Thermal & Statistical Physics

Dr.Salwa Alsaleh Salwams@ksu.edu.sa fac.ksu.edu.sa/salwams

Statistica Physics

Part II

342 PHYS - Dr. S.Al Saleh

LECTURE 1

Heat and work Heat and work Heat and work Heat and work

Thermodynamic processes and entropy

- Thermodynamic cycles
- Extracting work from heat How do we define engine efficiency?
 <u>Carnot cycle</u> --- best possible

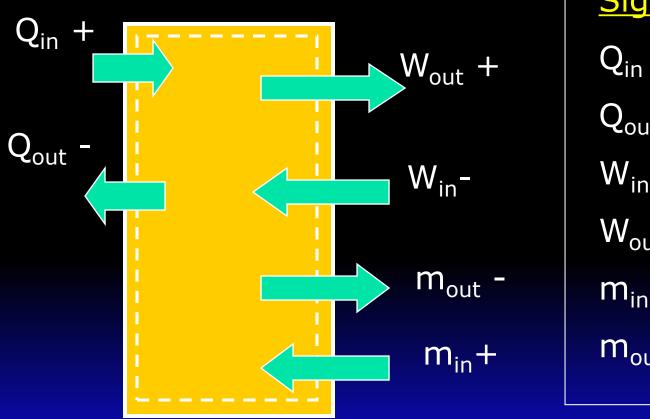
References for this Lecture: Elements Ch 2

Outline:

- Conventions for heat and work
- Work
- Heat

:Important points

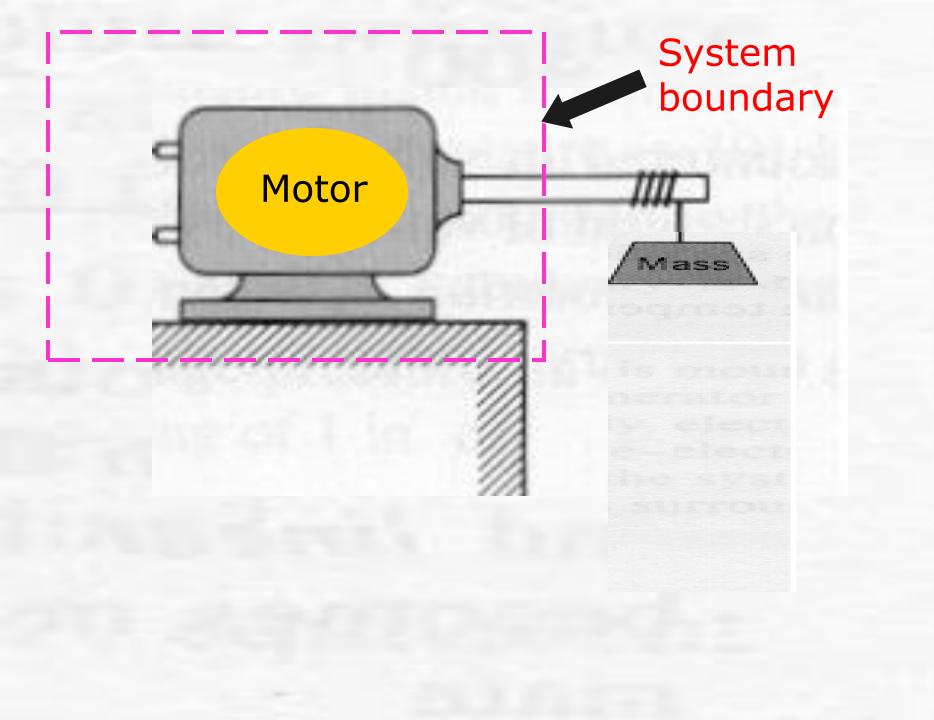
- How to determine the direction of heat and work flow
- Integral and specific case equations for heat and work
- How to compute work from property paths


Energy Transfer

Open system or control volume--

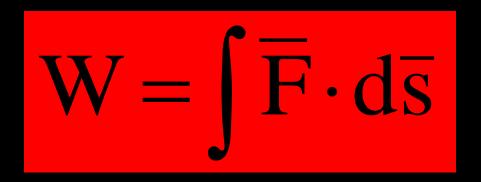
energy can be added to or taken away from the system by heat transfer, work interactions, or with the mass that flows in or out.

 Closed systems--energy transfer is only by heat and work interactions, because by definition no mass goes in or out.


Signs for heat, work and mass transfer

Sign convention Q_{in} is positive Q_{out} is negative W_{in} is negative W_{out} is positive m_{in} is positive m_{out} is negative

Work--is done by a system (on its surroundings) if the sole effect on everything external to the system could have been the raising of a weight.



W < 0 is work done on the system

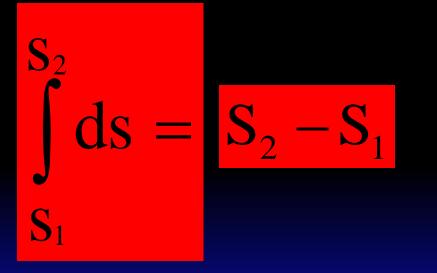
W > 0 is work done by the system

342 PHYS - Dr. S.Al Saleh

You've seen work before in mechanics. It's **defined** in terms of force and displacement

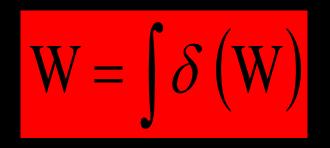
Note that F and ds are vectors....

342 PHYS - Dr. S.Al Saleh

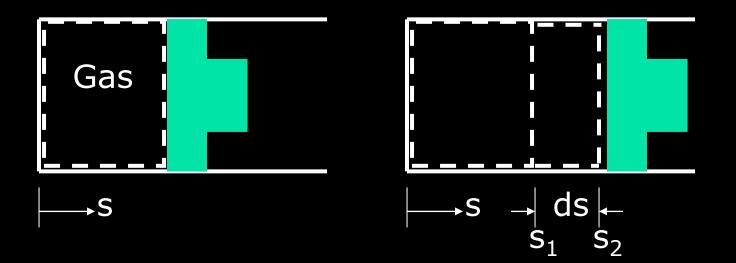

WHAT IS WORK AGAIN?

Work--an interaction between a system and its surroundings whose equivalent action can be the raising or lowering of a weight.

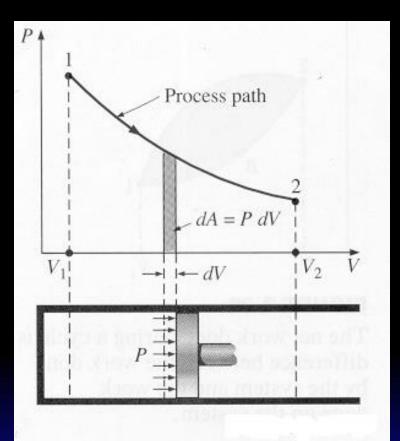
Path-dependent quantities


•Up to this point, what you've seen in calculus is primarily exact differentials

•Exact differentials are path-independent


Work is path dependent

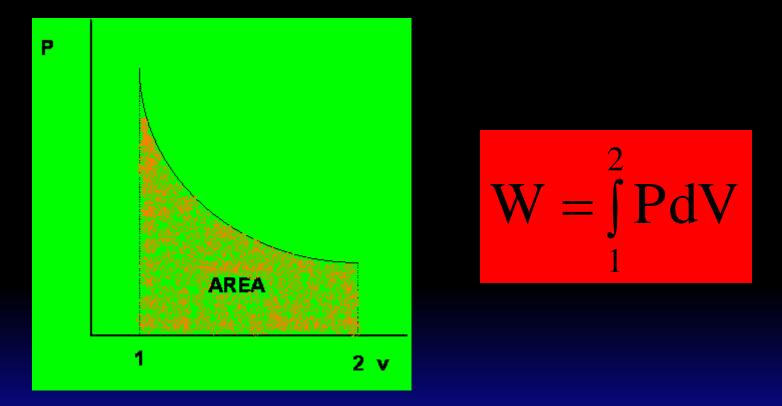
We use an inexact differential, δ , with work.


Units of WORK

- Btu or kJ
- Rate of doing work, dW/dt, has units of Btu/h, ft-lb_f/h, J/s or Watts
- Rate of doing work is called **POWER**

A differential amount of volume is given by $dV=A_{piston} \times ds$

342 PHYS - Dr. S.Al Saleh

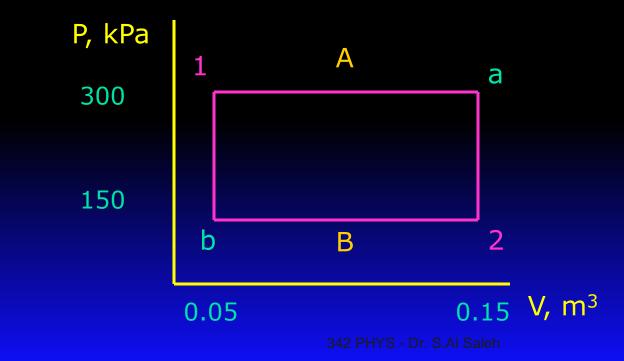

The area under the process curve on a *P*-*V* diagram represents the boundary work.

The force F on the piston is

$$F = P \times A_{\text{piston}}$$

$$W = \int_{1}^{2} \vec{F} \cdot d\vec{s} = \int_{1}^{2} Fds$$
$$F = P \times A_{piston}$$
$$W = \int Fds = \int P \times A_{piston}ds$$
$$W = \int_{1}^{2} PdV$$

What did an integral represent in calculus?



So,

if we know p = p(V), then work due to compression can be interpreted as the area under a curve in pressure - volume coordinates.

TEAMPLAY

For a piston-cylinder system, two paths are shown from point 1 to 2. Compute the work in kJ done in going by path A from 1 to a to 2 (call the work W_A) and by path B from 1 to b to 2 (call the work W_B).

Work for a closed, compressible system is given by

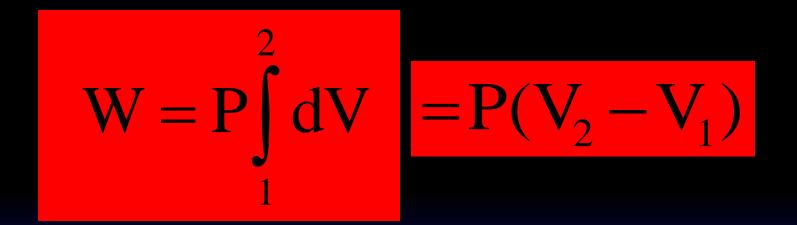
$$W = \int_{1}^{2} PdV$$

- This has a variety of names:
 - expansion work
 - PdV work
 - boundary work
 - compression work

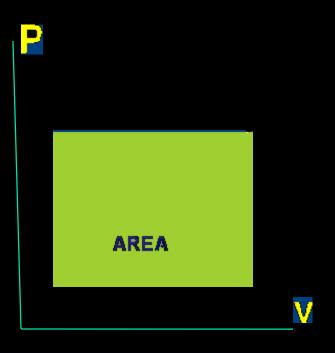
Boundary work

To integrate for work, we must know the pressure as a function of the volume

$\mathbf{P}=\mathbf{P}(\mathbf{V})$

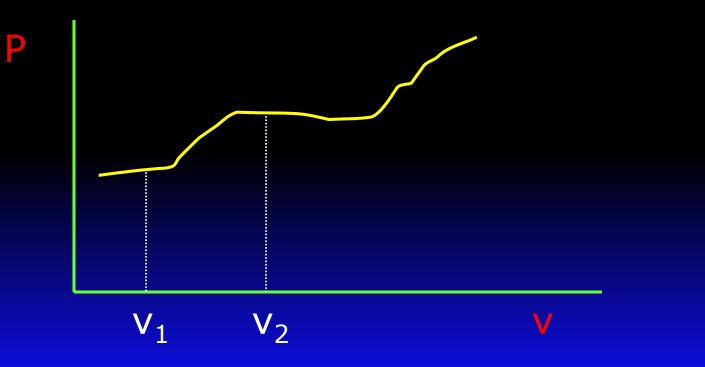

This will give us the path of the work.

Some Common P(V) Paths


- P=C , constant pressure process
- P=C/V, ideal gas, const.temp. process
- PVⁿ=C, polytropic process

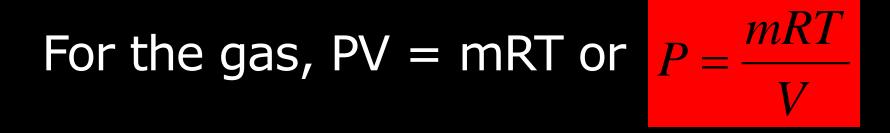
The constant pressure process is the easiest

Since P=c, it's pulled out of the integral



YOU CAN ONLY DO THIS IF THE PRESSURE IS CONSTANT DURING THE PROCESS!

TEAMPLAY


How do you find the area under the curve (work) when the pressure isn't constant? P = f(v) below?

Consider an <u>ideal gas</u> undergoing an isothermal process.

Start with the expression for work

$$W = \int_{1}^{2} p dV$$

$$W = \int_{1}^{2} P dV = \int_{1}^{2} \frac{mRT}{V} dV$$

Collecting terms and integrating yields:

$$W = mRT \int_{1}^{2} \frac{dV}{V} = mRT \ln\left[\frac{V_{2}}{V_{1}}\right]$$

Note that this result is very different from the work for a constant pressure process!

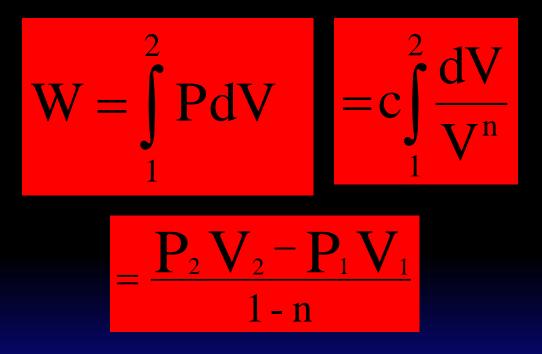
If you start at a P_1 and volume 1 and expand to a volume 2, which process will produce more work:

(a) a constant pressure or

(b) constant temperature process?

Why? Justify your answer.

Polytropic process


A frequently encountered process for gases is the polytropic process:

$\mathbf{PV}^{n} = \mathbf{c} = \mathbf{constant}$

Since this expression relates P & V, we can calculate the work for this path.

$$W = \int_{V_1}^{V_2} P dV$$

General case of boundary work for a gas which obeys the polytropic equation

Other Forms of Work

Electrical Work

$$\frac{\delta W}{dt} = -VI$$

Shaft Work

$$\frac{\delta W}{dt} = -T\omega$$

Work and heat transfer

- Work is one way a system can interact with its surroundings.
- Another way is by means of heat transfer

Heat is a form of energy transfer that occurs solely as a result of a temperature difference

$$\mathbf{Q} = f(\Delta \mathbf{T})$$

342 PHYS - Dr. S.Al Saleh

Sign convention is the opposite of that for work

• Q > 0: heat transfer to the system

Q < 0: heat transfer from the system</p>

Heat transfer is **not** a property of a system, just as work is not a property.

$$\mathbf{Q} = \int_{1}^{2} \delta \mathbf{Q} \neq \mathbf{Q}_{2} - \mathbf{Q}_{1}$$

We can't identify Q_2 (Q at state 2) or Q_1 .

Heat energy can be transferred to and from the system or transformed into another form of energy.

Heat and work summary

- They are only recognized at the boundary of a system, as they cross the boundary.
- They are associated with a process, not a state. Unlike u and h which have definite values at any state, q and w do not.
- They are both path-dependent functions.
 - A system in general does not possess heat or work.