MATH 381
HOMEWORK 2 SOLUTIONS

Question 1 (p.86 #8). If g(z)[e* - €?¥] is harmonic, g(0) = 0,¢'(0) = 1, find g(z).
Solution. Let f(x,y) = g(x)[e* — e*]. Then

i " y y

oL =g @) -]
2

G~ o)~ ).

giyéc =0 and we require
g9"(x) +4g(x) = 0.

Thus g(z) has the form Asin(2z) + Bcos(2z) and by the initial conditions, A = 1/2 and B = 0. Therefore,

2
Since f(z,y) is harmonic, ng +

g(x) = % sin(2z).

O
Question 2 (p.86 #12). Find the harmonic conjugate of tan™? (%) where —7 < tan™! (%) <.
Solution. Write u(z,y) = tan™* (%) Then by the Cauchy-Riemann equations,
(1) ou_ v 1y v
dr  x2+y?y ax2+y2 dy
2) I e N L
oy  x2+y?y? a2+y? Oz’
By (1), .
v=3 log(z® +4%) + C(z),
and by (2)
ov x , T
v C'(z) =
Oz a2 +y? +O(@) x? + y?
so C'(z) =0 and C(z) is a constant, call it D. Therefore,
1
v(z,y) = B log(z® +y*) + D.
|

Question 3. (p.86 #13) Show, if u(z,y) and v(z,y) are harmonic functions, that « + v must be a harmonic
function but that uv need not be a harmonic function. Is e“e” a harmonic function?

Solution. If u and v are harmonic, then u + v is harmonic since

9 (u+v) . 0 (u+v) _ (82u +82v)+(82u+82v)
ox? oy? ox?  Ox? oy?  oy?
:(82u+82u)+(82v+82v):0.
ox?  0y? or?  0y?
To show that uv is not necessarily harmonic, it suffices to show that there exists u,v harmonic such that
1(82(uv) . 82(uv)) _ @@+87u@ L 0.
2\ 0x? oy? Ox 0r 0Oy Oy

# 0 will suffice. For instance, taking u = v = x will work, since it’s harmonic (both

Qu Ou
oz’ dy
of its second-order partials vanish) but

Any w = v harmonic where

oudv Oudv o
S T 120
8m8m+8y8y #0

Date: October 23, 2011.



2 MATH 381 HOMEWORK 2 SOLUTIONS

Now, in order for e¢“e” to be harmonic, we need

d*(e e’ 82(6”6“)_eu+v[((9’u 81})2+(8u 81;)]

+ + —
ox? oy? Jor O oy Oy
Thus, the existence of any u,v harmonic such that (— + %) + (% + %) # 0 will show that e“e” is not harmonic.
Again, taking u = v = x gives us what we want as e>? is easily seen to be non-harmonic. g

Question 4 (p.106 #14). State the domain of analyticity of f(z) = ¢**. Find the real and imaginary parts
u(z,y) and v(z,y) of the function, show that these satisfy the Cauchy-Riemann equations, and find f'(z) in
terms of z.

Solution. By definition, . ‘
f(z)=e"=¢e""€e"Y =€ Y[cosx +isinz].
Therefore,
u(z,y) =e Ycosx
v(z,y) =€ Ysinz.

These are continuous functions at all (z,y) € R%. Now,

ou —y . v
% = —-e smmx = 87y
ou Ov
Fy :—6 COSm——%

so u, v satisfy the C-R equations, and these derivatives are continuous for allz,y. Therefore, f(z) is entire. Further-
more, ,
f(z)=-e¥sinz+i(e ¥ cosz) =i(e Y[cosx +isinz]) = ie*”

O

Question 5 (p.106 #16). State the domain of analyticity of f(z) = e . Find the real and imaginary parts
u(z,y) and v(z,y) of the function, show that these satisfy the Cauchy-Riemann equations, and find f'(z) in
terms of z.

Solution. First, observe that f is an entire function of an entire function, so it is analytic everywhere. Now,

e e” (cos y+isin e” cos
= e (cosy Y) o y(

e cos(e” siny) + isin(e” siny)),
so
w(z,y) = e Y cos(e” siny)
v(z,y) = e Y sin(e” siny)
au 81 cosy x T . E:L. cosy T . . T .
il (e" cosy) cos(e” siny) —e (e” siny) sin(e” siny)
x
=% “V*T(cosy cos(e” siny) — siny sin(e” siny))
a EI Ccos T . . T . EI COos xr . xT
8—U =e Y(-€" siny)sin(e” siny) + e Y cos(e” siny)(e” cosy)
Y
= e U (o y cos(e” siny) — sinysin(e” siny))
8 x T
a—u =ef “Y(-e"siny) cos(e” siny) + e “*Y(e” cosy)(-sin(e” siny))
Y
= €% “V*T(cosysin(e” siny) + siny cos(e” siny))
a 57: S x . T . ew S T . T .
a—v =e® “Y(e"cosy)sin(e” siny) + e “Y(e” siny) cos(e” siny)
z

= ¢ cosye (cosysin(e” siny) + siny cos(e” siny))

and f satisfies the C-R equations. Furthermore,

F(2) = e v “((cosycos(e” siny) - sinysin(e” siny)) + i(cosysin(e” siny) + siny cos(e” siny))

e " cosy

e
e’ COby(excosy cos(e”siny) +isin(e” siny)) + e” siny(icos(e” siny) - sin(e” smy)))

cos(e” siny) + isin(e” siny))e” (cosy + isiny)

e”
=€ 6.
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Question 6 (p.106 #23).

(a) Prove the expression given in the text for the n'” derlvatlve of f(t) = &ty = Re( L ) (Note: t € R).

(b) Find similar expressions for the n'* derivative of f(t) = = Im( ) (Note: teR).

t2+1
Solution.

(a) By the Lemma, for n > 1,

(n) _ dn i ( 1)”71'
f (t) - Re( dt" t—l) R ((t Z)n+1)

Now, observe that ;= = ;757, so by the binomial theorem

(-1)"n! (D)™l +)™ (D) "nl(n+ 1)1 FrtE
(t-i)mt (2Dt (24 S (n+ 1 - k)R

But notice that we only get contributions to the real part of this expression when k is even; i.e. when i* e R.
Summing over the even integers, k = 2m, we get for n odd that

n+l

e (DI D)X 2m yne1-2m
[ = B2+ 1)t A (n+1-2m)!(2m)!

n+l
C(Dnl(n+ )& (-1t
= (t2 + 1)n+1 e (n 1 2m)'(2m)l

and for n even that

n

nl(n+1)! i gAmnrl=im
(2 + 1) = (n+1-2m)!(2m)!

()

(-D)™nl(n+ 1)1l gkynrick
(2 +1)1 A (n+1-k)E

FM@) =

(b) In this case we want

d" 1 )
din ¢

F () = Tm (

By the work above, we want the imaginary part of

In this case we get contributions when k is odd, so we take the the sum over k = 2m + 1 for m > 0. Note that
i?™+1 = (=1)™4. Tt follows that when n is odd,

(~Dal(n+ 1)1 E (<1)mgn2m

() 4y
= (t2 + 1)+t mZ::O (n-2m)!(2m + 1)!
and when 7 is even,
f(n)(t) _ n!(n + 1)' nz/:Q ( 1)mtn_2m
S22+ ) S (n-2m)!(2m+ 1))

Question 7 (p.106 #25). Let P(v) = Y2 e¥.
(a) Show that

_[sin(Nv/2)
(b) Find limy_o [P(%)].
(c) Plot |P(¢)] for 0<4 <2 and N =3.
Solution.
(a) Note that
iNY

P(y)=+=*
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Thus,
eNv 1
P() = v _1
eiNU/2 [ GiNY[2 _ ~iNY[2
T Teivg2 ( V2 _ o-it]2 )
N2 (cos(NY/2) +isin(Nip/2) - cos(~N1p/2) — isin(~Ntp/2)
T oeiv/2 cos(1/2) +isin()/2) — cos(=1)/2) — isin(—/2)
_ e"™NY2 245in(N1p/2)
T /2 2ising)/2
Thus,
e sin(Ny/2) | [sin(Ny/2)
1Pl = e/? sing/2 | | siny/2 |

(b) By I'Hopital’s rule we get

lim sm.(N@b/Q) - lim N/ZS]H.(Nw/Q) _N
v=0 sin/2 v=0 1/2sint)/2
(¢) If you have nothing else, just plug it in Wolfram Alpha.

O

Question 8 (p.112 #17). Show that sinz — cosz = 0 has solutions only for real values of z. What are the
solutions?
Solution. In other words, for z = z + iy we want

sinx coshy + i cosxsinhy = cosx coshy — ¢sinx sinh y.
Equating the real parts and imaginary parts we require
(3) sinz coshy = cosx coshy
(4) coszsinhy = —sinzsinhy.
Suppose y # 0 and hence sinhy # 0 and coshy # 0. Then in order to have solutions, by (3), we need cosz = sinx and
by (4) we need cosz = —sinz. These equations are only satisfied for sinz = cosz = 0, but no solutions for z exists.
Therefore, if there are solutions to the original equation, we must have that y = 0.

Suppose y = 0. Then since coshO = 1 and sinh0 = 0 we simply need solutions to sinx = cosxz. Thus we have
solutions if and only if

z= % + km, keZ.
O
Question 9 (p.112 #21). Where does the function f(z) = m fail to be analytic?

Solution. Since sin z and cos z are both analytic, f(z) will fail to be analytic when \/3sin z—cos z = 0. In other words,
when we have solutions to

\/Zsin xzcoshy +icosxsinhy) = cosx coshy — isinx sinh y.
Equating the real parts and imaginary parts we require
(5) V/3sinz coshy = cosz coshy
(6) V/3coszsinhy = —sin zsinhy.

By the same argument as the previous question, there are no solutions when y # 0. Suppose y = 0. Then since
cosh0 =1 and sinh0 = 0 we simply need solutions to v/3sinz = cosz, that is to tanz = % So f(z) is not analytic

when

z:%+lm, kelZ.

Question 10 (p.112 #22). Let f(z) = sin(%).
(a) Express this function in the form w(x,y) + iv(x,y). Where in the complex plane is this function

analytic?
(b) What is the derivative of f(z)? Where in the complex plane is f'(z) analytic?

Solution.
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(a) Since sin z is entire, and < is analytic for z # 0, it follows that f(z) is analytic for z # 0.
z
1 T -1
sin(f):sin( L )
z z2 +y?

o x -y . x . -y
_Sln(l‘2+y2)COSh(1‘2+y2)+ZCOS(I2+y2)Slnh(I2+y2)

(b) For z 0,

which is analytic for all z # 0.

(]
Question 11 (p.112 #25). Show that |cos z| = \/sinh® y + cos? .
Solution.
|cos z| = |cos x coshy — i sin z sinh y|
= \/0052 x cosh? y + sin? zsinh? y
= \/0052 x(1 +sinh? y) + sin® zsinh? y
= \/0052 x +sinh? y(cos x2 + sin? z)
=v/cos? z +sinh?y
O
Question 12 (p.119 #16). Use logarithms to find solutions to e* = e**.
Solution. We want solutions to e*(*™ =1, so taking logs on both sides we get for any k € Z, z(1-1) = 2mik, so
L 27ml<f‘ _ (i+1)2mik = (- k.
1-14 2
O
Question 13 (p.119 #18). Use logarithms to find solutions to e* = (e - 1)%.
Solution. In other words, we want solutions to e?* — 3¢ + 1 = 0. By the quadratic formula, we get that
so3xVA-9 3 V5
- 2 20 27
Taking logs gives that
z =log §:{:£ + 2mik
2 2
for k € Z. d

Question 14 (p.119 #21). Use logarithms to find solutions to e® = 1.

Solution. First, taking logs we get e” = 2mik for k € Z. Now for k > 0, the argument of 2mik is 5 +2mm where m € Z,
and for k£ < 0, the argument of 27ik is 37" + 2mm (again m € Z). Thus, for k > 0,

z =log(2mk) +1 (g + 2m7r)

and for k<0,
z =log(2mk) +i (% + 2m7r) .

Question 15 (p.119 #23). Show that
Re (log(1 + ew)) =log ‘2005 (g)‘

where 0 € R and e # —1.
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Solution.

Re (log(l + ew)) = log|1 +e"

= %log((l +cos0)? +sin® 9)

1
=5 log(2 + 2cosf)

= 110g(2(:os2 (g) +2sin® (Q) +2cos” (Q) — 2sin® (g))
2 2 2 2 2

0
= log [2cos 2
og |2 cos ( 3 )|
(]
Question 16 (p.170 #9). Intergrate
-1 1
f —dz
1 z
along |z| = 1, in the lower half plane.
Solution. Let z = e, then we are integrating along the interval ¢ € [0, -7]. Now, dz = ie’*dt so
-1 -7 .
f ldz = f Lie’tdt = —iT.
1z o el
O

Question 17 (p.170 #11). Show that x = 2cost,y = sint, where ¢ ranges from 0 to 27, yields a parametric

representation of the ellipse %2 +y? = 1. Use this representation to evaluate f; zZdz along the portion of the
ellipse in the first quadrant.

Solution. Note that
2cost)?
& +sin’t =cos?t +sin’t=1

and furthermore 2cos0 = 2cos27 = 2 and sin0 = sin 27 = 0. To see that we get all of the ellipse, note that x = 2cost
has solutions ¢ € [0,27] for all z € [-2,2] and y = sint has solutions t € [0,27] for all y € [-1,1]. Furthermore, the
parametrization is 1:1 except for when = =2,y = 0.

Setting z = x + iy = 2cost + isint, we get dz = (icost — 2sint)dt, and

/ Zdz:/5(2cost—isint)(icost—QSint)dt
2 0
:f§(21—3sintcost)dt
0
:—5+’L'7T.
g

Question 18 (p.170 #14). Consider I = f02+i ¢*’dz taken along the line x = 2y. Without actually doing the
integration, show that |I| < v/5e.

Solution. Let M be the maximal value attained by 622 along the path of integration. Now, for = = 2y,

22

2 2 :
-y +2ix
e’ |=1le" Y Y

342
ey

which attains its maximum when y attains a maximum-—that is, when z = 2+4. Therefore M = e®. By the pythagorean
theorem, the length of the path is /22 + 12 = \/5, so by the ML inequality, |I| < ML = /5¢®. d

Question 19 (p.170 #16). Consider I = fil e'°82d 2 taken along the parabola y = 1 — 2. Without doing the
integration, show that |I| < 1.479¢™/2.

Solution. Letting 0 = arg z

ilogz
e g

ei(log\zkzﬂ) ‘

i1 o|_ o
= [etogl=le ‘:e .

Along the given path, this attains a maximum when 0 = 7/2, so let M = e™/2,
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Now, we need to find the length of the path of integration. So since dy = —2zdz,

1 dy 2
L= 1 —
fo \/ +(dx)d:c

= f 1\/mdgc

< 1.0479.
The ML inequality then gives the desired result. g
Question 20 (p.180 #2). Is the Cauchy-Goursat theorem directly applicable to ¢IZI:1 2 dz?
Solution. Since % is analytic everywhere except for z = —2¢ which is not in the unit circle, the C-G theorem is
directly applicable. O

Question 21 (p.180 #6). Is the Cauchy-Goursat theorem directly applicable to 9§|z—i—1\=1 log zd z?

Solution. Since 0 is not in the unit circle about i + 1, log 2 is analytic in the desired region so the C-G theorem is
directly applicable. O

Question 22 (p.180 #7). Is the Cauchy-Goursat theorem directly applicable to ¢IZI:1 /2 mdz?

Solution. Observe that we have a singularity when z — 1 is a primitive 8" root of unity—that is, when (z —1)* = -1.
These roots of unity lie on the unit circle, so shifting over by 1, we need to determine if the roots closest to the origin,
at z=¢e* 11 and z = ¢"™* + 1 have absolute value greater than 1/2. By geometry (right angle triangles), it can be

seen that at these points,
2 2
1 1
z| = 1-—| +|—=| >1/2
. \‘ ( ﬁ) (ﬂ) /

so the C-G theorem directly applies. O

Question 23 (p.180 #9). Is the Cauchy-Goursat theorem directly applicable to

1
—d
§\£z\:b 22+bz+1 5

Solution. In this case the singularities are at the roots of the equation 2 + bx + 1, that is, when

N S BN
) 2

where 0 <b< 1?7

Here,

therefore C-G applies directly. a
Question 24 (p.180 #13). Prove that

27
f ecose( sin(sin 6 + ) )d6 = 0.
0

Begin with¢ e*dz performed around |z| = 1. Use the parametric representation z = €, 0 < 6 < 2. Separate
your equation into real and imaginary parts.

0

Solution. Let z = ¢'® = cos0 +isin®, so dz = e?idf. Since e is analytic,

z 2 cos@+isin@ 0
% e’dz = / e e idf = 0.
|z|=1 0

2 cos 0+i(sin 0+6) _ 2 cos 6 . L .. - _
e df = €“”"(cos(f +sinf) +isin(f + sinh))do = 0
0 0

But then

so by equating the imaginary part with zero we get the desired result. (]



