Dr.Salwa Alsaleh
Salwams@ksu.edu.sa
fac.ksu.edu.sa/salwams

LECTURE 11

Thermodynamic Systems

Specific Heat Capacities
Zeroth Law
First Law

Thermodynamic Systems

Thermodynamics: Fundamental laws that heat and work obey
System: Collection of objects on which the attention is being paid
Surrounding - Everything else around
System can be separated from surrounding by:
Diathermal Walls - Allows heat to flow through
Adiabatic Walls - Perfectly insulating walls that do not
allow flow of
heat
State of a system - the physical condition - can be defined using various parameters such as volume, pressure, temperature etc.

Zeroth Law of Thermodynamics

- Remember with Thermal equilibrium
- Two systems are said to be in thermal equilibrium if there is no net flow of heat between them when they are brought into thermal contact.
- Temperature is the indicator of thermal equilibrium
- Two systems individually in thermal equilibrium with a third system are in thermal equilibrium with each other.

- Classical thermodynamics
- natural laws governing the behaviour of macroscopic systems
- First Law

$$
\Delta E=Q+W
$$

Internal changes $=\Sigma$ interactions occurring at boundaries ($\mathrm{T}, \mathrm{P}, \mathrm{V}, \ldots$ etc)

- Second Law
- Reversible process
- Entropy

Heat effect

SYSTEM

Environment/Surroundings

 Work\square
Boundary
(1) adiabatic or diathermal
(2) permeable or impermeable
(3) rigid or movable

An isolated system: impermeable, rigid, adiabatic and independent of events in the environment

It was first a postulate. However, the overwhelming evidence accumulated over time has elevated it to the stature of a law of nature.
Although energy assumes many forms, the total quantity of energy is constant, and when energy disappears in one form it appears simultaneously in other forms.
$\Delta($ energy of the system $)+\Delta($ energy of surroundings $)=0$

First Law of Thermodynamics

- When a substance involves in a process involving energy in the form of work and heat, the internal energy of the substance can change.
- First Law: Relationship between work, heat and change in the internal energy
- Internal energy changes when heat is imparted: $\Delta \mathbf{E}=\mathbf{Q}$
- Internal energy changes when work is done on the system or by the system: $\Delta E=-W$

Work is +ve when it is done by the system and Work is -ve when it is done on the system.
-Thus system can lose or gain energy through heat or work:

$$
\Delta E=E_{f}-E_{i}=Q-W
$$

Thermal Processes

A System can interact with the surrounding in several ways - but has to obey the first law of thermodynamics.

Isobaric process - Constant pressure
Isobaric process $\quad W=P \Delta V=P\left(V_{\mathrm{f}}-V_{\mathrm{i}}\right)$
Work done is + ve when it expands $\left(V_{f}>V_{i}\right)$
Isobaric compression: work done is -ve

Thermal Processes

Isochoric Process: Constant volume process
Area under the P V graph = $0=>$ No work is done
So the heat given is only used to change the internal energy.

$$
\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}=\mathrm{Q}
$$

Isothermal Process: Constant temperature process.

Adiabatic Process: Occurs without the transfer of heat $=>\quad Q=0=>\Delta E=-W$
When work is done by a system adiabatically, W is -ve and when work is done on the system adiabatically, W is +ve

Thermal Processes

Area under a P-V graph is the work for any kind of thermal process

Thermal Processes using an Ideal Gas

Ideal Gas: A gas for which the potential energy of interaction between the molecules is independent of their separation and hence is independent of the gas volume. The internal energy of such a gas depends on the temperature.

Isothermal Compression or Expansion When a system performs work isothermally, the temperature stays constant.

```
Isothermal
expausion or
compression of
    W}=nRT\operatorname{ln}(\frac{\mp@subsup{V}{f}{\prime}}{\mp@subsup{V}{i}{}}
ar ideal gas
```


Thermal processes using an Ideal Gas

What is the origin of energy for this work?

- Internal energy of an ideal gas is proportional to its Kelvin temperature, $E=3 / 2$ (n RT)
-Internal energy remains constant throughout an isothermal process and so the change in internal energy $=0$
(ie) $\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}=0=>\mathrm{Q}=\mathrm{W}$
Energy for the work originates from the heat provided.
Expansion: heat flows from the hot water to the gas
Compression: heat flows from the gas into the water

Thermal Processes using an Ideal Gas

Adiabatic Compression or Expansion
When a system performs work adiabatically, NO heat flows into or out of the system.

```
Adiabatic
expansion or
compression of W}\quadW=\frac{3}{2}nR(\mp@subsup{T}{1}{}-\mp@subsup{T}{\textrm{f}}{}
a monatomic
idealgas
```

Expands adiabatically => -ve work $=>T_{i}>T_{f}$
Compress adiabatically => +ve work $=>\mathrm{T}_{\mathrm{i}}<\mathrm{T}_{\mathrm{f}}$
$T i=P K /(n R)$ and $T f=P i V /(n R)$

$P_{i} V_{i}{ }^{\gamma}=P_{f} V_{f}^{\gamma}$
γ Is the ratio of specific heat capacities at constant pressure and constant vol

- The general ist law equation for a mechanically reversible, closed-system process:

$$
d E=d Q-P d V
$$

- constant total volume:
- $Q=\triangle E$
- the heat transferred is equal to the internal-energy change of the system $\quad d Q=d E=d(P V) \longrightarrow d Q=d(E=P V)$
- constant pressure:
- $Q=\wedge H$
- the mathematical definition of enthalpy: $H \equiv U+P V$
- the heat transferred is equal to the enthalpy change of the system

Calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for 1 kg of water when it is vaporized at the constant temperature of $100^{\circ} \mathrm{C}$ and the constant pressure of 101.33 kPa . The specific volumes of liquid and vapor water at these conditions are 0.00104 and $1.673 \mathrm{~m} 3 / \mathrm{kg}$. For this change, heat in the amount of 2256.9 kJ is added to the water.

Imagine the fluid contained in a cylinder by a frictionless piston which exerts a constant pressure of 101.33 kPa . As heat is added, the water expands from its initial to its final volume. For the $1-\mathrm{kg}$ system:

$$
\begin{aligned}
& \Delta H=Q=2256.9 \mathrm{~kJ} \\
& \Delta U=\Delta H-P \Delta(V) \\
& =2256.9 \mathrm{~J}-101.33 \mathrm{kPa} \times(1.673-0.001) \mathrm{m}^{3} \\
& =2256.9 \mathrm{~kJ}-169.4 \mathrm{~kJ} \\
& =2087.5 \mathrm{~kJ}
\end{aligned}
$$

- In thermodynamics, equilibrium means not only the absence of change but the absence of any tendency toward change on a macroscopic scale.
- Different kinds of driving forces bring about different kinds of change. For example:
- imbalance of mechanical forces tend to cause energy transfer as a work.
- temperature differences tend to cause the flow of heat.
- Gradients in chemical potential tend to cause substance to be transfer from one phase to another.

Phase rule

- For any system at equilibrium, the number of independent variables that must be arbitrarily fixed to establish its intensive state is given by J.W. Gibbs (1875).
- The degrees of freedom of the nonreacting systems:

$$
F=2-\pi+N
$$

- where π is the number of phases, N is the number of chemical species
- A phase is a homogeneous region of matter. A gas or a mixture of gases, a liquid or a liquid solution, and a crystalline solid are examples of phases. Various phases can coexist, but they must be in equilibrium for the phase rule to apply.
- The minimum number of degrees of freedom for any system is zero:

$$
F=2-\pi+N=0
$$

- $N=1, \pi=3$ (i.e. the triple point)

How many degrees of freedom has each of the following systems:
(1) Liquid water in equilibrium with its vapor.
(2) Liquid water in equilibrium with a mixture of water vapor and nitrogen.
(3) A liquid solution of alcohol in water in equilibrium with its vapor.
(1) 1 species, 2 phases

$$
F=2-\pi+N=2-2+1=1
$$

(2) 2 species, 2 phases

$$
F=2-\pi+N=2-2+2=2
$$

(3) 2 species, 2 phases

$$
F=2-\pi+N=2-2+2=2
$$

No Sir, I meant why are we here on a Saturday?

