
MATH 381

HOMEWORK 2 SOLUTIONS

Question 1 (p.86 #8). If g(x)[e2y − e2y] is harmonic, g(0) = 0, g′(0) = 1, find g(x).
Solution. Let f(x, y) = g(x)[e2y − e2y]. Then

∂2f

∂x2
= g′′(x)[e2y − e2y]

∂2f

∂y2
= 4g(x)[e2y − e2y].

Since f(x, y) is harmonic, ∂2f
∂x2 + ∂2f

∂y2 = 0 and we require

g′′(x) + 4g(x) = 0.
Thus g(x) has the form A sin(2x) +B cos(2x) and by the initial conditions, A = 1�2 and B = 0. Therefore,

g(x) = 1

2
sin(2x).

�

Question 2 (p.86 #12). Find the harmonic conjugate of tan−1 �xy � where −π < tan−1 �xy � ≤ π.
Solution. Write u(x, y) = tan−1 �xy �. Then by the Cauchy-Riemann equations,

∂u

∂x
= y2

x2 + y2

1

y
= y

x2 + y2
= ∂v

∂y
(1)

−∂u
∂y
= − y2

x2 + y2

−x
y2
= x

x2 + y2
= ∂v

∂x
.(2)

By (1),

v = 1

2
log(x2 + y2) +C(x),

and by (2)
∂v

∂x
= x

x2 + y2
+C ′(x) = x

x2 + y2

so C ′(x) = 0 and C(x) is a constant, call it D. Therefore,

v(x, y) = 1

2
log(x2 + y2) +D.

�

Question 3. (p.86 #13) Show, if u(x, y) and v(x, y) are harmonic functions, that u + v must be a harmonic
function but that uv need not be a harmonic function. Is euev a harmonic function?

Solution. If u and v are harmonic, then u + v is harmonic since

∂2(u + v)
∂x2

+ ∂2(u + v)
∂y2

= �∂2u

∂x2
+ ∂2v

∂x2
� + �∂2u

∂y2
+ ∂2v

∂y2
�

= �∂2u

∂x2
+ ∂2u

∂y2
� + �∂2v

∂x2
+ ∂2v

∂y2
� = 0.

To show that uv is not necessarily harmonic, it suffices to show that there exists u, v harmonic such that

1

2
�∂2(uv)

∂x2
+ ∂2(uv)

∂y2
� = ∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
≠ 0.

Any u = v harmonic where ∂u
∂x ,

∂u
∂y ≠ 0 will suffice. For instance, taking u = v = x will work, since it’s harmonic (both

of its second-order partials vanish) but
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
= 12 ≠ 0.

Date: October 23, 2011.

1
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Now, in order for euev to be harmonic, we need

∂2(euev)
∂x2

+ ∂2(euev)
∂y2

= eu+v ��∂u
∂x
+ ∂v

∂x
�2 + �∂u

∂y
+ ∂v

∂y
�2� = 0.

Thus, the existence of any u, v harmonic such that � ∂u∂x + ∂v
∂x
�2 + �∂u∂y + ∂v

∂y �2 ≠ 0 will show that euev is not harmonic.

Again, taking u = v = x gives us what we want as e2x is easily seen to be non-harmonic. �

Question 4 (p.106 #14). State the domain of analyticity of f(z) = eiz. Find the real and imaginary parts
u(x, y) and v(x, y) of the function, show that these satisfy the Cauchy-Riemann equations, and find f ′(z) in
terms of z.

Solution. By definition,
f(z) = eiz = eixe−y = e−y[cosx + i sinx].

Therefore,

u(x, y) = e−y cosx
v(x, y) = e−y sinx.

These are continuous functions at all (x, y) ∈ R2. Now,

∂u

∂x
= −e−y sinx = ∂v

∂y
∂u

∂y
= −e−y cosx = −∂v

∂x

so u, v satisfy the C-R equations, and these derivatives are continuous for allx, y. Therefore, f(z) is entire. Further-
more,

f ′(z) = −e−y sinx + i(e−y cosx) = i(e−y[cosx + i sinx]) = ieiz.
�

Question 5 (p.106 #16). State the domain of analyticity of f(z) = eez . Find the real and imaginary parts
u(x, y) and v(x, y) of the function, show that these satisfy the Cauchy-Riemann equations, and find f ′(z) in
terms of z.

Solution. First, observe that f is an entire function of an entire function, so it is analytic everywhere. Now,

ee
z = eex(cosy+i siny) = eex cosy� cos(ex sin y) + i sin(ex sin y)�,

so

u(x, y) = eex cosy cos(ex sin y)
v(x, y) = eex cosy sin(ex sin y)

∂u

∂x
= eex cosy(ex cos y) cos(ex sin y) − eex cosy(ex sin y) sin(ex sin y)
= eex cosy+x(cos y cos(ex sin y) − sin y sin(ex sin y))

∂v

∂y
= eex cosy(−ex sin y) sin(ex sin y) + eex cosy cos(ex sin y)(ex cos y)
= eex cosy+x(cos y cos(ex sin y) − sin y sin(ex sin y))

∂u

∂y
= eex cosy(−ex sin y) cos(ex sin y) + eex cosy(ex cos y)(− sin(ex sin y))
= −eex cosy+x(cos y sin(ex sin y) + sin y cos(ex sin y))

∂v

∂x
= eex cosy(ex cos y) sin(ex sin y) + eex cosy(ex sin y) cos(ex sin y)
= eex cosy+x(cos y sin(ex sin y) + sin y cos(ex sin y))

and f satisfies the C-R equations. Furthermore,

f ′(z) = eex cosyex�(cos y cos(ex sin y) − sin y sin(ex sin y)) + i(cos y sin(ex sin y) + sin y cos(ex sin y)�
= eex cosy�ex cos y� cos(ex sin y) + i sin(ex sin y)� + ex sin y�i cos(ex sin y) − sin(ex sin y)��
= eex cosy� cos(ex sin y) + i sin(ex sin y)�ex(cos y + i sin y)
= eezez.

�
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Question 6 (p.106 #23).

(a) Prove the expression given in the text for the nth derivative of f(t) = t
t2+1 = Re � 1

t−i�. (Note: t ∈ R).
(b) Find similar expressions for the nth derivative of f(t) = 1

t2+1 = Im � 1
t−i�.(Note: t ∈ R ).

Solution.

(a) By the Lemma, for n ≥ 1,
f (n)(t) = Re�dn

dtn
1

t − i� = Re� (−1)nn!(t − i)n+1 �
Now, observe that 1

t−i = t+i
t2+1 , so by the binomial theorem

(−1)nn!(t − i)n+1 = (−1)
nn!(t + i)n+1(t2 + 1)n+1 = (−1)nn!(n + 1)!(t2 + 1)n+1

n+1�
k=0

iktn+1−k(n + 1 − k)!k! .
But notice that we only get contributions to the real part of this expression when k is even; i.e. when ik ∈ R.
Summing over the even integers, k = 2m, we get for n odd that

f (n)(t) = (−1)nn!(n + 1)!(t2 + 1)n+1
n+1
2�

m=0
i2mtn+1−2m(n + 1 − 2m)!(2m)!

= (−1)n!(n + 1)!(t2 + 1)n+1
n+1
2�

m=0
(−1)mtn+1−2m(n + 1 − 2m)!(2m)!

and for n even that

f (n)(t) = n!(n + 1)!(t2 + 1)n+1
n
2�

m=0
i2mtn+1−2m(n + 1 − 2m)!(2m)!

(b) In this case we want

f (n)(t) = Im�dn

dtn
1

t − i� = Im� (−1)
nn!(t − i)n+1 � .

By the work above, we want the imaginary part of

(−1)nn!(n + 1)!(t2 + 1)n+1
n+1�
k=0

iktn+1−k(n + 1 − k)!k! .
In this case we get contributions when k is odd, so we take the the sum over k = 2m+ 1 for m ≥ 0. Note that
i2m+1 = (−1)mi. It follows that when n is odd,

f (n)(t) = (−1)n!(n + 1)!(t2 + 1)n+1
n−1
2�

m=0
(−1)mtn−2m(n − 2m)!(2m + 1)!

and when n is even,

f (n)(t) = n!(n + 1)!(t2 + 1)n+1
n�2�
m=0

(−1)mtn−2m(n − 2m)!(2m + 1)! .
�

Question 7 (p.106 #25). Let P (ψ) = ∑N−1
n=0 einψ.

(a) Show that

�P (ψ)� = � sin(Nψ�2)
sin(ψ�2) � .

(b) Find limψ→0 �P (ψ)�.
(c) Plot �P (ψ)� for 0 ≤ ψ ≤ 2 and N = 3.

Solution.

(a) Note that

P (ψ) = 1 − eiNψ

1 − eiψ .
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Thus,

P (ψ) = eiNψ − 1
eiψ − 1

= eiNψ�2
eiψ�2 �e

iNψ�2 − e−iNψ�2
eiψ�2 − e−iψ�2 �

= eiNψ�2
eiψ�2 �cos(Nψ�2) + i sin(Nψ�2) − cos(−Nψ�2) − i sin(−Nψ�2)

cos(ψ�2) + i sin(ψ�2) − cos(−ψ�2) − i sin(−ψ�2) �
= eiNψ�2

eiψ�2
2i sin(Nψ�2)
2i sinψ�2 .

Thus,

�P (ψ)� = �eiNψ�2
eiψ�2 � � sin(Nψ�2)

sinψ�2 � = � sin(Nψ�2)
sinψ�2 � .

(b) By l’Hopital’s rule we get

lim
ψ→0

sin(Nψ�2)
sinψ�2 = lim

ψ→0

N�2 sin(Nψ�2)
1�2 sinψ�2 = N.

(c) If you have nothing else, just plug it in Wolfram Alpha.

�

Question 8 (p.112 #17). Show that sin z − cos z = 0 has solutions only for real values of z. What are the
solutions?

Solution. In other words, for z = x + iy we want

sinx cosh y + i cosx sinh y = cosx cosh y − i sinx sinh y.
Equating the real parts and imaginary parts we require

sinx cosh y = cosx cosh y(3)

cosx sinh y = − sinx sinh y.(4)

Suppose y ≠ 0 and hence sinh y ≠ 0 and cosh y ≠ 0. Then in order to have solutions, by (3), we need cosx = sinx and
by (4) we need cosx = − sinx. These equations are only satisfied for sinx = cosx = 0, but no solutions for x exists.
Therefore, if there are solutions to the original equation, we must have that y = 0.

Suppose y = 0. Then since cosh0 = 1 and sinh0 = 0 we simply need solutions to sinx = cosx. Thus we have
solutions if and only if

z = π

4
+ kπ, k ∈ Z.

�

Question 9 (p.112 #21). Where does the function f(z) = 1√
3 sin z−cos z fail to be analytic?

Solution. Since sin z and cos z are both analytic, f(z) will fail to be analytic when
√
3 sin z−cos z = 0. In other words,

when we have solutions to �( sinx cosh y + i cosx sinh y) = cosx cosh y − i sinx sinh y.
Equating the real parts and imaginary parts we require√

3 sinx cosh y = cosx cosh y(5) √
3 cosx sinh y = − sinx sinh y.(6)

By the same argument as the previous question, there are no solutions when y ≠ 0. Suppose y = 0. Then since
cosh0 = 1 and sinh0 = 0 we simply need solutions to

√
3 sinx = cosx, that is to tanx = 1√

3
. So f(z) is not analytic

when
z = π

6
+ kπ, k ∈ Z.

�

Question 10 (p.112 #22). Let f(z) = sin � 1z �.
(a) Express this function in the form u(x, y) + iv(x, y). Where in the complex plane is this function

analytic?
(b) What is the derivative of f(z)? Where in the complex plane is f ′(z) analytic?

Solution.
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(a) Since sin z is entire, and 1
z is analytic for z ≠ 0, it follows that f(z) is analytic for z ≠ 0.

sin�1
z
� = sin� x − iy

x2 + y2
�

= sin� x

x2 + y2
� cosh� −y

x2 + y2
� + i cos� x

x2 + y2
� sinh� −y

x2 + y2
�

= sin� x

x2 + y2
� cosh� y

x2 + y2
� − i cos� x

x2 + y2
� sinh� y

x2 + y2
� .

(b) For z ≠ 0,
d

dz
sin�1

z
� = �cos 1

z
��−1

z2
�

which is analytic for all z ≠ 0.
�

Question 11 (p.112 #25). Show that �cos z� =�sinh2 y + cos2 x.
Solution.

�cos z� = �cosx cosh y − i sinx sinh y�
=�cos2 x cosh2 y + sin2 x sinh2 y

=�cos2 x(1 + sinh2 y) + sin2 x sinh2 y

=�cos2 x + sinh2 y(cosx2 + sin2 x)
=�cos2 x + sinh2 y

�

Question 12 (p.119 #16). Use logarithms to find solutions to ez = eiz.
Solution. We want solutions to ez(1−i) = 1, so taking logs on both sides we get for any k ∈ Z, z(1 − i) = 2πik, so

z = 2πik

1 − i = (i + 1)2πik2
= (i − 1)kπ.

�

Question 13 (p.119 #18). Use logarithms to find solutions to ez = (ez − 1)2.
Solution. In other words, we want solutions to e2z − 3ez + 1 = 0. By the quadratic formula, we get that

ez = 3 ±√4 − 9
2

= 3

2
±
√
5

2
.

Taking logs gives that

z = log�3
2
±
√
5

2
� + 2πik

for k ∈ Z. �

Question 14 (p.119 #21). Use logarithms to find solutions to ee
z = 1.

Solution. First, taking logs we get ez = 2πik for k ∈ Z. Now for k > 0, the argument of 2πik is π
2 + 2πm where m ∈ Z,

and for k < 0, the argument of 2πik is 3π
2 + 2πm (again m ∈ Z). Thus, for k > 0,

z = log(2πk) + i�π
2
+ 2mπ�

and for k < 0,
z = log(2πk) + i�−π

2
+ 2mπ� .

�

Question 15 (p.119 #23). Show that

Re �log(1 + eiθ)� = log �2 cos�θ
2
��

where θ ∈ R and eiθ ≠ −1.
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Solution.

Re�log(1 + eiθ)� = log �1 + eiθ�
= 1

2
log �(1 + cos θ)2 + sin2 θ�

= 1

2
log(2 + 2 cos θ)

= 1

2
log �2 cos2 �θ

2
� + 2 sin2 �θ

2
� + 2 cos2 �θ

2
� − 2 sin2 �θ

2
��

= log �2 cos�θ
2
��

�

Question 16 (p.170 #9). Intergrate

� −1
1

1

z
dz

along �z� = 1, in the lower half plane.

Solution. Let z = eit, then we are integrating along the interval t ∈ [0,−π]. Now, dz = ieitdt so
� −1

1

1

z
dz = � −π

0

1

eit
ieitdt = −iπ.

�

Question 17 (p.170 #11). Show that x = 2 cos t, y = sin t, where t ranges from 0 to 2π, yields a parametric

representation of the ellipse x2

4 + y2 = 1. Use this representation to evaluate ∫ i
2 z̄dz along the portion of the

ellipse in the first quadrant.

Solution. Note that (2 cos t)2
4

+ sin2 t = cos2 t + sin2 t = 1
and furthermore 2 cos 0 = 2 cos 2π = 2 and sin 0 = sin 2π = 0. To see that we get all of the ellipse, note that x = 2 cos t
has solutions t ∈ [0,2π] for all x ∈ [−2,2] and y = sin t has solutions t ∈ [0,2π] for all y ∈ [−1,1]. Furthermore, the
parametrization is 1:1 except for when x = 2, y = 0.

Setting z = x + iy = 2 cos t + i sin t, we get dz = (i cos t − 2 sin t)dt, and
� i

2
z̄dz = �

π
2

0
(2 cos t − i sin t)(i cos t − 2 sin t)dt

= �
π
2

0
(2i − 3 sin t cos t)dt

= −3
2
+ iπ.

�

Question 18 (p.170 #14). Consider I = ∫ 2+i
0 ez

2

dz taken along the line x = 2y. Without actually doing the

integration, show that �I � ≤√5e3.
Solution. Let M be the maximal value attained by �ez2 � along the path of integration. Now, for x = 2y,

�ez2 � = �ex2−y2+2ixy� = e3y2

which attains its maximum when y attains a maximum—that is, when z = 2+i. Therefore M = e3. By the pythagorean
theorem, the length of the path is

√
22 + 12 =√5, so by the ML inequality, �I � ≤ML =√5e3. �

Question 19 (p.170 #16). Consider I = ∫ 1
i ei log z̄dz taken along the parabola y = 1 − x2. Without doing the

integration, show that �I � ≤ 1.479eπ�2.
Solution. Letting θ = arg z

�ei log z̄ � = �ei(log�z�−iθ)�
= �ei log�z�eθ� = eθ.

Along the given path, this attains a maximum when θ = π�2, so let M = eπ�2.
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Now, we need to find the length of the path of integration. So since dy = −2xdx,
L = � 1

0

�
1 + �dy

dx
�2dx

= � 1

0

√
1 + 4x2dx

< 1.479.
The ML inequality then gives the desired result. �

Question 20 (p.180 #2). Is the Cauchy-Goursat theorem directly applicable to ��z�=1 sin z
z+2idz?

Solution. Since sinz
z+2i is analytic everywhere except for z = −2i which is not in the unit circle, the C-G theorem is

directly applicable. �

Question 21 (p.180 #6). Is the Cauchy-Goursat theorem directly applicable to ��z−i−1�=1 log zdz?
Solution. Since 0 is not in the unit circle about i + 1, log z is analytic in the desired region so the C-G theorem is
directly applicable. �

Question 22 (p.180 #7). Is the Cauchy-Goursat theorem directly applicable to ��z�=1�2 1(z−1)4+1dz?
Solution. Observe that we have a singularity when z − 1 is a primitive 8th root of unity—that is, when (z − 1)4 = −1.
These roots of unity lie on the unit circle, so shifting over by 1, we need to determine if the roots closest to the origin,
at z = eiπ3�4 + 1 and z = eiπ5�4 + 1 have absolute value greater than 1�2. By geometry (right angle triangles), it can be
seen that at these points,

�z� =
�����1 − 1√

2
�2 + � 1√

2
�2 > 1�2

so the C-G theorem directly applies. �

Question 23 (p.180 #9). Is the Cauchy-Goursat theorem directly applicable to

��z�=b
1

z2 + bz + 1dz
where 0 < b < 1?
Solution. In this case the singularities are at the roots of the equation x2 + bx + 1, that is, when

z = −b ±
√
b2 − 4

2
= −b

2
± i
√
4 − b2
2

.

Here,

�z� =
�

b2

4
+ 4 − b2

4
= 1 > b

therefore C-G applies directly. �

Question 24 (p.180 #13). Prove that

� 2π

0
ecos θ� sin(sin θ + θ)�dθ = 0.

Begin with� ezdz performed around �z� = 1. Use the parametric representation z = eiθ, 0 ≤ θ ≤ 2π. Separate
your equation into real and imaginary parts.

Solution. Let z = eiθ = cos θ + i sin θ, so dz = eiθidθ. Since ez is analytic,

��z�=1 ezdz = �
2π

0
ecosθ+i sinθeiθidθ = 0.

But then

� 2π

0
ecosθ+i(sinθ+θ)dθ = � 2π

0
ecosθ(cos(θ + sin θ) + i sin(θ + sin θ))dθ = 0

so by equating the imaginary part with zero we get the desired result. �


