston ring is normally distributed with a mean of 12 centimeters and a standard deviation of 0.03 centimeter. Find,
 - (a) the proportion of rings that will have inside diameter less than 12.05 centimeters.
 - (b) the proportion of rings that will have inside diameter exceeding 11.97 centimeters.
 - (c) the probability that a piston ring will have an inside diameter between 11.95 and 12.05 centimeters.
- 1.6 Let *X* be $N(\mu, \sigma^2)$ so that P(X < 89) = 0.90 and P(X < 94) = 0.95. find μ and σ^2 .
- 1.7 Assume the length (in minutes) of a particular type of a telephone conversation is a random variable with a probability density function of the form:

$$f(x) = \begin{cases} 0.2 \ e^{-0.2x}; \ x \ge 0\\ 0; \ \text{elsewhere} \end{cases}.$$

Calculate:

- (a) P(3 < x < 10).
- (b) The cdf of X.
- (c) The mean and the variance of X.

Theory of Statistics 1

- 1.8 Find the moment-generating function of *X*, if you know that $f(x) = 2e^{-2x}$, x > 0.
- 1.9 For a chi-squared distribution, find
 - (a) $\chi^2_{0.025}$ when v = 15.
 - (b) $\chi^2_{0.01}$ when v = 7.
 - (c) $\chi^2_{0.99}$ when v = 22.

1.10 If $(1-2t)^{-6}$, $t < \frac{1}{2}$, is the mgf of the random variable X, find P(X < 5.23).

1.11 Find:

- (a) $t_{0.95}$ when v = 28.
- (b) $t_{0.005}$ when v = 16.
- (c) $-t_{0.01}$ when v = 4.
- (d) P(T > 1.318) when v = 24.
- (e) P(-1.356 < T < 2.179) when v = 12.
- 1.12 If $f(x) = \theta x^{\theta-1}$ 0 < x < 1, find the distribution of Y = -lnX.
- 1.13 If f(x) = 1, 0 < x < 1. Find the pdf of $Y = \sqrt{X}$.
- 1.14 If $X \sim Uniform(0,1)$, find the pdf of Y = -2lnX. Name the distribution and its parameter values.
- 1.15 Suppose independent random variables X and Y are such that $M_{X+Y}(t) = \frac{e^{2t}-1}{2t-t^2}$. If $f(x) = \lambda e^{-\lambda x}$, x > 0, what is the distribution of Y.
- 1.16 If $X_1 \sim \chi_n^2$ and $X_2 \sim \chi_m^2$ are independent random variables. Find the distribution of $Y = X_1 + X_2$.

Chapter 2 Exercises: Sampling Distribution

- 2.1 If e^{3t+4t^2} is the mgf of the random variable \overline{X} with sample size 6, find $P(-2 < \overline{X} < 6)$.
- 2.2 Let \bar{X} be the mean of a random sample of size 5 from a normal distribution with $\mu = 0$ and $\sigma^2 = 125$. Determine *c* so that $P(\bar{X} < c) = 0.975$.
- 2.3 Determine the mean and variance of the mean \overline{X} of a random sample of size 9 from a distribution having pdf $f(x) = 4x^3$, 0 < x < 1, zero elsewhere.
- 2.4 Let Z_1, Z_2, \dots, Z_{16} , be a random sample of size 16 from the standard normal distribution N(0, 1). Let X_1, X_2, \dots, X_{64} be a random sample of size 64 from the normal distribution $N(\mu, 1)$. The two samples are independent.
 - (a) Find $P(Z_1 < 2)$.
 - (b) Find $P(\sum_{i=1}^{16} Z_i > 2)$
 - (c) Find $P(\sum_{i=1}^{16} Z_i^2 > 6.91)$
 - (d) Let S^2 be the sample variance of the first sample. Find c such that $P(S^2 > c) = 0.05$.
 - (e) What is the distribution of *Y*, where $Y = \sum_{i=1}^{16} Z_i^2 + \sum_{i=1}^{64} (X_i \mu)^2$
 - (f) Find E(Y).
 - (g) Find Var(Y).
 - (h) Approximate P(Y > 105).
 - (i) Find *c* such that $c \frac{\sum_{i=1}^{16} Z_1^2}{\gamma} \sim F_{16,80}$

(j) Let
$$Q \sim X_{60}^2$$
. Find *c* such that $P\left(\frac{Z_1}{\sqrt{Q}} < c\right) = 0.95$

(k) Find *c* such that $P(F_{60,20} > c) = 0.99$.

- 2.5 Let X be N(5,10). Find $P(0.04 < (X 5)^2 < 38.4)$.
- 2.6 Let S^2 be the variance of a random sample of size 6 from the normal distribution $N(\mu, 12)$. Find
 - (a) Mean and variance of S^2 .
 - (b) Distribution of S^2 .
 - (c) $P(2.30 < S^2 < 22.2)$.
- 2.7 Let X_1, X_2 and X_3 be iid random variable, each with pdf $f(x) = e^{-x}$, $0 < x < \infty$; and let $Y_1 < Y_2 < Y_3$ be the order statistics of the random variables. Find:
 - (a) The distribution of Y_1 = minimum (X_1, X_2, X_3).
 - (b) $P(3 \le Y_1)$.
 - (c) The joint pdf of Y_2 and Y_3 .
- 2.8 Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics from a Weibull distribution. Find the distribution function and pdf of Y_1 .

Chapter 3 Exercises: Point Estimation

3.1 Suppose $X_1, X_2, ..., X_n$ is a random sample from gamma distribution:

$$f(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, x > 0$$

Derive the MME for parameters α and β .

3.2 Find the MME and the MLE for the parameter *p* of Bernoulli distribution:

$$f(x; p) = p^{x}q^{1-x}, x = 0, 1.$$

Then, determine the unbiasedness, sufficiency and consistency of the MLE.

3.3 Let $f(x, \theta) = \theta e^{-\theta x}$; x > 0, and let *T* be an estimator for $\tau(\theta)$. Study if *T* is unbiased, consistent estimator for $\tau(\theta)$, then compute MSE in the three cases:

(a)
$$T = \overline{X}$$
 and $\tau(\theta) = \frac{1}{\theta}$

(b) $T = \frac{1}{\bar{X}}$ and $\tau(\theta) = \theta$.

(c)
$$T = \frac{n-1}{\sum X_i}$$
 and $\tau(\theta) = \theta$.

3.4 If $X_1, X_2, ..., X_n$ be a random sample from $f(x; \theta)$. Show if the given statistic T is sufficient statistic for θ :

 $f(x;\theta) = e^{-(x-\theta)}, x > \theta; T = Y_1 = \text{Minimum}(X_1, X_2, \dots, X_n).$

3.5 Suppose for a given random variable T_1 and T_2 be two independents unbiased estimators for θ and with the same variance σ^2 . Define two random variables as

$$Y = \frac{3T_1 + 2T_2}{5}$$
 and $Z = \frac{T_1 + 2T_2}{3}$

Find MSE(Y) and MSE(Z) and compare between them.

- 3.6 Let $f(x,\theta) = \frac{1}{\theta}$; $x \in (0,\theta)$, and let *T* be an estimator for θ . Study if *T* is unbiased, consistent and compute MSE, then compare between their variances for the following cases:
 - (a) $T = Y_1 = \text{Minimum}(X_1, X_2, ..., X_n).$
 - (b) $T = nY_1$.
 - (c) $T = 2\overline{X}$.

(d)
$$T = \frac{n+1}{n}Y_n$$

- 3.7 For a random sample $X_1, X_2, ..., X_n$ drawn from the following distributions, find the Fisher information, $I_X(\theta)$:
 - (a) $Bernoulli(\theta)$.
 - (b) Exponential $\left(\frac{1}{a}\right)$
 - (c) $N(\theta, \sigma^2)$ when θ is unknown and σ^2 is known.
- 3.8 Let $X_1, X_2, ..., X_n$ be a random sample drawn $N(\mu, \sigma^2), \sigma^2$ is known. Find:
 - (a) The CRLB for i. $\tau(\mu) = \mu$ ii. $\tau(\mu) = e^{\mu}$ iii. $\tau(\mu) = \frac{1}{\mu+1}$
 - (b) The MVUE for μ .

3.10 Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pdf

$$f(x;\theta) = \theta^2 x e^{-x\theta}, \quad x > 0, \quad \theta > 0$$

- (a) Argue that $Y = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .
- (b) Compute $E\left(\frac{1}{Y}\right)$ and find the function of Y which is the unique MVUE of θ .
- 3.11 Let $X_1, X_2, ..., X_n$, n > 2, be a random sample from the binomial distribution *Binomial*(1, θ).
 - (a) Show that $T_1 = X_1 + X_2 + ... + X_n$ is a complete sufficient statistic for θ .
 - (b) Find the MVUE of θ .
 - (c) Let $T_2 = \frac{X_1 + X_2}{2}$ and prove that T_2 is an unbiased estimator for θ .

Chapter 4 Exercises: Bayesian Estimation

- 4.1 Let $X_1, X_2, ..., X_n$ be a random sample from Bernoulli with parameter θ , and the prior distribution of Θ is a uniform distribution, where $0 < \theta < 1$. Find the posterior distribution and the Bayes' point estimator of Θ when the loss function be the squared error loss function.
- 4.2 Let *Y* have a binominal distribution in which n = 20 and $p = \theta$. The prior probability on Θ is Beta(a, b), where a, b > 0 are known constants. Find the following:
 - (a) Posterior distribution.
 - (b) Bayes' point estimate of Θ , when $\mathcal{L}[\theta, \delta(y)] = [\theta \delta(y)]^2$.
- 4.3 Let $X_1, X_2, ..., X_{10}$ denote a random sample from a Poisson distribution with mean $\theta, 0 < \theta < \infty$. Let $Y = \sum_{i=1}^{10} X_i$. Use the loss function to be $\mathcal{L}[\theta, \delta(y)] = [\theta \delta(y)]^2$. If Θ has the pdf $h(\theta) = \frac{\theta^2 e^{-\frac{1}{2}\theta}}{16}$, for $0 < \theta < \infty$. Find:
 - (a) The posterior distribution.
 - (b) The Bayes' solution $\delta(y)$ for a point estimate for θ , when Y = 22.
- 4.4 Let Y_n be the *n*th order statistic of a random sample of size *n* from a distribution with pdf $f(x|\theta) = \frac{1}{\theta}, 0 < x \le \theta$, zero elsewhere. Take the loss function to be $\mathcal{L}[\theta, \delta(y)] = [\theta \delta(y_n)]^2$. Let θ be an observed value of the random variable Θ , which has pdf $h(\theta) = \frac{\beta \alpha^{\beta}}{\theta^{\beta+1}}, \alpha < \theta < \infty$, zero elsewhere, with $\alpha > 0, \beta > 0$. Find the Bayes' solution $\delta(y_n)$ for a point estimate of θ .
- 4.5 In Exercise 5.5, let n = 4 from the uniform pdf $f(x, \theta) = \frac{1}{\theta} \cdot 0 < x < \theta$, and the prior pdf be $g(\theta) = \frac{2}{\theta^3}$, $1 < \theta < \infty$, zero elsewhere. Find:
 - (a) The Bayesian estimator $\delta(Y_4)$ of θ , based upon the sufficient statistic Y_4 , using the loss function $[\theta \delta(y_4)]^2$.
 - (b) The Bayesian estimator δ(Y₄) of θ, based upon the sufficient statistic Y₄, using the loss function |δ(y₄) − θ|.
- 4.6 Consider the model

$$X_{i}|\theta \sim \text{iid Exponential}\left(\frac{1}{\theta}\right)$$
$$\Theta \sim Gamma\left(\alpha, \frac{1}{\beta}\right)$$

Find the following:

- (a) Posterior distribution of Θ .
- (b) Bayes' point estimate of Θ , use $\mathcal{L}[\theta, \delta(y)] = [\theta \delta(y)]^2$.
- (c) If $X_1 = 2.5, X_2 = 3.61, X_3 = 4.8, X_4 = 2.74, X_5 = 3.95$ and $\alpha = 2, \beta = 4$. Calculate (b).