

Dr.Salwa Alsaleh
Salwams@ksu.edu.sa
fac.ksu.edu.sa/salwams

LECTURE 5

Heat Engines

\square Thermodynamic processes and entropy
\square Thermodynamic cycles

- Extracting work from heat

How do we define engine efficiency?
Carnot cycle --- best possible

Review: Entropy in Macroscopic Systems

Traditional thermodynamic entropy, s: $\underbrace{S \equiv k \ln (\Omega) \equiv k \sigma}_{\mathrm{k}=\text { Boltzmann constant }}$

- How can we find out about S from macrostate information (p, V, T, U, N, etc.) ?
o start with expression defining temperature

$$
\frac{1}{\mathrm{kT}} \equiv\left(\frac{\partial \sigma}{\partial \mathrm{U}}\right)_{\mathrm{V}, \mathrm{~N}} \quad \text { so } \quad \frac{1}{\mathrm{~T}} \equiv\left(\frac{\partial \mathrm{~S}}{\partial \mathrm{U}}\right)_{\mathrm{V}, \mathrm{~N}}
$$

Here's the entropy change when T changes from T_{1} to T_{2}, keeping V and N fixed:

$$
d S=\frac{d U}{T}=\frac{C_{V} d T}{T} \Rightarrow \Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{V} d T}{T}
$$

o Special case: if C_{v} is constant $\Delta S=C_{V} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)$

Example: Δ S in Quasi-static
 Constant-Temperature Process

- Now suppose V \& p change but T doesn't O is $\Delta \mathrm{S}$ now zero??
- Work ($\mathrm{dW}=-\mathrm{pdV}$) is done
o heat must enter to keep T constant

$$
d S=\frac{d Q}{T}=\frac{d U-d W}{T}=\frac{d U+p d V}{T}
$$

\square Specialize to IDEAL GAS: Now if dT $=0$, then $\mathrm{dU}=0$

$$
\begin{aligned}
& d S=\frac{p d V}{T}=\frac{N k T d V}{V T}=\frac{N k d V}{V} \\
& \Delta S=\int_{V_{1}}^{V_{2}} \frac{N k d V}{V}=N k \ln \left(\frac{V_{2}}{V_{1}}\right)
\end{aligned}
$$

ACT 1: Total entropy change in isothermal processes

1. We just saw that the entropy of a gas increases during a quasi-static isothermal expansion. What happens to the entropy of the environment during this process?
a. $\Delta \mathrm{S}_{\mathrm{env}}<0$
b. $\Delta S_{\text {env }}=0$
c. $\Delta S_{\text {env }}>0$
2. Consider instead the 'free' expansion (i.e., not quasi-static) of a gas. What happens to the total entropy during this process?
a. $\Delta S_{\text {tot }}<0$
b. $\Delta \mathrm{S}_{\text {tot }}=0$

Pull out barrier
c. $\Delta S_{\text {tot }}>0$

ACT 1: Total entropy change in isothermal processes

1. We just saw that the entropy of a gas increases during a quasi-static isothermal expansion. What happens to the entropy of the environment during this process?
a. $\Delta S_{\text {env }}<0$
b. $\Delta S_{\text {env }}=0$
c. $\Delta \mathrm{S}_{\mathrm{env}}>0$

Because energy is flowing out of the environment, its entropy decreases. In fact, since the environment and gas are at the same temperature, the entropy gain of the gas exactly equals the entropy loss of the environment, so $\Delta S_{\text {tot }}=0$.
2. Consider instead the 'free' expansion (i.e., not quasi-static) of a gas. What happens to the total entropy during this process?
a. $\Delta \mathrm{S}_{\mathrm{tot}}<0$
b. $\Delta S_{\text {tot }}=0$

Pull out barrier
c. $\Delta S_{\text {tot }}>0$

ACT 1: Total entropy change in isothermal processes

1. We just saw that the entropy of a gas increases during a quasi-static isothermal expansion. What happens to the entropy of the environment during this process?
a. $\Delta S_{\text {env }}<0$
b. $\Delta \mathrm{S}_{\text {env }}=0$
C. $\Delta \mathrm{S}_{\mathrm{env}}>0$

Because energy is flowing out of the environment, its entropy decreases. In fact, since the environment and gas are at the same temperature, the entropy gain of the gas exactly equals the entropy loss of the environment, so $\Delta \mathbf{S}_{\text {tot }}=0$.
2. Consider instead the 'free' expansion (i.e., not quasi-static) of a gas. What happens to the total entropy during this process?
a. $\Delta \mathrm{S}_{\mathrm{tot}}<0$
b. $\Delta S_{\text {tot }}=0$

Pull out barrier
C. $\Delta S_{\text {tot }}>0$

In this case, there is no work at all done on the gas (so it's T doesn't change. It's entropy increases because the volume of allowed states does, but there's no change at all to the environment, since $Q=0$. Therefore $\Delta S_{\text {tot }}>0$.

Quasi-static Processes

- Let's find Δ S for "quasi-static" processes
o everything stays very close to being in equilibrium, i.e., V, T, p, etc. not changing rapidly
- Example: ADIABATIC process, i.e., no Q
o V changes as applied p changes
- In equilibrium, the system must pick V to maximize its own $\mathrm{S}: \mathrm{dS} / \mathrm{dV}=0$ (no Q)
\square WHY?
o because no other S is changing
o if, for example, it expands, GAIN in S from bigger V is exactly cancelled by LOSS in S due to reduced T .
q quasi-static adiabatic process

$$
\Delta S=0
$$

Quasi-static Heat Flow and Entropy

- In quasi-static reversible process, total S (of system plus environment) doesn't change
o So dS (of system) must cancel dS_{E} of environment
- In quasi-static reversible process, environment is at the same T (and p, if volume changes) as the system

$$
\begin{gathered}
\text { so } 0=d S+d S_{E}=d S+\frac{d U_{E}}{T}=d S-\frac{d U+d W_{b y}}{T}=d S-\frac{d Q}{T} \\
d S=\frac{\vec{d} Q}{T}
\end{gathered}
$$

for quasi-static processes of ANY type

Closed Thermodynamic Cycles

A closed cycle is one in which the system is returned to the initial state (same p, V, and 7), for example:

V
Since \mathbf{U} is a state function:
$\Delta U=0$
The net work done is the area enclosed by the cycle:

$$
W=\oint p d V
$$

First Law of Thermodynamics: $\quad Q=W$

Closed cycles will form the basis for our discussion of heat engines.

Thermodynamic processes of an α-ideal gas

 (FLT: $Q=\Delta U+W_{b y}$)\square Isochoric (constant volume)

$$
\begin{gathered}
W_{b y}=\int p d V=0 \\
\Delta U=\alpha N k \Delta T=\alpha V \Delta p \\
\text { FLT: } \quad Q=\Delta U
\end{gathered}
$$

- Isobaric (constant pressure)

$$
W_{b y}=\int p d V=p \Delta V
$$

$$
\Delta U=\alpha N k \Delta T=\alpha p \Delta V
$$

FLT: $\quad Q=\Delta U+W_{b y}=(\alpha+1) p \Delta V$

$V \quad \begin{aligned} & \text { Temperature and } \\ & \text { volume change }\end{aligned}$

From Lect. 2

$$
\text { (FLT: } Q=\Delta U+W_{b y} \text {) }
$$

\square Isothermal (constant temperature)

$$
\begin{aligned}
& \begin{array}{c}
\Delta U=0 \\
\mathrm{~W}_{\mathrm{by}}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{pdV}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \frac{\mathrm{NkT}}{\mathrm{~V}} \mathrm{dV}=\mathrm{NkT} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \\
\text { FLT: } \quad Q=W_{b y}
\end{array} \\
& \text { Volume and } \\
& \text { pressure change }
\end{aligned}
$$

\square Adiabatic (isolated - no heat input) ם(but what's constant? Stay tuned!)

$$
Q=0
$$

FLT: $\quad W_{b y}=-\Delta U=\alpha N k\left(T_{1}-T_{2}\right)$

$$
=\alpha\left(p_{1} V_{1}-p_{2} V_{2}\right)
$$

Introduction to Heat Engines

- One of the primary applications of thermodynamics is to

Turn heat into work

- The standard heat engine works on a cyclic process:

1. extract heat from a hot reservoir,
2. perform work,
3. dump excess heat into a cold reservoir (often the environment). Recycle over and over. We represent this process with a diagram:
 A "reservoir" is a large body whose temperature doesn't change when it absorbs or gives up heat

For heat engines we will define $\mathbf{Q}_{\mathrm{h}}, \mathbf{Q}_{\mathrm{c}}$ and W_{by} as positive.

ㅁ Diagram shows the energy balance: $\quad Q_{h}=Q_{c}+W_{b y}$

A simple heat engine- the Stirling Cycle

Where does the energy come from to do the work ?

Answer: We kept the reservoir at T_{h} while heat was being extracted by the engine (say as a piston does isothermal work)
E.G.

Almost boiling water

$$
T=373 \mathrm{~K}
$$

flame

Electrical energy or Chemical energy

FLT: $\Delta U=Q_{\text {tot }}-W_{\text {by }}=0$ for closed cycle:

$$
\mathbf{W}_{\mathrm{by}}=\mathbf{Q}_{\mathrm{tot}}=\mathbf{Q}_{\mathrm{h}}-\mathbf{Q}_{\mathrm{c}}
$$

Important: The energy to do work does not come from the engine. After the engine completes one cycle, it has the same energy as when it started! U is a state function. $\rightarrow \Delta \mathrm{U}=0$.

Heat engine efficiency

General picture of a heat engine: We paid for the heat input, $\mathbf{Q}_{\mathbf{H}}$.

What's the best we can do?

Second Law sets Maximum Efficiency (1)

$$
\Delta S_{t o t} \geq 0
$$

- How to calculate $\Delta S_{\text {tot }}$?

$$
\begin{gathered}
\Delta S_{t o t}=\Delta S_{\text {engine }}+\Delta S_{e n v}=\Delta \boldsymbol{S}_{e n v}=\Delta \boldsymbol{S}_{H}+\Delta \boldsymbol{S}_{C} \\
\left(\Delta \mathrm{~S}_{\text {eng }}=0\right. \text { (cycle!), the only NET changes are in the reservoirs.) }
\end{gathered}
$$

- Remember
$0 Q_{H}$ is total heat taken from the environment at T_{H}
o Q_{C} is total heat added to the environment at T_{C}

$$
\begin{array}{r}
\text { Second Law } \\
0 \leq \Delta S_{\text {tot }}=\Delta S_{H}+\Delta S_{C}=-\frac{Q_{H}}{T_{H}}+\frac{\mid Q_{C}}{T_{C}} \Rightarrow \frac{\left|Q_{C}\right|}{Q_{H}} \geq \frac{T_{C}}{T_{H}}
\end{array}
$$

$\Delta S=\mathbf{Q} / \mathrm{T}$, from definition of T

Second Law sets Maximum Efficiency (2)

$$
\text { efficiency }=\varepsilon=\frac{W}{Q_{H}}=1-\frac{\left|Q_{C}\right|}{Q_{H}}
$$

$$
\text { but } S L T \Rightarrow \frac{\left|Q_{C}\right|}{Q_{H}} \geq \frac{T_{C}}{T_{H}}
$$

therefore $\varepsilon \leq 1-\frac{T_{C}}{T_{H}}$
This limit holds in general not just for ideal gas! E.g., for

- electrical thermopower devices with no moving parts
- rubber-band engines
- shape-memory metal pumps

When ε is less than maximum

$\Delta S_{\text {tot }}=-\frac{Q_{H}}{T_{H}}+\frac{\left|Q_{C}\right|}{T_{C}}=-\frac{Q_{H}}{T_{H}}+\frac{Q_{H}-W}{T_{C}}$
so $\quad W=Q_{H}\left(1-\frac{T_{C}}{T_{H}}\right)-T_{C} \Delta S_{\text {tot }}$

$$
\varepsilon \equiv \frac{W}{Q_{H}}=\left(1-\frac{T_{C}}{T_{H}}\right)-\frac{T_{C} \Delta S_{\text {tot }}}{Q_{H}}
$$

This is GENERAL.
It gives
how much ε is less than the Carnot optimum.

Lesson: avoid any irreversible processes, (ones that increase $S_{\text {tot }}$).
-direct heat flow from hot to cold

- free expansion
-sliding friction

Irreversible Processes

-|rreversibility is equivalent to entropy-increasing, e.g., -free-expansion (particle flow between regions at different density) -contact between two systems with different temperatures. (heat flow between regions at different T)

Isothermal: Heat flow but no T difference.
Adiabatic: $\mathbf{Q}=\mathbf{0}$. No heat flow at all.

Reversible
Reversible Isochoric \& Isobaric: Heat flow between different T's. Irreversible (Here we assume that there are only two reservoirs.)

reversible

reversible

irreversible

irreversible

Act 2: Stirling efficiency

Will our simple Stirling engine achieve Carnot efficiency?
a) Yes
b) No

Act 2: Stirling efficiency

Will our simple Stirling enaine achieve Carnot efficiency?
a) Yes
b) No

Steps 1 and 3
(heating and cooling)
are irreversible.
Cold gas put in hot bath.
 Hot gas put in cold bath.

Supplement: Efficiency of Stirling Cycle

Area enclosed =

$$
\mathrm{W}_{\mathrm{by}}=\oint \mathrm{pdV}
$$

Total work done by the gas in the entire cycle (see Appendix):

$$
\mathrm{W}_{\mathrm{by}}=\mathrm{W}_{2}+\mathrm{W}_{4}=\mathrm{Nk}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right) \ln \frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

Heat extracted from the hot reservoir, exhausted to cold reservoir:

$$
\begin{gathered}
\mathrm{Q}_{1}+\mathrm{Q}_{2}=\alpha \mathrm{Nk}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right)+\mathrm{NkT}_{\mathrm{h}} \ln \frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}=\mathrm{Q}_{\mathrm{h}} \\
\mathrm{Q}_{3}+\mathrm{Q}_{4}=-\alpha \mathrm{Nk}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right)-\mathrm{NkT}_{\mathrm{c}} \ln \frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}=-\mathrm{Q}_{\mathrm{c}}
\end{gathered}
$$

Supplement: Efficiency of Stirling Cycle

$$
\text { Take: } \begin{aligned}
& \mathrm{V}_{\mathrm{b}}=2 \mathrm{~V}_{\mathrm{a}} \\
& \alpha=3 / 2 \quad \text { (monatomic gas) } \\
& \mathrm{T}_{\mathrm{h}}=373 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{c}}=293 \mathrm{~K} \\
& \hline
\end{aligned}
$$

Efficiency $=\varepsilon \equiv \frac{W}{Q_{H}}=\frac{\left(T_{h}-T_{c}\right) \ln \frac{V_{b}}{V_{a}}}{\frac{3}{2}\left(T_{h}-T_{c}\right)+T_{h} \ln \frac{V_{b}}{}} \quad(\ln 2=0.69)$

$$
=\frac{80(0.69)}{120+373(0.69)}=14.6 \% \quad=\frac{\text { work done }}{\text { heat supplied }}
$$

ε depends on the reservoir temperatures, volume ratio, and type of gas.

$$
\varepsilon_{\text {carnot }}=1-293 / 373=21.4 \%
$$

The Carnot Cycle

- All steps are reversible -- no thermal contact between systems at different temperatures.
\square No engine is more efficient than the Carnot engine.

ACT 3: Entropy change in heat engine

Consider a Carnot heat engine.

1. What is the sign of the entropy change of the hot reservoir during one cycle?
a. $\Delta S_{h}<0$
b. $\Delta S_{h}=0$
c. $\Delta \mathrm{S}_{\mathrm{h}}>0$

2. What is the sign of the entropy change of the cold reservoir?
a. $\Delta \mathrm{S}_{\mathrm{c}}<0$
b. $\Delta \mathrm{S}_{\mathrm{c}}=0$
c. $\Delta S_{c}>0$
3. Compare the magnitudes of the two changes.
a. $\left|\Delta \mathbf{S}_{\mathrm{c}}\right|<\left|\Delta \mathrm{S}_{\mathrm{h}}\right|$
b. $\left|\Delta S_{c}\right|=\left|\Delta S_{h}\right|$
c. $\left|\Delta S_{c}\right|>\left|\Delta S_{h}\right|$

ACT 3: Entropy change in heat engine

Consider a Carnot heat engine.

1. What is the sign of the entropy change of the hot reservoir during one cycle?
a. $\Delta S_{h}<0$
b. $\Delta \mathrm{S}_{\mathrm{h}}=0$
c. $\Delta S_{h}>0$

Because energy is flowing out of the hot reservoir, its
 entropy (the number of microstates) is decreasing.
2. What is the sign of the entropy change of the cold reservoir?
a. $\Delta \mathrm{S}_{\mathrm{c}}<0$
b. $\Delta \mathrm{S}_{\mathrm{c}}=0$
C. $\Delta S_{c}>0$

Because energy is flowing into the cold reservoir, it's entropy (number of microstates) is increasing.
3. Compare the magnitudes of the two changes.
a. $\left|\Delta \mathbf{S}_{\mathrm{c}}\right|<\left|\Delta \mathrm{S}_{\mathrm{h}}\right|$
b. $\left|\Delta \mathrm{S}_{\mathrm{c}}\right|=\left|\Delta \mathrm{S}_{\mathrm{h}}\right|$
c. $\left|\Delta \mathrm{S}_{\mathrm{c}}\right|>\left|\Delta \mathrm{S}_{\mathrm{h}}\right|$

ACT 3: Entropy change in heat engine

Consider a Carnot heat engine.

1. What is the sign of the entropy change of the hot reservoir during one cycle?
a. $\Delta S_{h}<0$
b. $\Delta \mathrm{S}_{\mathrm{h}}=\mathbf{0}$
c. $\Delta S_{h}>0$

Because energy is flowing out of the hot reservoir, its
 entropy (the number of microstates) is decreasing.
2. What is the sign of the entropy change of the cold reservoir?
a. $\Delta \mathrm{S}_{\mathrm{c}}<0$
b. $\Delta \mathrm{S}_{\mathrm{c}}=0$
C. $\Delta S_{c}>0$

Because energy is flowing into the cold reservoir, it's entropy (number of microstates) is increasing.
3. Compare the magnitudes of the two changes.
a. $\left|\Delta \mathrm{S}_{\mathrm{c}}\right|<\left|\Delta \mathrm{S}_{\mathrm{h}}\right|$
b. $\left|\Delta S_{c}\right|=\mid \Delta S_{h}$
c. $\left|\Delta S_{c}\right|>\left|\Delta S_{h}\right|$
$\Delta \mathrm{S}_{\mathrm{c}}=\mathrm{Q}_{\mathrm{c}} / \mathrm{T}_{\mathrm{c}}$
$\Delta S_{h}=Q_{h} / T_{h}$
$\Delta S_{c} / \Delta S_{h}=\left(Q_{c} / T_{c}\right) /\left(Q_{h} / T_{h}\right)=1$,
since $Q_{c} / Q_{h}=T_{c} / T_{h}$ for a Carnot cycle.

Efficiency of heat engines -- summary

For all engines $\quad \varepsilon=1-\frac{Q_{c}}{Q_{h}}$
For Carnot cycle $\quad \frac{\mathrm{Q}_{\mathrm{c}}}{\mathrm{Q}_{\mathrm{h}}}=\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{h}}}$
(best possible value)

Carnot efficiency

$$
\varepsilon=1-\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{~T}_{\mathrm{h}}}
$$

The lost energy is dumped in the cold reservoir

In practice, Carnot engines are hard/impossible to realize \rightarrow require very slow processes, and perfect insulation. When there's a net entropy increase, efficiency is reduced:

$$
\varepsilon=\left(1-\frac{T_{C}}{T_{H}}\right)-\frac{T_{C} \Delta S_{t o t}}{Q_{H}}
$$

Supplements: Gasoline and Diesel Engines

- These are not really heat engines because the input energy is via fuel injected directly into the engine, not via heat flow. There is no clear hot reservoir. However, one can still calculate work and energy input for particular gas types...

FYI: Gasoline Engine

- Find the efficiency for the gasoline engine (Otto cycle):

Let's calculate the efficiency...

FYI: Gasoline Engine

FYI: Gasoline Engine, cont.

$$
\mathcal{E}=1-\frac{\left(T_{c}-T_{d}\right)}{\left(T_{b}-T_{a}\right)}
$$

$$
\begin{aligned}
& T_{c}^{\alpha} V_{2}=T_{b}{ }^{\alpha} V_{1} \Rightarrow T_{c}=T_{b}\left(V_{1} / V_{2}\right)^{1 / \alpha} \\
& T_{d}{ }^{\alpha} V_{2}=T_{a}{ }^{\alpha} V_{1} \Rightarrow T_{d}=T_{a}\left(V_{1} / V_{2}\right)^{1 / \alpha}
\end{aligned}
$$

p

$$
\therefore \frac{\left(T_{c}-T_{d}\right)}{\left(T_{b}-T_{a}\right)}=\frac{\left(T_{b}-T_{a}\right)\left(V_{1} / V_{2}\right)^{1 / \alpha}}{\left(T_{b}-T_{a}\right)}=\left(\frac{V_{1}}{V_{2}}\right)^{1 / \alpha}=\left(\frac{V_{2}}{V_{1}}\right)^{-1 / \alpha}=\left(\frac{V_{2}}{V_{1}}\right)^{1-\gamma}
$$

$$
\varepsilon=1-\left(\frac{V_{2}}{V_{1}}\right)^{1-\gamma}
$$

$\mathrm{CR}=\mathrm{V}_{2} / \mathrm{V}_{1}=10$ (compression ratio)

$$
\gamma=1.4 \text { (diatomic gas) } \rightarrow \varepsilon=60 \%
$$

(in reality about 30%, due to friction, turbulence, etc.)

FYI: Gasoline Engine

- Why not simply use a higher compression ratio?
- V_{2} big \rightarrow huge, heavy engine
- V_{1} small \rightarrow temp. gets too high \rightarrow premature ignition \rightarrow need to use octane in gas to raise combustion temperature

Supplement: Efficiency of the Carnot cycle example calculation assumes α-ideal gas for convenience

$$
\varepsilon=1-\frac{\mathrm{Q}_{\mathrm{c}}}{\mathrm{Q}_{\mathrm{h}}}
$$

For all engines

Isothermal	$Q_{h}=W_{b y}=N k T_{h} \cdot \ln \frac{V_{b}}{V_{c}}$
processes:	$Q_{c}=-W_{o n}=N k T_{c} \cdot \ln \frac{V_{a}}{V_{d}}$

$$
\begin{array}{ll}
\text { Adiabatic processes: } \\
T^{\alpha} V=\mathrm{constant} \longrightarrow \begin{array}{l}
T_{h}^{\alpha} V_{b}=T_{c}^{\alpha} V_{a} \\
T_{h}^{\alpha} V_{c}=T_{c}^{\alpha} V_{d}
\end{array} \longrightarrow \begin{array}{l}
\frac{V_{b}}{V_{c}}=\frac{V_{a}}{V_{d}} \\
\ln \frac{V_{b}}{V_{c}}=\ln \frac{V_{a}}{V_{d}}
\end{array}
\end{array}
$$

Therefore: $\quad \frac{\mathrm{Q}_{\mathrm{c}}}{\mathrm{Q}_{\mathrm{h}}}=\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{h}}} \quad$ For Carnot cycle

$$
\varepsilon=1-\frac{T_{c}}{T_{h}} \quad \text { Carnot efficiency }
$$

For a Carnot engine working between boiling water and room temperature:

$$
\begin{aligned}
\mathcal{E} & =1-\frac{293}{373} \\
& =21.4 \%
\end{aligned}
$$

Appendix: A simple heat engine- the Stirling Cycle illustrated with an α-ideal gas

- Function: Convert heat into work using a cyclic process
\square Operation: Cycle a piston of gas between hot and cold reservoirs

\square Gas does work by expanding when hot
- Large pressure means large positive work

Room temperature $20^{\circ} \mathrm{C}$

- Gas is reset to the original volume when cold
\square Small pressure means small negative work

Appendix: Stirling Cycle: Step 1

- Isochoric process:

Start with gas container at room temperature T_{c} and volume V_{a} place container in heat bath at T_{h} and let gas warm up to T_{h}

- Heat flow: $Q_{1}=\Delta U=\alpha N k\left(T_{h}-T_{d}\right) \quad$ ($U=\alpha N k T$ for ideal $g a s$)
- This is an irreversible process. The gas will never transfer this heat back to the bath.
- Heat travels from hot to cold (Second Law)

Appendix: Stirling Cycle: Step 2

- Isothermal expansion: expand gas at constant temperature \mathbf{T}_{h}
- The gas does work on the environment

$$
\mathrm{W}_{2}=\text { Work done by gas }=\int_{\mathrm{V}_{\mathrm{a}}}^{\mathrm{V}_{\mathrm{b}}} \operatorname{pdV}=\mathrm{NkT}_{\mathrm{h}} \int_{\mathrm{V}_{\mathrm{a}}}^{\mathrm{V}_{\mathrm{b}}} \frac{\mathrm{dV}}{\mathrm{~V}}=\mathrm{NkT}_{\mathrm{h}} \ln \frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

This is a reversible process. The gas and water are at the same T.

Appendix: Stirling Cycle: Step 2 (cont'd)

\square Heat must be supplied to the gas while it expands, in order to keep it at the bath temperature, \mathbf{T}_{h}. Heat added $=\mathbf{Q}_{\mathbf{2}}$.
\square The internal energy of the gas does not change (constant T).

$$
\text { FLT: } \quad \Delta U_{2}=Q_{2}-W_{2}=0 \quad \begin{aligned}
& \text { First Law of } \\
& \text { Thermodynamics }
\end{aligned}
$$

Therefore, $\quad \mathrm{Q}_{2}=\mathrm{W}_{2}=\mathrm{NkT}_{\mathrm{h}} \ln \frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{a}}}$
\square The total heat extracted from the hot reservoir in Steps 1 and 2 is:

$$
\mathrm{Q}_{\mathrm{h}}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=\alpha \mathrm{Nk}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right)+\mathrm{NkT}_{\mathrm{h}} \ln \frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

Appendix: Stirling Cycle: Step 3

\square Isochoric process: remove the gas container from the heat bath and allow it to come to room temperature, T_{c}

- This is an irreversible process. The gas cannot re-heat spontaneously.
- Q_{3} is energy lost to the environment.

$$
\mathrm{Q}_{3}=\Delta \mathrm{U}_{3}=\alpha \operatorname{Nk}\left(\mathrm{T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right) \quad\left(\mathrm{W}_{3}=0\right)
$$

Appendix: Stirling Cycle: Step 4

\square Compress the gas to its original volume \mathbf{V} while it is in thermal contact with air at T_{c}.

Room temperature $\mathrm{T}_{\mathrm{c}}=273 \mathrm{~K}$

$$
\mathrm{W}_{4}=\int_{\mathrm{V}_{\mathrm{b}}}^{\mathrm{V}_{\mathrm{a}}} \mathrm{pdV}=\mathrm{NkT}_{\mathrm{c}} \int_{\mathrm{V}_{\mathrm{b}}}^{\mathrm{V}_{\mathrm{a}}} \frac{\mathrm{dV}}{\mathrm{~V}}=\mathrm{NkT}_{\mathrm{c}} \ln \frac{\mathrm{~V}_{\mathrm{a}}}{\mathrm{~V}_{\mathrm{b}}}=-\mathrm{NkT}_{\mathrm{c}} \ln \frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

- Negative because positive work is done on the gas.
- Q_{4} is calculated as for Q_{2}.
- This is a reversible process.

$$
\mathrm{Q}_{4}=\mathrm{W}_{4}=-\mathrm{NkT}_{\mathrm{c}} \ln \frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}
$$

Example Problem (1)

How much heat is absorbed by 3 moles of helium when it expands from $V=$ 10 liters to $V=20$ liters and the temperature is kept at a constant 350 K ? What are the initial and final pressures?

Example Problem (1)

How much heat is absorbed by 3 moles of helium when it expands from $V=$ 10 liters to $V=20$ liters and the temperature is kept at a constant 350 K ? What are the initial and final pressures?

Solution:

$$
\begin{aligned}
& Q=-W_{\text {on }} \\
& \mathrm{W}_{\mathrm{on}}=-\mathrm{nRT} \ln \left(\mathrm{~V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right) \quad \text { This was derived in lecture. } \\
& =-6048 \mathrm{~J} \\
& \mathrm{p}_{\mathrm{i}}=\mathrm{nRT} / \mathrm{V}_{\mathrm{i}}=8.72 \times 10^{5} \mathrm{~Pa} \quad \mathrm{pV}=\mathrm{nRT} \\
& \mathrm{p}_{\mathrm{f}}=\mathrm{p}_{\mathrm{i}} / 2=4.36 \times 10^{5} \mathrm{~Pa} \\
& \text { gas, isothermal means } \triangle \mathrm{U}=0 \text {. } \\
& \text { This was derived in lecture. } \\
& \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K} \\
& \mathrm{p} V=\mathrm{nRT}
\end{aligned}
$$

Where is the heat coming from? In order to keep the gas at a constant temperature, it must be put in contact with a large object having that temperature. That object is called a "heat reservoir", and it supplies heat to the gas (or absorbs heat, if necessary) in order to keep the gas temperature constant.

Example Problem 2

Suppose a mole of a diatomic gas, such as O_{2}, is compressed adiabatically so the final volume is half the initial volume. The starting state is $\mathbf{V}=1$ liter, $T=300 \mathrm{~K}$. What are the final temperature and pressure?

$$
\begin{aligned}
p_{i} V_{i}^{\gamma} & =p_{f} V_{f}^{\gamma} \\
\gamma & =\frac{7 / 2}{5 / 2}=1.4 \\
p_{f} & =p_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} \\
& =\frac{n R T_{i}}{V_{i}}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} \\
& =6.57 \times 10^{6} P a \\
T_{f} & =\frac{p_{f} V_{f}}{n R} \\
& =395 K \\
T_{i}^{\alpha} V_{i} & =T_{f}^{\alpha} V_{f} \\
T_{f} & =T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\frac{1}{\alpha}} \\
& =395 K
\end{aligned}
$$

Equation relating p,V for adiabatic process in α ideal gas
γ is the ratio of C_{p} / C_{V} for diatomic gas in this case
Solve for P_{f} from first equation
Substitute for p_{i}

Use ideal gas law to calculate final temperature
OR use the equation relating T,V for an adiabatic process to get the final temperature ($\alpha=5 / 2$ for diatomic gas)

Solve for T_{f}

