

Dr.Salwa Alsaleh <u>Salwams@ksu.edu.sa</u> fac.ksu.edu.sa/salwams

LECTURE 5

Kinetic Theory of Gases Ideal Gas Model Ideal Gas Model Gas Laws

- (1) When temperature is held constant, the density of a gas is proportional to pressure, and volume is inversely proportional to pressure. Accordingly, an increase in pressure will cause an increase in density of the gas and a decrease in its volume. - Boyles's Law
- (2) If volume is kept constant, the pressure of a unit mass of gas is proportional to temperature. If temperature increase so will pressure, assuming no change in the volume of the gas.
- (3) Holding pressure constant, causes the temperature of a gas to be proportional to volume, and inversely proportional to density. Thus, increasing temperature of a unit mass of gas causes its volume to expand and its density to decrease as long as there is no change in pressure. Charles's Law

At constant temperature, the pressure is inversely proportional to the volume.

The pressure is also proportional to the amount of gas.

 $P \propto n$

Boyle's law

 $P \alpha 1/V$ P x V = constant $P_1 x V_1 = P_2 x V_2$

Constant temperature Constant amount of gas

Boyle's Law

Hyperbolic Relation Between Pressure and Volume

p – V Diagram

Effect of Pressure on Volume Boyle's Law

 Linear Relation Between Temperature and Pressure

Real data must be obtained above liquefaction temperature.

Experimental curves for different gasses, different masses, different pressures all extrapolate to a common zero.

Gas Expanding and Contracting

 $V \alpha T$ V = kT V/T = k $V_1/T_1 = V_2/T_2$ Constant pressu

Constant pressure Constant amount of gas

As Tincreases, V Increases

Effect of Temperature on Volume Charles' Law

Low Temperature

High Temperature

The Volume of a gas increases with and increase in temperature.

Introductory Chemistry; 2nd Ed; by Nivaldo Tro; Prentice Hall Publishing 2006, p356

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL?

> $P_1 \ge V_1 = P_2 \ge V_2$ $P_1 = 726 \text{ mmHg}$ $P_2 = ?$ $V_1 = 946 \text{ mL}$ $V_2 = 154 \text{ mL}$

 $P_2 = \frac{P_1 \times V_1}{V_2} = \frac{726 \text{ mmHg} \times 946 \text{ mL}}{154 \text{ mL}} = 4460 \text{ mmHg}$

Compression and expansion of adiabatically isolated gas is accompanied by its heating and cooling.

Dalton's Law

Pressure each gas in a mixture would exert if it were the only gas in the container

Dalton's Law of Partial Pressures

The total pressure exerted by a gas mixture is the sum of the partial pressures of the gases in that mixture.

 $P_{T} = P_{1} + P_{2} + P_{3} + \dots$

Partial Pressures

The total pressure of a gas mixture depends on the total number of gas particles, not on the types of particles.

STP

P = 1.00 atm

P = 1.00 atm

1.0 mol He

0.50 mol O₂ + 0.20 mol He + 0.30 mol N₂

Dalton's Law...

Suppose we have two gases in a container: n_A moles of gas A and n_B moles of gas B.

We can define individual partial pressures

 $p_A = n_A RT/V$ and $p_B = n_B RT/V$.

Dalton's Law is that the measured total pressure p is the sum of the partial pressures of all the components:

$$p = p_A + p_B + ... = (n_A + n_B + ...)RT/V.$$

Mole fractions: define x_1 for species J as n_1/n

where $n = (n_A + n_B + ...)$.

Then, $x_A + x_B + ... = 1$ and $p_J = p x_J 19^{-1}$

Dalton's Law of Partial...

Avogadro' Law

Avogadro's Law

 $V \alpha$ number of moles (*n*) V = constant x n $V_1/n_1 = V_2/n_2$

Constant temperature Constant pressu<u>re</u>

Learning Check

A 5.00 L scuba tank contains 1.05 mole of O_2 and 0.418 mole He at 25°C. What is the partial pressure of each gas, and what is the total pressure in the tank?

Solution

- $P = \underline{nRT} \qquad P_T = P_{O2} + P_{He}$ V
- $P_T = 1.47 \text{ mol } x \text{ } 0.0821 \text{ L-atm } x \text{ } 298 \text{ K}$ 5.00 L (K mol)

= 7.19 atm

Air bag

Conclusion Gas Laws

- When a gas is kept at a constant temperature, its pressure is inversely proportional to its volume (Boyle's law)
- When a gas is kept at a constant pressure, its volume is directly proportional to its temperature (Charles and Gay-Lussac's law).
- When the volume of the gas is kept constant, the pressure is directly proportional to the temperature (Guy-Lussac's law)

