

Dr.Salwa Alsaleh

## Salwams@ksu.edu.sa

fac.ksu.edu.sa/salwams

## LECTURE 6



## Kinetic Theory of Gases

## Ideal Gas Model

## Ideal Gas Model

Ideal Gas Model

## Ideal Gas Law

The equality for the four variables involved in Boyle's Law, Charles' Law, Gay-Lussac's Law and Avogadro's law can be written


This is the equation of state for ideal gases

## ITClall Gases

All gases approach a unique "ideal gas" at low densities.
An ideal gas obeys the "ideal gas law"

$$
\mathbf{p} \mathbf{V}=\mathrm{n} R \mathrm{~T}=\mathrm{NkT}
$$

$\mathrm{p}=$ absolute pressure (Pa)
$\mathrm{V}=$ volume (m3)
$\mathrm{n}=$ number of moles
$\mathrm{T}=$ temperature (kelvin)
$\mathrm{R}=$ gas constant $=8.31 \mathrm{~J} /($ mole K$)=\mathrm{k} \mathrm{N}_{\mathrm{A}}$
$\mathrm{k}=$ Boltzmann's constant $=1.3810^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{N}=$ number of molecules


Ludwig Boltzmann



## Boltzmann's constant

$$
P V=n R T=n N_{\mathrm{A}}\left(\frac{R}{N_{\mathrm{A}}}\right) T=N\left(\frac{R}{N_{\mathrm{A}}}\right) T
$$

The constant term $R / N_{\mathrm{A}}$ is referred to as Boltzmann's constant, in honor of the Austrian physicist Ludwig Boltzmann (1844-1906), and is represented by the symbol k:

$$
k=\frac{R}{N_{\mathrm{A}}}=\frac{8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K})}{6.022 \times 10^{23} \mathrm{~mol}^{-1}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

## PV = NkT

## Work done by an lideal gas

$$
\mathbf{p} \mathbf{V}=\mathbf{n R} \mathbf{T} \quad W=\int_{V_{i}}^{V_{f}} p d V
$$

- Constant temperature:
keep temperature constant, change the volume. The pressure will change, following

$$
\mathrm{p}=\mathrm{nRT} / \mathrm{V}
$$

How much work is done by the gas?

$$
\mathrm{w}=\mathrm{nRT} \ln \left(\mathbf{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)
$$

- Constant pressure
keep pressure constant, change the volume. The temperature will change, following $\mathrm{T}=\mathrm{pV} / \mathrm{nR}$.


$$
\mathbf{W}=p \Delta V=p\left(V_{f}-V_{i}\right)
$$

- Constant volume:
pressure and temperature may change, but no work is done!
$\mathbf{W}=\mathbf{0}$


## Learning Check

What is the value of $R$ when the STP value for $P$ is 760 mmHg ?

## Solution

What is the value of $R$ when the STP value for $P$ is 760 mmHg ?
$R=\frac{P V}{n T}=\frac{(760 \mathrm{~mm} \mathrm{Hg})(22.4 \mathrm{~L})}{(1 \mathrm{~mol})(273 \mathrm{~K})}$

$$
=62.4 \mathrm{~L}-\mathrm{mm} \mathrm{Hg} / \mathrm{mol}-\mathrm{K}
$$

## Learning Check

Dinitrogen monoxide ( $\mathrm{N}_{2} \mathbf{O}$ ), laughing gas, is used by dentists as an anesthetic. If 2.86 mol of gas occupies a 20.0 L tank at $23^{\circ} \mathrm{C}$, what is the pressure $(\mathbf{m m H g})$ in the tank in the dentist office?

## Solution

Set up data for 3 of the 4 gas variables Adjust to match the units of R

$$
\begin{array}{llc}
\mathbf{V}=20.0 \mathrm{~L} & 20.0 \mathrm{~L} \\
\mathbf{T} & =23^{\circ} \mathrm{C}+273 & 296 \mathrm{~K} \\
\mathbf{n} & =2.86 \mathrm{~mol} & 2.86 \mathrm{~mol} \\
\mathbf{P} & =? & ?
\end{array}
$$

## Rearrange ideal gas law for unknown P

## $P=n R T$ V

Substitute values of $n, R, T$ and $V$ and solve for $P$
$P=\frac{(2.86 \mathrm{~mol})(62.4 \mathrm{~L}-\mathrm{mmHog})(296 \mathrm{KI}}{(20.9 \mathrm{~L})}$

$$
=2.64 \times 10^{3} \mathrm{~mm} \mathrm{Hg}
$$

## Learning Check

A 5.0 L cylinder contains oxygen gas at $20.0^{\circ} \mathrm{C}$ and 735 mm Hg. How many grams of oxygen are in the cylinder?

## Solution

## Solve ideal gas equation for n (moles) <br> $$
n=\frac{P V}{R T}
$$

$=(735 \mathrm{mmHg})(5.0 \mathrm{~L})(\mathrm{mol} \mathrm{K})$
(62.4 mmHg L)(293 K)

$$
=0.20 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=6.4 \mathrm{~g} \mathrm{O}_{2}
$$

## Example

A gas can be taken from the initial state $i$ to the final state fin many different ways, usually following constant pressure curves, constant volume curves, and isotherms.
a) If the initial pressure is 1 Pa , and the initial volume is $1 \mathrm{~m}^{3}$, how many moles are there in the gas?
b) If the final volume is $1.1 \mathrm{~m}^{3}$, what is the final pressure?
c) What is the path from $i$ to $f$ where the gas does minimum work?
d) What is the temperature at intermediate
 points $A, B$ ?
e) If the system is taken to the final state through the 310 K isotherm, and then back to the original state through point B, what is the total heat added to the system?

## Some ideas.....

## Types of Problems

## $\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$

Given initial conditions, determine final conditions; Cancel out what is constant

- Make Substitution into

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\operatorname{moles}(n)=\frac{\text { mass, } g}{\text { MolarMass, } g / \text { mole }}
$$

$$
\text { Density }=\frac{\text { mass }}{\text { Volume }}
$$

## S.I.... <br> Molecular Mass

To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass scale has been established.

$$
1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}
$$

The unit is called the atomic mass unit The atomic mass is given in atomic mass units. For example, a Li atom has a mass of 6.941u.


## S.I....

## The Mole

- The amount of gas in a given volume is conveniently expressed
- in terms of the number of moles
- One mole of any substance is that amount of the substance that contains
Avogadro's number of constituent particles
- Avogadro's number $N_{A}=6.022 \times 10^{23}$
- The constituent particles can be atoms or molecules


## Moles, cont

- The number of moles can be determined from the mass of the substance:


## $n=m / M$

- $M$ is the molar mass of the substance
- Can be obtained from the periodic table
- Is the atomic mass expressed in grams/mole
- Example: He has mass of 4.00 u so $\mathrm{M}=4.00 \mathrm{~g} / \mathrm{mol}$
- $m$ is the mass of the sample
- $n$ is the number of moles


## the Mole, and Avogadro's Number

One mole of a substance contains as many particles as there are atoms in 12 grams of the isotope cabron-12.

$$
N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}
$$

The number of moles can also be determined from the number of atoms
 of the substance:

number of moles
number of atoms
the Mole, and Avogadro's Number
$n=\frac{m_{\text {particle }} N}{m_{\text {particle }} N_{A}}=\frac{m}{\text { Mass per mole }}$
The mass per mole (in $\mathrm{g} / \mathrm{mol}$ ) of a substance has the same numerical value as the atomic or molecular mass of the substance (in u ).

For example Hydrogen has an atomic mass of $1.00794 \mathrm{~g} / \mathrm{mol}$, while the mass of a single hydrogen atom is 1.00794 u .


## Avogadro's number

- An Avogadro's number of standard soft drink cans would cover the surface of the earth to a depth of over 200 miles.
- If you had Avogadro's number of unpopped popcorn kernels, and spread them across the Arabic world , it would be covered in popcorn to a depth of over 9 miles.
- If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.


## the Mole, and Avogadro's

 Number
## Example : The Hope Diamond and the Rosser Reeves Ruby

The Hope diamond (44.5 carats) is almost pure carbon. The Rosser Reeves ruby ( 138 carats) is primarily aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. One carat is equivalent to a mass of 0.200 g . Determine (a) the number of carbon atoms in the Hope diamond and (b) the number of $\mathrm{Al}_{2} \mathrm{O}_{3}$ molecules in the ruby.

## Solution:

(a)

$$
\begin{aligned}
& n=\frac{m}{\text { Mass per mole }}=\frac{(44.5 \text { carats })[(0.200 \mathrm{~g})(1 \text { carat })]}{12.011 \mathrm{~g} / \mathrm{mol}}=0.741 \mathrm{~mol} \\
& N=n N_{A}=(0.741 \mathrm{~mol})\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=4.46 \times 10^{23} \text { atoms }
\end{aligned}
$$

(b) $n=\frac{m}{\text { Mass per mole }}=\frac{(138 \text { carats })[(0.200 \mathrm{~g}) /(1 \text { carat })]}{\underbrace{101.96}_{2(26.98)+3(15.99)} \mathrm{g} / \mathrm{mol}}=0.271 \mathrm{~mol}$

$$
N=n N_{A}=(0.271 \mathrm{~mol})\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)=1.63 \times 10^{23} \text { atoms }
$$

## Converting Units of Pressure

Problem: A physicist collects a sample of carbon dioxide from the decomposition of limestone $\left(\mathrm{CaCO}_{3}\right)$ in a closed end manometer, the height of the mercury is 341.6 mm Hg . Calculate the $\mathrm{CO}_{2}$ pressure in torr, atmospheres, and kilopascals.
Plan: The pressure is in mmHg , so we use the conversion factors from Table 5.2(p.178) to find the pressure in the other units.
Solution:
converting from mmHg to torr:

$$
\mathrm{P}_{\mathrm{CO} 2}(\text { torr })=341.6 \mathrm{~mm} \mathrm{Hg} \mathrm{x} \frac{1 \text { torr }}{1 \mathrm{~mm} \mathrm{Hg}}=\mathbf{3 4 1 . 6} \text { torr }
$$

converting from torr to atm:
$\mathrm{P}_{\mathrm{CO} 2}(\mathrm{~atm})=341.6$ torr $\mathrm{x} \frac{1 \mathrm{~atm}}{760 \text { torr }}=\mathbf{0 . 4 4 9 5} \mathbf{~ a t m}$
converting from atm to kPa :

$$
\mathrm{P}_{\mathrm{CO} 2}(\mathrm{kPa})=0.4495 \mathrm{~atm} \times \frac{101.325 \mathrm{kPa}}{1 \mathrm{~atm}}=45.54 \mathrm{kPa}
$$

## S.I... <br> Molar Mass of a gas

What is the molar mass of a gas if 0.250 g of the gas occupy 215 mL at 0.813 atm and $30.0^{\circ} \mathrm{C}$ ?
$n=\frac{P V}{R T}=\frac{(0.813 \mathrm{~atm})(0.215 \mathrm{~L})}{(0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{molK})(303 \mathrm{~K})}=0.00703 \mathrm{~mol}$

Molar mass $=\frac{\# \mathrm{~g}}{\# \mathrm{~mol}}=\frac{0.250 \mathrm{~g}}{0.00703 \mathrm{~mol}}=35.6 \mathrm{~g} / \mathrm{mol}$

## Density of a Gas

Calculate the density in $\mathrm{g} / \mathrm{L}$ of $\mathrm{O}_{\mathbf{2}}$ gas at STP. From STP, we know the $P$ and .

$$
P=1.00 \mathrm{~atm} \quad T=273 \mathrm{~K}
$$

Rearrange the ideal gas equation for moles/L PV = nRT

## PV = nRT

 RTV RTV$$
\frac{\mathrm{P}}{\mathrm{RT}}=\frac{\mathrm{n}}{\mathrm{~V}}
$$

Substitute

## $(1,00 \mathrm{~atm}) \mathrm{mol}-\mathrm{K}=0.0446 \mathrm{~mol} \mathrm{O}_{2} / \mathrm{L}$ (0.0821 L-atm) (273 K)

Change molés/L to g/L
$\frac{0.0446 \mathrm{~mol} \mathrm{O}_{2-}}{1 \mathrm{~L}} \times \frac{32.0 \mathrm{gO}_{2-}}{1 \mathrm{~mol} \mathrm{O}_{2}}=1.43 \mathrm{~g} / \mathrm{L}$

Therefore the density of $\mathrm{O}_{2}$ gas at STP is 1.43 grams per liter


