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Heat Engines

Thermodynamic processes and entropy

Thermodynamic cycles

Extracting work from heat

How do we define engine efficiency?

Carnot cycle --- best possible

Lecture 5



Here’s the entropy 
change when T 
changes from T1 to T2, 
keeping V and N fixed:

Review: Entropy in Macroscopic Systems

Traditional thermodynamic entropy, S: kkS  )ln(
k = Boltzmann constant

How can we find out about S from macrostate information
(p, V, T, U, N, etc.) ?

o start with expression defining temperature
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Example: S in Quasi-static 
Constant-Temperature Process

Work (dW = -pdV) is done

o heat must enter to keep T constant
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T=T1Now suppose V & p change but T doesn’t

o is S now zero??
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Specialize to IDEAL GAS: Now if dT = 0, then dU = 0



ACT 1:  Total entropy change in isothermal processes

1. We just saw that the entropy of a gas increases during a 

quasi-static isothermal expansion.  What happens to the 

entropy of the environment during this process?

a. Senv < 0               b. Senv = 0             c. Senv > 0

2. Consider instead the ‘free’ expansion (i.e., not quasi-static) of 

a gas.  What happens to the total entropy during this process?

a. Stot < 0              

b. Stot = 0             

c. Stot > 0

vacuumT
Pull out 
barrier
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ACT 1:  Total entropy change in isothermal processes

1. We just saw that the entropy of a gas increases during a 

quasi-static isothermal expansion.  What happens to the 

entropy of the environment during this process?

a. Senv < 0               b. Senv = 0             c. Senv > 0

Because energy is flowing out of the environment, its entropy decreases.

In fact, since the environment and gas are at the same temperature, the 

entropy gain of the gas exactly equals the entropy loss of the 

environment, so Stot = 0 .

2. Consider instead the ‘free’ expansion (i.e., not quasi-static) of 

a gas.  What happens to the total entropy during this process?

a. Stot < 0              

b. Stot = 0             

c. Stot > 0 In this case, there is no work at all done on the gas (so 

it’s T doesn’t change. It’s entropy increases because the 

volume of allowed states does, but there’s no change at 

all to the environment, since Q = 0. Therefore  Stot > 0 .

vacuumT
Pull out 
barrier



Example: ADIABATIC process, i.e., no Q

o V changes as applied p changes

In equilibrium, the system must pick V to
maximize its own S: dS/dV = 0 (no Q) 

WHY?

o because no other S is changing

o if, for example, it expands, GAIN in S from 
bigger V is exactly cancelled by LOSS in S 

due to reduced T.

quasi-static adiabatic process

Let’s find S for “quasi-static” processes

o everything stays very close to being in equilibrium, 
i.e., V, T, p, etc. not changing rapidly

Quasi-static Processes

system

Insulated Cylinder

p

V

1

2

TH

TC
S = 0



Quasi-static Heat Flow and Entropy

In quasi-static reversible process, total S (of system plus 
environment) doesn’t change

o So dS (of system) must cancel dSE of environment

In quasi-static reversible process, environment is at the same T 
(and p, if volume changes) as the system
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Closed Thermodynamic Cycles

First Law of Thermodynamics: WQ 

0USince U is a state function:

 dVpWThe net work done is the area

enclosed by the cycle:

V

p

1

2

3

A closed cycle is one in which the system is returned 

to the initial state (same p, V, and T), for example:

Closed cycles will form the basis for our discussion of heat engines.



Isochoric (constant volume)

Thermodynamic processes of an a-ideal gas
( FLT: Q = U + Wby )
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Isothermal (constant temperature)
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Introduction to Heat Engines

One of the primary applications of thermodynamics is to 

Turn heat into work

The standard heat engine works on a cyclic process:  

1. extract heat from a hot reservoir, 

2. perform work, 

3. dump excess heat into a cold reservoir (often the environment).

Recycle over and over.   We represent this process with a diagram:

A “reservoir” is a large 

body whose temperature 

doesn’t change when it 

absorbs or gives up heat

Wby

Hot reservoir at Th

Engine:

Qh

Cold reservoir at Tc

Qc

Diagram shows the energy balance: Qh = Qc + Wby

For heat engines we will 

define Qh , Qc and Wby as 

positive.  



A simple heat engine- the Stirling Cycle

Gas does work by 

expanding when hot

Large pressure means 

large positive work

Gas is reset to the original 

volume when cold

Small pressure means 

small negative work

Fext

V

Cold Gas

Room temperature   20°C
hot water  100°C 

V

Fext

Hot Gas

V

Tc

Th

Va Vb

1 2

3

4

Heat up Cool down



Where does the energy come from to do the work ?

FLT:   U = Qtot - Wby = 0  for closed cycle:

Wby = Qtot = Qh - Qc

Almost boiling water

T = 373 K 

Answer: We kept the reservoir at Th while heat was  being 

extracted by the engine (say as a piston does isothermal work)

V1

V2

power = IV

Electrical energy or      Chemical energy

flame

Q1, Q2

Important:  The energy to do 

work does not come from the 

engine.  After the engine 

completes one cycle, it has the 

same energy as when it started! 

U is a state function.   U = 0.

E.G.



General picture of a heat engine:

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

Wb

y

Heat engine efficiency

What’s the best we can do?

   1
by h c c

h h h

W Q - Q Q

Q Q Q
    

Define the efficiency 

cost""

work"" 


reservoirfromextractedheat

systembydonework

We paid for the heat input, QH.

Valid for all heat engines.

U = 0 for closed cycle)

Remember:  We define Qh and Qc as positive.  The arrows in 

this diagram, and signs in equations, define direction of flow.



Second Law sets  Maximum Efficiency (1)

0 totS

CHenvenvenginetot SSSSSS 

How to calculate Stot?

(Seng = 0 (cycle!),   the only NET changes are in the reservoirs.)

Remember 

o QH is total heat taken from the environment at TH

o QC is total heat added to the environment at TC

S = Q/T, from definition of T
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Second Law sets  Maximum Efficiency (2)

1
C

H H
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efficiency
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•This limit holds in general 
not just for ideal gas! E.g., for 
• electrical thermopower devices with no moving parts
• rubber-band engines
• shape-memory metal pumps
• ...
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When  is less than maximum

W

Hot reservoir at TH

Engine:

QH

Cold reservoir at TC
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This is GENERAL.
It gives
how much  is less than 
the Carnot optimum.

Lesson: avoid any irreversible processes,
(ones that increase Stot).

•direct heat flow from hot to cold
•free expansion
•sliding friction
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•Irreversibility is equivalent to entropy-increasing, e.g., 

•free-expansion 

(particle flow between regions at different density)

•contact between two systems with different temperatures. 

(heat flow between regions at different T)

Irreversible Processes

reversible reversible irreversible irreversible

V

p

V

p

V

p

isotherm

V

p

adiabat isochor isobar

Isothermal: Heat flow but no T difference.                    Reversible

Adiabatic: Q = 0.  No heat flow at all.                            Reversible

Isochoric & Isobaric: Heat flow between different T’s. Irreversible

(Here we assume that there are only two reservoirs.)



Act 2: Stirling efficiency

Will our simple Stirling engine 

achieve Carnot efficiency?

a)  Yes b)  No

V

Tc

Th

Va Vb

1 2

3

4



Act 2: Stirling efficiency

Will our simple Stirling engine achieve Carnot efficiency?

a)  Yes b)  No

Steps 1 and 3

(heating and cooling)

are irreversible.

Cold gas put in hot bath.

Hot gas put in cold bath.

V

Tc

Th

Va Vb

1 2

3

4



Total work done by the gas in the entire cycle (see Appendix):
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Supplement: Efficiency of Stirling Cycle

p

V

Tc

Th

Va Vb

1 2

3

4

Area enclosed  =

  dVpWby



( )

         ( n 2  0.69)
3

( )
2

80(0.69)
14.6%

120 373(0.69)

b
h c

a

b
h c h

a

V
T T n

V

V
T T T n

V



 

 

 


Take:   Vb =  2Va 

a = 3/2   (monatomic gas)

Th = 373K     Tc = 293K

 depends on the reservoir temperatures, 

volume ratio, and type of gas.
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 Efficiency

carnot = 1 – 293/373 = 21.4%

Supplement: Efficiency of Stirling Cycle
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The Carnot Cycle

All steps are reversible -- no thermal contact between 
systems at different temperatures.

No engine is more efficient than the Carnot engine.  
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Vb Va Vc Vd
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p

isotherms



ACT 3:  Entropy change in heat engine

Wby
QC

Qh

Th

Tc

2. What is the sign of the entropy change of the cold reservoir?

a. Sc < 0 b. Sc = 0 c. Sc > 0

3. Compare the magnitudes of the two changes.

a. |Sc| < |Sh| b. |Sc| = |Sh| c. |Sc| > |Sh| 

Consider a Carnot heat engine.

1. What is the sign of the entropy change of 

the hot reservoir during one cycle?

a. Sh < 0 b. Sh = 0 c. Sh > 0



ACT 3:  Entropy change in heat engine

Consider a Carnot heat engine.

1. What is the sign of the entropy change of 

the hot reservoir during one cycle?

a. Sh < 0               b. Sh = 0             c. Sh > 0

Wby
QC

Qh

Th

TcBecause energy is flowing out of the hot reservoir, its 

entropy (the number of microstates) is decreasing.

2. What is the sign of the entropy change of the cold reservoir?

a. Sc < 0 b. Sc = 0 c. Sc > 0

Because energy is flowing into the cold reservoir, it’s entropy (number of 

microstates) is increasing.

3. Compare the magnitudes of the two changes.

a. |Sc| < |Sh| b. |Sc| = |Sh| c. |Sc| > |Sh| 



ACT 3:  Entropy change in heat engine

Consider a Carnot heat engine.

1. What is the sign of the entropy change of 

the hot reservoir during one cycle?

a. Sh < 0               b. Sh = 0             c. Sh > 0

Wby
QC

Qh

Th

TcBecause energy is flowing out of the hot reservoir, its 

entropy (the number of microstates) is decreasing.

2. What is the sign of the entropy change of the cold reservoir?

a. Sc < 0 b. Sc = 0 c. Sc > 0

Because energy is flowing into the cold reservoir, it’s entropy (number of 

microstates) is increasing.

3. Compare the magnitudes of the two changes.

a. |Sc| < |Sh| b. |Sc| = |Sh| c. |Sc| > |Sh| 

Sc = Qc/Tc Sh = Qh/Th Sc/ Sh = (Qc/Tc)/(Qh/Th) = 1,

since Qc/Qh = Tc/Th for a Carnot cycle.



Efficiency of heat engines -- summary
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In practice, Carnot engines are hard/impossible to realize 

require very slow processes, and perfect insulation. When 

there’s a net entropy increase, efficiency is reduced:
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Supplements: 
Gasoline and Diesel Engines

• These are not really heat engines because the input 

energy is via fuel injected directly into the engine, not 

via heat flow. There is no clear hot reservoir. However, 

one can still calculate work and energy input for 

particular gas types...



FYI: Gasoline Engine

• Find the efficiency for the gasoline engine (Otto cycle):

p
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pa

V
V1 V2

Combustion

exhaust / intake

adiabats

b

a

c

d

Let’s calculate the efficiency…



FYI: Gasoline Engine
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FYI: Gasoline 
Engine, cont.
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CR = V2/V1 = 10  (compression ratio) 

 = 1.4 (diatomic gas)    = 60%

(in reality about 30%, due to friction, turbulence, etc.)



FYI: Gasoline Engine

• Why not simply use a higher compression ratio?

• V2 big  huge, heavy engine

• V1 small  temp. gets too high  premature ignition 

need to use octane in gas to raise combustion temperature
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Supplement: Efficiency of the Carnot cycle
example calculation assumes a-ideal gas for 

convenience
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Appendix: A simple heat engine- the Stirling Cycle
illustrated with an a-ideal gas

Function: Convert heat into work using a cyclic process

Operation: Cycle a piston of gas between hot and cold reservoirs

Gas does work by 

expanding when hot

Large pressure means 

large positive work

Gas is reset to the original 

volume when cold

Small pressure means small 

negative work

Fext

V

Cold Gas

Room temperature   20°Chot water  100°C 

V

Fext

Hot Gas



Appendix: Stirling Cycle:  Step 1

• Isochoric process:

Start with gas container at room temperature Tc and volume Va

place container in heat bath at Th and let gas warm up to Th

Va

p

V

Tc

Th

p = NkT / V

• Heat flow:     Q1 =  U =  aNk (Th - Tc)       (U = aNkT for ideal gas)

• This is an irreversible process.  The gas will never transfer 

this heat back to the bath.  

• Heat travels from hot to cold   (Second Law)

Q1

V1

Boiling water,  Th = 373 K 



Appendix: Stirling Cycle:  Step 2

• Isothermal expansion:  expand gas at constant temperature Th

• The gas does work on the environment

p

V

Tc

Th

Va Vb

W2 = Work done by gas = 
a

b
h

V

V

V

V

h
V

V
nNkT

V

dV
NkTpdV

b

a

b

a

 

This is a reversible process.  The gas and water are at the same T.

Boiling water,  Th = 373 K 

Va

Vb

W2

Q2



Heat must be supplied to the gas while it expands, in order 

to keep it at the bath temperature, Th.   Heat added = Q2.

The internal energy of the gas does not change (constant T).

FLT:

Appendix: Stirling Cycle:  Step 2 (cont’d)
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hch21h
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The total heat extracted from the hot reservoir 

in Steps 1 and 2 is:
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b
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V
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0222  WQU First Law of 

Thermodynamics



Appendix: Stirling Cycle:  Step 3

Isochoric process: remove the gas container from the 
heat bath and allow it to come to room temperature, Tc

V

p

Tc

Th

Va Vb

• This is an irreversible process.  The gas cannot re-heat 

spontaneously.

• Q3 is energy lost to the environment.

Room temperature   Tc = 293 K

Vb

Q3

)TT(NkUQ ch33 a (W3 = 0)



Appendix: Stirling Cycle:  Step 4

Compress the gas to its original volume V while it is in 
thermal contact with air at Tc.

V

p

Tc
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Va Vb
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b
c

b
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c

V

V

V
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c4
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V
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NkTpdVW

a

b

a

b

  

• Negative because positive work is done on the gas.

• Q4 is calculated as for Q2.

• This is a reversible process.

Room temperature    Tc = 273 K

Vb

Q4

W4
Va

Energy given to

environment

a

b
c44

V

V
nNkTWQ 



Example Problem (1)

How much heat is absorbed by 3 moles of helium when it expands from V = 
10 liters to V = 20 liters and the temperature is kept at a constant 350 K? 
What are the initial and final pressures?



Example Problem (1)

Solution:

How much heat is absorbed by 3 moles of helium when it expands from V = 
10 liters to V = 20 liters and the temperature is kept at a constant 350 K? 
What are the initial and final pressures?

Q = -Won

Won = -nRT ln(Vf/Vi)

= -6048 J

pi = nRT/Vi = 8.72105 Pa

pf = pi/2 = 4.36 105 Pa

Remember the first law.  For an ideal 
gas, isothermal means U = 0. 
Positive Q means heat flows into the gas.

This was derived in lecture.
R = 8.31 J/mole·K

pV = nRT

Where is the heat coming from?  In order to keep the gas at a 
constant temperature, it must be put in contact with a large object 
having that temperature.  That object is called a “heat reservoir”, and 
it supplies heat to the gas (or absorbs heat, if necessary) in order to 
keep the gas temperature constant.
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Example Problem 2

Suppose a mole of a diatomic gas, such as O2, is compressed adiabatically so 
the final volume is half the initial volume.  The starting state is V = 1 liter, 
T = 300 K.  What are the final temperature and pressure?

Equation relating p,V for adiabatic process in a-
ideal gas
 is the ratio of Cp/CV for diatomic gas in this case

Solve for pf from first equation

Substitute for pi

Use ideal gas law to calculate final temperature

OR use the equation relating T,V for an adiabatic 
process to get the final temperature (a = 5/2 for 
diatomic gas)

Solve for Tf


