Name ID Group

373 Final Exam June, 2013

- I) a) Let $X = \{a, b, c\}$ and $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{a, c\}, \{a\}\}$. Let $A = \{a, c\}$. Find each of the following sets: Cl(A), Int(A), Bd(A), Ext(A).
 - b) Show that $\mathcal{B} = \{\{x\} : x \in \mathbb{R}\}$ is a base for a topology on \mathbb{R} . Describe the topology.
 - c) Let $X = \{a, b, c\}$ and $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{a\}\}$. Let $A = \{a, c\}$. Find each of the following sets: $Cl_A(\{a\}), Cl_X(\{a\}), Ext_A(\{a\}), Ext_A(\{a\})$.
 - d) Let $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x+2, & x \le 0\\ 3, & x > 0 \end{cases}.$$

Is $f \mathcal{U} - \mathcal{U}$ continuous? Is $f \mathcal{U} - \mathcal{C}$ continuous? Justify your answers.

- II) a) Let (X, d) be a metric space. Show that the function $e : X \times X \to \mathbb{R}$, given by $e(x, y) = \min\{1, d(x, y)\}$ is a metric on X. Show that $\mathcal{T}(d) = \mathcal{T}(e)$.
 - b) Prove that every metric space is a Hausdorff space.
 - c) Define a topological *metrizable* space. Is every topological space metrizable? Justify your answer.
- III) a) Let X be a topological space and $A \subseteq X$. Prove that if there exists a sequence of points of A convergent to x, then $x \in \overline{A}$. Prove that the converse holds if X is metrizable.
 - b) Prove that if X is a compact metrizable space, then X is complete.
 - c) Prove that $(\mathbb{R}, \mathcal{U})$ is complete.
 - d) Is the completness a topological property? Justify your answer.
- IV) a) Let $f: X \to \mathbb{R}$ be a continuous function, defined on a compact space X. Prove that f attains its maximum and minimum on X.
 - b) Let X be a compact Hausdorff space. Prove that X is normal.
 - c) Let $f: X \to Y$ be a one-to-one, open function, from the space X onto the space Y. Prove that if B is a compact subset of Y, then $f^{-1}(B)$ is a compact subset of X.
- V) a) Prove that $f: X \to Y$ is continuous if and only if $f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}(f^{-1}(B))$.
 - b) Let \mathcal{T}_1 and \mathcal{T}_2 be topologies for a space X. Prove that the identity function from (X, \mathcal{T}_1) onto (X, \mathcal{T}_2) is open if and only if $\mathcal{T}_1 \subseteq \mathcal{T}_2$.