

Dr.Salwa Alsaleh

## Salwams@ksu.edu.sa

fac.ksu.edu.sa/salwams

## LECTURE 5



Kinetic Theory of Gases

## Ideal Gas Model

Ideal Gas Model
Gas Laws

## Gas Laws

- (1) When temperature is held constant, the density of a gas is proportional to pressure, and volume is inversely proportional to pressure. Accordingly, an increase in pressure will cause an increase in density of the gas and a decrease in its volume. - Boyles's Law
- (2) If volume is kept constant, the pressure of a unit mass of gas is proportional to temperature. If temperature increase so will pressure, assuming no change in the volume of the gas.
- (3) Holding pressure constant, causes the temperature of a gas to be proportional to volume, and inversely proportional to density. Thus, increasing temperature of a unit mass of gas causes its volume to expand and its density to decrease as long as there is no change in pressure. - Charles's Law


## Boyle's law

At constant temperature, the pressure is inversely proportional to the volume.

$$
P \propto 1 / V
$$

The pressure is also proportional to the amount of gas.


$$
P \propto n
$$

## Boyle's law



## $P \propto 1 / V$ <br> $P \times V=$ constant <br> $P_{1} \times V_{1}=P_{2} \times V_{2}$ <br> Constant temperature Constant amount of gas

## Boyle's Law

- Hyperbolic Relation Between Pressure and Volume


p - V Diagram


## Effect of Pressure on Volume Boyle's Law



## Charles' Law

- Linear Relation Between Temperature and Pressure



## Charles' Law



## Charles' Law



Real data must be obtained above Iquefaction temperature.

Experimental curves for different gasses, different masses, different pressures all extrapolate to a common zero.

## Charles' Law

Gas Expanding and Contracting


$$
\begin{gathered}
V=k T \\
V / T=k \\
V_{1} / T_{1}=V_{2} / T_{2}
\end{gathered}
$$

Constant pressure
Constant amount of gas

As Tincreases, V Increases

## Charles' Law



## Effect of Temperature on Volume Charles' Law



Low Temperature
High Temperature

## The Volume of a gas increases with and increase in temperature.



Introductory Chemistry; 2nd Ed; by Nivaldo Tro; Prentice Hall Publishing 2006, p356

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg ) if the volume is reduced at constant temperature to 154 mL ?

$$
\begin{gathered}
P_{1} \times V_{1}=P_{2} \times V_{2} \\
P_{1}=726 \mathrm{mmHg} \quad P_{2}=? \\
V_{1}=946 \mathrm{~mL} \quad V_{2}=154 \mathrm{~mL} \\
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{~mL}}{154 \mathrm{~mL}}=4460 \mathrm{mmHg}
\end{gathered}
$$

Compression and expansion of adiabatically isolated gas is accompanied by its heating and cooling.


## Dalton's Law

Pressure each gas in a mixture would exert if it were the only gas in the container

## Dalton's Law of Partial Pressures

The total pressure exerted by a gas mixture is the sum of the partial pressures of the gases in that mixture.

$$
P_{T}=P_{1}+P_{2}+P_{3}+\ldots
$$

## Partial Pressures

The total pressure of a gas mixture depends on the total number of gas particles, not on the types of particles.
$P=1.00 \mathrm{~atm}$

$$
P=1.00 \mathrm{~atm}
$$

## $0.50 \mathrm{~mol} \mathrm{O}_{2}$ $+0.20 \mathrm{~mol} \mathrm{He}$ $+0.30 \mathrm{~mol} \mathrm{~N}_{2}$

## Dalton's Law...

Suppose we have two gases in a container: $\mathrm{n}_{\mathrm{A}}$ moles of gas A and $\mathrm{n}_{\mathrm{B}}$ moles of gas B .

We can define individual partial pressures

$$
p_{A}=n_{A} R T / V \text { and } p_{B}=n_{B} R T / V \text {. }
$$

Dalton's Law is that the measured total pressure p is the sum of the partial pressures of all the components:

$$
p=p_{A}+p_{B}+\ldots=\left(n_{A}+n_{B}+\ldots\right) R T / V .
$$

Mole fractions: define $x_{J}$ for species $J$ as $n_{J} / n$
where $\mathrm{n}=\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}+\ldots\right)$.
Then, $x_{A}+x_{B}+\ldots=1$ and $p_{J}=p x_{1} 19$

## Dalton's Law of Partial...


$P_{2}$

$$
P_{\text {total }}=P_{1}+P_{2}
$$

## Avogadro' Law

Dependence of volume on amount of gas at constant temperature and pressure


## Avogadro's Law

## $V$ a number of moles ( $n$ )

$V=$ constant $\mathrm{x} n$


Constant temperature Constant pressure

## Learning Check

A 5.00 L scuba tank contains 1.05 mole of $\mathrm{O}_{2}$ and 0.418 mole He at $25^{\circ} \mathrm{C}$. What is the partial pressure of each gas, and what is the total pressure in the tank?

- Solution

$$
\begin{aligned}
P & =\frac{n R T}{V} \quad P_{\mathrm{T}}=P_{02}+P_{\mathrm{He}} \\
P_{\mathrm{T}} & =\frac{1.47 \mathrm{~mol} \times 0.0821 \mathrm{~L}-\mathrm{atm} \times 298 \mathrm{~K}}{5.00 \mathrm{~L}(\mathrm{~K} \mathrm{~mol})} \\
& =7.19 \mathrm{~atm}
\end{aligned}
$$



Air bag


## Conclusion

## Gas Laws

- When a gas is kept at a constant temperature, its pressure is inversely proportional to its volume (Boyle's law)
- When a gas is kept at a constant pressure, its volume is directly proportional to its temperature (Charles and Gay-Lussac's law)
- When the volume of the gas is kept constant, the pressure is directly proportional to the temperature (Guy-Lussac's law)


