

Dr.Salwa Alsaleh Salwams@ksu.edu.sa
fac.ksu.edu.sa/salwams

What is Temperature?

- It is the measurement of the AVERACE kinetic energy of the particles of matter.

Temperature

- We associate the concept of temperature with how hot or cold an object feels
- Our senses provide us with a qualitative indication of temperature
- Our senses are unreliable for this purpose
- We need a reliable and reproducible method for measuring the relative hotness or coldness of objects
- We need a technical definition of temperature

Thermal Contact

- Two objects are in thermal contact with each other if energy can be exchanged between them
- The exchanges we will focus on will be in the form of heat or electromagnetic radiation
- The energy is exchanged due to a temperature difference

Thermal Equillbrium

- Thermal equilibrium is a situation in which two objects would not exchange energy by heat or electromagnetic radiation if they were placed in thermal contact
- The thermal contact does not have to also be physical contact

Zeroth Law of Thermodynamics

- If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other
- Let object C be the thermometer
- Since they are in thermal equilibrium with each other, there is no energy exchanged among them

Zeroth Law of Thermodynamics, Example

- Object C (thermometer) is placed in contact with A until they achieve thermal equilibrium
- The reading on C is recorded
- Object C is then placed in contact with object B until they achieve thermal equilibrium
- The reading on \mathbf{C} is recorded again
- If the two readings are the same, A and B are also in thermal equilibrium

Temperature

- Temperature can be thought of as the property that determines whether an object is in thermal equilibrium with other objects
- Two objects in thermal equilibrium with each other are at the same temperature
- If two objects have different temperatures, they are not in thermal equilibrium with each other

Temperature Scalles

- Celsius
- Kelvin
- Fahrenheit
- Rankine

- The 3 main temperature scalles

- Fahrenheit
- Celsius
- Kelvin

Celsius scale

- The fixed points on which this scale was created, were the Boiling and Freezing point of water.
- Original scale had boiling point = 100
- And the freezing point = 0

Celsius scalle ...

- The ice point of water is defined to be $0{ }^{\circ} \mathrm{C}$
- The steam point of water is defined to be 100
- The length of the column between these two points is divided into 100 increments, called degrees

Celsius scale...

- These were later reversed so the
$>$ Bolling Point $=100^{\circ} \mathrm{C}$
$>$ Freezing Polint $=0^{\circ} \mathrm{C}$
- The original name was the CENTIGRADE scale

Fahrenheit Scale

- Named for Daniel Fahrenheit
- Temperature of the ice point is $32^{\circ} \mathrm{F}$
- Temperature of the steam point is $212{ }^{\circ} \mathrm{F}$
- There are 180 divisions (degrees) between the two reference points

The Fahrenheit Scale

- Boiling point
- became = \qquad
- Freezing point
- became = 32

Absolute Temperature Scale

- Absolute zero is used as the basis of the absolute temperature scale
- The size of the degree on the absolute scale is the same as the size of the degree on the Celsius scale

Absolute Temperature Scale...

- The absolute temperature scale is now based on two new fixed points
- One point is absolute zero
- The other point is the triple point of water
- This is the combination of temperature and pressure where ice, water, and steam can all coexist

Relvin Sealle

-This temperature is known as

- ABSOLUTE ZARO
- Absolute Zero = $\mathbf{0}$ K
- Boiling point of water = 373 K
- Freezing point of water = 273 K

Comparison of Temperature scales

Temperature CONVERSION

Celsius to Kelvinn

$$
K=C+273
$$

Kelvin to Celsiust

$$
C=K-273
$$

Temperature CONVERSION...

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=9 / 5\left({ }^{\circ} \mathrm{C}\right)+3 \\
& { }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}\right)-321 \\
& { }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{R}-459.67 \\
& { }^{\circ} \mathrm{C}=\mathrm{K}-273.15
\end{aligned}
$$

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	K
1507	60-7	
1257	$50-$	
1007	407	
	30	
	20	
	$10-$	
	0	270
	$-10-$	
	-201	
-257	$-30-$	2
	-40-	23

Thermometers

Thermometers

- A thermometer is a device that is used to measure the temperature of a system
- Thermometers are based on the principle that some physical property of a system changes as the system's temperature changes

Thermometers, cont

- These properties include:
- The volume of a liquid
- The dimensions of a solid
- The pressure of a gas at a constant volume
- The volume of a gas at a constant pressure
- The electric resistance of a conductor
- The color of an object
- A temperature scale can be established on the basis of any of these physical properties

Callbrating a Thermometer

- A thermometer can be calibrated by placing it in contact with some natural systems that remain at constant temperature
- Common systems involve water
- A mixture of ice and water at atmospheric pressure Called the ice point of water
- A mixture of water and steam in equilibrium Called the steam point of water
- Once these points are established, the length between them can be divided into a number of segments

Liquid in glass

Liquid-in-glass thermometer: glass tube filled with liquid (often mercury or alcohol) that expands/contracts with air temperature

Constant-Volume Gas Thermometer

- The physical change exploited is the variation of pressure of a fixed volume gas as its temperature changes
- The volume of the gas is kept constant by raising or lowering the reservoir B to keep the mercury level at A constant

- The pressure is indicated by the height difference between reservoir B and column A
- The thermometer is calibrated by using a ice water bath and a steam water bath
- The pressures of the mercury under each situation are recorded
- The volume is kept constant by adjusting A
- The information is plotted

Constant-Volume Gas Thermometer, final

- To find the temperature of a substance, the gas flask is placed in thermal contact with the substance
- The pressure is found on the graph
- The temperature is read from the graph

Absolute Zero

- The thermometer readings are virtually independent of the gas used
- If the lines for various gases are extended, the pressure is always zero when the temperature is $273.15^{\circ} \mathrm{C}$
- This temperature is called absolute zero

- Calculations in physics usually use the "absolute" or "Kelvin" scale of temperature
- In "real life" we mostly use the Celsius scale
- 1 K is the same "size" as $1^{\circ} \mathrm{C}$, only the zero of the scale is different
- Calculations involving temperature differences can be done with either Celsius or Kelvin units
- For all other calculations, we must convert Celsius temperatures to Kelvin (add 273 to Celsius temp.)

	BP of helium	BP of nitrogen	MP of water	BP of water
Kelvin Temp	4.2 K	77.3 K	273.2 K	373.2 K
Celsius Temp.	$-269^{\circ} \mathrm{C}$	$-196^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$

