MATH 381
 HOMEWORK 2 SOLUTIONS

Question $1(\mathrm{p} .86 \# 8)$. If $g(x)\left[e^{2 y}-e^{2 y}\right]$ is harmonic, $g(0)=0, g^{\prime}(0)=1$, find $g(x)$.
Solution. Let $f(x, y)=g(x)\left[e^{2 y}-e^{2 y}\right]$. Then

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=g^{\prime \prime}(x)\left[e^{2 y}-e^{2 y}\right] \\
& \frac{\partial^{2} f}{\partial y^{2}}=4 g(x)\left[e^{2 y}-e^{2 y}\right] .
\end{aligned}
$$

Since $f(x, y)$ is harmonic, $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$ and we require

$$
g^{\prime \prime}(x)+4 g(x)=0
$$

Thus $g(x)$ has the form $A \sin (2 x)+B \cos (2 x)$ and by the initial conditions, $A=1 / 2$ and $B=0$. Therefore,

$$
g(x)=\frac{1}{2} \sin (2 x)
$$

Question $2(\mathrm{p} .86 \# 12)$. Find the harmonic conjugate of $\tan ^{-1}\left(\frac{x}{y}\right)$ where $-\pi<\tan ^{-1}\left(\frac{x}{y}\right) \leq \pi$.
Solution. Write $u(x, y)=\tan ^{-1}\left(\frac{x}{y}\right)$. Then by the Cauchy-Riemann equations,

$$
\begin{gather*}
\frac{\partial u}{\partial x}=\frac{y^{2}}{x^{2}+y^{2}} \frac{1}{y}=\frac{y}{x^{2}+y^{2}}=\frac{\partial v}{\partial y} \tag{1}\\
-\frac{\partial u}{\partial y}=-\frac{y^{2}}{x^{2}+y^{2}} \frac{-x}{y^{2}}=\frac{x}{x^{2}+y^{2}}=\frac{\partial v}{\partial x} . \tag{2}
\end{gather*}
$$

By (1),

$$
v=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+C(x)
$$

and by (2)

$$
\frac{\partial v}{\partial x}=\frac{x}{x^{2}+y^{2}}+C^{\prime}(x)=\frac{x}{x^{2}+y^{2}}
$$

so $C^{\prime}(x)=0$ and $C(x)$ is a constant, call it D. Therefore,

$$
v(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+D
$$

Question 3. (p. $86 \# 13$) Show, if $u(x, y)$ and $v(x, y)$ are harmonic functions, that $u+v$ must be a harmonic function but that $u v$ need not be a harmonic function. Is $e^{u} e^{v}$ a harmonic function?
Solution. If u and v are harmonic, then $u+v$ is harmonic since

$$
\begin{aligned}
\frac{\partial^{2}(u+v)}{\partial x^{2}}+\frac{\partial^{2}(u+v)}{\partial y^{2}} & =\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial x^{2}}\right)+\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \\
& =\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)=0 .
\end{aligned}
$$

To show that $u v$ is not necessarily harmonic, it suffices to show that there exists u, v harmonic such that

$$
\frac{1}{2}\left(\frac{\partial^{2}(u v)}{\partial x^{2}}+\frac{\partial^{2}(u v)}{\partial y^{2}}\right)=\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \neq 0 .
$$

Any $u=v$ harmonic where $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \neq 0$ will suffice. For instance, taking $u=v=x$ will work, since it's harmonic (both of its second-order partials vanish) but

$$
\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=1^{2} \neq 0
$$

Date: October 23, 2011.

Now, in order for $e^{u} e^{v}$ to be harmonic, we need

$$
\frac{\partial^{2}\left(e^{u} e^{v}\right)}{\partial x^{2}}+\frac{\partial^{2}\left(e^{u} e^{v}\right)}{\partial y^{2}}=e^{u+v}\left[\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}\right)^{2}\right]=0 .
$$

Thus, the existence of any u, v harmonic such that $\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}\right)^{2} \neq 0$ will show that $e^{u} e^{v}$ is not harmonic. Again, taking $u=v=x$ gives us what we want as $e^{2 x}$ is easily seen to be non-harmonic.

Question 4 (p. $106 \# 14$). State the domain of analyticity of $f(z)=e^{i z}$. Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the function, show that these satisfy the Cauchy-Riemann equations, and find $f^{\prime}(z)$ in terms of z.

Solution. By definition,

$$
f(z)=e^{i z}=e^{i x} e^{-y}=e^{-y}[\cos x+i \sin x]
$$

Therefore,

$$
\begin{aligned}
& u(x, y)=e^{-y} \cos x \\
& v(x, y)=e^{-y} \sin x .
\end{aligned}
$$

These are continuous functions at all $(x, y) \in \mathbb{R}^{2}$. Now,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=-e^{-y} \sin x=\frac{\partial v}{\partial y} \\
& \frac{\partial u}{\partial y}=-e^{-y} \cos x=-\frac{\partial v}{\partial x}
\end{aligned}
$$

so u, v satisfy the C-R equations, and these derivatives are continuous for all x, y. Therefore, $f(z)$ is entire. Furthermore,

$$
f^{\prime}(z)=-e^{-y} \sin x+i\left(e^{-y} \cos x\right)=i\left(e^{-y}[\cos x+i \sin x]\right)=i e^{i z} .
$$

Question 5 (p. $106 \# 16$). State the domain of analyticity of $f(z)=e^{e^{z}}$. Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the function, show that these satisfy the Cauchy-Riemann equations, and find $f^{\prime}(z)$ in terms of z.

Solution. First, observe that f is an entire function of an entire function, so it is analytic everywhere. Now,

$$
e^{e^{z}}=e^{e^{x}(\cos y+i \sin y)}=e^{e^{x} \cos y}\left(\cos \left(e^{x} \sin y\right)+i \sin \left(e^{x} \sin y\right)\right),
$$

so

$$
\begin{aligned}
u(x, y) & =e^{e^{x} \cos y} \cos \left(e^{x} \sin y\right) \\
v(x, y) & =e^{e^{x} \cos y} \sin \left(e^{x} \sin y\right) \\
\frac{\partial u}{\partial x} & =e^{e^{x} \cos y}\left(e^{x} \cos y\right) \cos \left(e^{x} \sin y\right)-e^{e^{x} \cos y}\left(e^{x} \sin y\right) \sin \left(e^{x} \sin y\right) \\
& =e^{e^{x} \cos y+x}\left(\cos y \cos \left(e^{x} \sin y\right)-\sin y \sin \left(e^{x} \sin y\right)\right) \\
\frac{\partial v}{\partial y} & =e^{e^{x} \cos y}\left(-e^{x} \sin y\right) \sin \left(e^{x} \sin y\right)+e^{e^{x} \cos y} \cos \left(e^{x} \sin y\right)\left(e^{x} \cos y\right) \\
& =e^{e^{x} \cos y+x}\left(\cos y \cos \left(e^{x} \sin y\right)-\sin y \sin \left(e^{x} \sin y\right)\right) \\
\frac{\partial u}{\partial y} & =e^{e^{x} \cos y}\left(-e^{x} \sin y\right) \cos \left(e^{x} \sin y\right)+e^{e^{x} \cos y}\left(e^{x} \cos y\right)\left(-\sin \left(e^{x} \sin y\right)\right) \\
& =-e^{e^{x} \cos y+x}\left(\cos y \sin \left(e^{x} \sin y\right)+\sin y \cos \left(e^{x} \sin y\right)\right) \\
\frac{\partial v}{\partial x} & =e^{e^{x} \cos y}\left(e^{x} \cos y\right) \sin \left(e^{x} \sin y\right)+e^{e^{x} \cos y}\left(e^{x} \sin y\right) \cos \left(e^{x} \sin y\right) \\
& =e^{e^{x} \cos y+x}\left(\cos y \sin \left(e^{x} \sin y\right)+\sin y \cos \left(e^{x} \sin y\right)\right)
\end{aligned}
$$

and f satisfies the C-R equations. Furthermore,

$$
\begin{aligned}
f^{\prime}(z) & =e^{e^{x} \cos y} e^{x}\left(\left(\cos y \cos \left(e^{x} \sin y\right)-\sin y \sin \left(e^{x} \sin y\right)\right)+i\left(\cos y \sin \left(e^{x} \sin y\right)+\sin y \cos \left(e^{x} \sin y\right)\right)\right. \\
& =e^{e^{x} \cos y}\left(e^{x} \cos y\left(\cos \left(e^{x} \sin y\right)+i \sin \left(e^{x} \sin y\right)\right)+e^{x} \sin y\left(i \cos \left(e^{x} \sin y\right)-\sin \left(e^{x} \sin y\right)\right)\right) \\
& =e^{e^{x} \cos y}\left(\cos \left(e^{x} \sin y\right)+i \sin \left(e^{x} \sin y\right)\right) e^{x}(\cos y+i \sin y) \\
& =e^{e^{z}} e^{z} .
\end{aligned}
$$

Question 6 (p. $106 \# 23$).
(a) Prove the expression given in the text for the $n^{t h}$ derivative of $f(t)=\frac{t}{t^{2}+1}=\operatorname{Re}\left(\frac{1}{t-i}\right)$. (Note: $\left.t \in \mathbb{R}\right)$.
(b) Find similar expressions for the $n^{t h}$ derivative of $f(t)=\frac{1}{t^{2}+1}=\operatorname{Im}\left(\frac{1}{t-i}\right)$.(Note: $\left.t \in \mathbb{R}\right)$.

Solution.
(a) By the Lemma, for $n \geq 1$,

$$
f^{(n)}(t)=\operatorname{Re}\left(\frac{\mathbf{d}^{n}}{\mathbf{d} t^{n}} \frac{1}{t-i}\right)=\operatorname{Re}\left(\frac{(-1)^{n} n!}{(t-i)^{n+1}}\right)
$$

Now, observe that $\frac{1}{t-i}=\frac{t+i}{t^{2}+1}$, so by the binomial theorem

$$
\frac{(-1)^{n} n!}{(t-i)^{n+1}}=\frac{(-1)^{n} n!(t+i)^{n+1}}{\left(t^{2}+1\right)^{n+1}}=\frac{(-1)^{n} n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{k=0}^{n+1} \frac{i^{k} t^{n+1-k}}{(n+1-k)!k!} .
$$

But notice that we only get contributions to the real part of this expression when k is even; i.e. when $i^{k} \in \mathbb{R}$. Summing over the even integers, $k=2 m$, we get for n odd that

$$
\begin{aligned}
f^{(n)}(t) & =\frac{(-1)^{n} n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{m=0}^{\frac{n+1}{2}} \frac{i^{2 m} t^{n+1-2 m}}{(n+1-2 m)!(2 m)!} \\
& =\frac{(-1) n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{m=0}^{\frac{n+1}{2}} \frac{(-1)^{m} t^{n+1-2 m}}{(n+1-2 m)!(2 m)!}
\end{aligned}
$$

and for n even that

$$
f^{(n)}(t)=\frac{n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{m=0}^{\frac{n}{2}} \frac{i^{2 m} t^{n+1-2 m}}{(n+1-2 m)!(2 m)!}
$$

(b) In this case we want

$$
f^{(n)}(t)=\operatorname{Im}\left(\frac{\mathbf{d}^{n}}{\mathbf{d} t^{n}} \frac{1}{t-i}\right)=\operatorname{Im}\left(\frac{(-1)^{n} n!}{(t-i)^{n+1}}\right) .
$$

By the work above, we want the imaginary part of

$$
\frac{(-1)^{n} n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{k=0}^{n+1} \frac{i^{k} t^{n+1-k}}{(n+1-k)!k!} .
$$

In this case we get contributions when k is odd, so we take the the sum over $k=2 m+1$ for $m \geq 0$. Note that $i^{2 m+1}=(-1)^{m} i$. It follows that when n is odd,

$$
f^{(n)}(t)=\frac{(-1) n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{m=0}^{\frac{n-1}{2}} \frac{(-1)^{m} t^{n-2 m}}{(n-2 m)!(2 m+1)!}
$$

and when n is even,

$$
f^{(n)}(t)=\frac{n!(n+1)!}{\left(t^{2}+1\right)^{n+1}} \sum_{m=0}^{n / 2} \frac{(-1)^{m} t^{n-2 m}}{(n-2 m)!(2 m+1)!}
$$

Question 7 (p. $106 \# 25$). Let $P(\psi)=\sum_{n=0}^{N-1} e^{i n \psi}$.
(a) Show that

$$
|P(\psi)|=\left|\frac{\sin (N \psi / 2)}{\sin (\psi / 2)}\right| .
$$

(b) Find $\lim _{\psi \rightarrow 0}|P(\psi)|$.
(c) Plot $|P(\psi)|$ for $0 \leq \psi \leq 2$ and $N=3$.

Solution.
(a) Note that

$$
P(\psi)=\frac{1-e^{i N \psi}}{1-e^{i \psi}}
$$

Thus,

$$
\begin{aligned}
P(\psi) & =\frac{e^{i N \psi}-1}{e^{i \psi}-1} \\
& =\frac{e^{i N \psi / 2}}{e^{i \psi / 2}}\left(\frac{e^{i N \psi / 2}-e^{-i N \psi / 2}}{e^{i \psi / 2}-e^{-i \psi / 2}}\right) \\
& =\frac{e^{i N \psi / 2}}{e^{i \psi / 2}}\left(\frac{\cos (N \psi / 2)+i \sin (N \psi / 2)-\cos (-N \psi / 2)-i \sin (-N \psi / 2)}{\cos (\psi / 2)+i \sin (\psi / 2)-\cos (-\psi / 2)-i \sin (-\psi / 2)}\right) \\
& =\frac{e^{i N \psi / 2}}{e^{i \psi / 2}} \frac{2 i \sin (N \psi / 2)}{2 i \sin \psi / 2} .
\end{aligned}
$$

Thus,

$$
|P(\psi)|=\left|\frac{e^{i N \psi / 2}}{e^{i \psi / 2}}\right|\left|\frac{\sin (N \psi / 2)}{\sin \psi / 2}\right|=\left|\frac{\sin (N \psi / 2)}{\sin \psi / 2}\right| .
$$

(b) By l'Hopital's rule we get

$$
\lim _{\psi \rightarrow 0} \frac{\sin (N \psi / 2)}{\sin \psi / 2}=\lim _{\psi \rightarrow 0} \frac{N / 2 \sin (N \psi / 2)}{1 / 2 \sin \psi / 2}=N .
$$

(c) If you have nothing else, just plug it in Wolfram Alpha.

Question 8 (p. $112 \# 17$). Show that $\sin z-\cos z=0$ has solutions only for real values of z. What are the solutions?

Solution. In other words, for $z=x+i y$ we want

$$
\sin x \cosh y+i \cos x \sinh y=\cos x \cosh y-i \sin x \sinh y
$$

Equating the real parts and imaginary parts we require

$$
\begin{align*}
& \sin x \cosh y=\cos x \cosh y \tag{3}\\
& \cos x \sinh y=-\sin x \sinh y \tag{4}
\end{align*}
$$

Suppose $y \neq 0$ and hence $\sinh y \neq 0$ and $\cosh y \neq 0$. Then in order to have solutions, by (3), we need $\cos x=\sin x$ and by (4) we need $\cos x=-\sin x$. These equations are only satisfied for $\sin x=\cos x=0$, but no solutions for x exists. Therefore, if there are solutions to the original equation, we must have that $y=0$.

Suppose $y=0$. Then since $\cosh 0=1$ and $\sinh 0=0$ we simply need solutions to $\sin x=\cos x$. Thus we have solutions if and only if

$$
z=\frac{\pi}{4}+k \pi, \quad k \in \mathbb{Z} .
$$

Question 9 (p. $112 \# 21$). Where does the function $f(z)=\frac{1}{\sqrt{3} \sin z-\cos z}$ fail to be analytic?
Solution. Since $\sin z$ and $\cos z$ are both analytic, $f(z)$ will fail to be analytic when $\sqrt{3} \sin z-\cos z=0$. In other words, when we have solutions to

$$
\sqrt{(\sin x \cosh y+i \cos x \sinh y)=\cos x \cosh y-i \sin x \sinh y ~}
$$

Equating the real parts and imaginary parts we require

$$
\begin{align*}
& \sqrt{3} \sin x \cosh y=\cos x \cosh y \tag{5}\\
& \sqrt{3} \cos x \sinh y=-\sin x \sinh y \tag{6}
\end{align*}
$$

By the same argument as the previous question, there are no solutions when $y \neq 0$. Suppose $y=0$. Then since $\cosh 0=1$ and $\sinh 0=0$ we simply need solutions to $\sqrt{3} \sin x=\cos x$, that is to $\tan x=\frac{1}{\sqrt{3}}$. So $f(z)$ is not analytic when

$$
z=\frac{\pi}{6}+k \pi, \quad k \in \mathbb{Z}
$$

Question 10 (p. $112 \# 22$). Let $f(z)=\sin \left(\frac{1}{z}\right)$.
(a) Express this function in the form $u(x, y)+i v(x, y)$. Where in the complex plane is this function analytic?
(b) What is the derivative of $f(z)$? Where in the complex plane is $f^{\prime}(z)$ analytic?

Solution.
(a) Since $\sin z$ is entire, and $\frac{1}{z}$ is analytic for $z \neq 0$, it follows that $f(z)$ is analytic for $z \neq 0$.

$$
\begin{aligned}
\sin \left(\frac{1}{z}\right) & =\sin \left(\frac{x-i y}{x^{2}+y^{2}}\right) \\
& =\sin \left(\frac{x}{x^{2}+y^{2}}\right) \cosh \left(\frac{-y}{x^{2}+y^{2}}\right)+i \cos \left(\frac{x}{x^{2}+y^{2}}\right) \sinh \left(\frac{-y}{x^{2}+y^{2}}\right) \\
& =\sin \left(\frac{x}{x^{2}+y^{2}}\right) \cosh \left(\frac{y}{x^{2}+y^{2}}\right)-i \cos \left(\frac{x}{x^{2}+y^{2}}\right) \sinh \left(\frac{y}{x^{2}+y^{2}}\right) .
\end{aligned}
$$

(b) For $z \neq 0$,

$$
\frac{\mathbf{d}}{\mathbf{d} z} \sin \left(\frac{1}{z}\right)=\left(\cos \frac{1}{z}\right)\left(\frac{-1}{z^{2}}\right)
$$

which is analytic for all $z \neq 0$.

Question 11 (p. $112 \# 25$). Show that $|\cos z|=\sqrt{\sinh ^{2} y+\cos ^{2} x}$.
Solution.

$$
\begin{aligned}
|\cos z| & =|\cos x \cosh y-i \sin x \sinh y| \\
& =\sqrt{\cos ^{2} x \cosh ^{2} y+\sin ^{2} x \sinh ^{2} y} \\
& =\sqrt{\cos ^{2} x\left(1+\sinh ^{2} y\right)+\sin ^{2} x \sinh ^{2} y} \\
& =\sqrt{\cos ^{2} x+\sinh ^{2} y\left(\cos x^{2}+\sin ^{2} x\right)} \\
& =\sqrt{\cos ^{2} x+\sinh ^{2} y}
\end{aligned}
$$

Question 12 (p. $119 \# 16$). Use logarithms to find solutions to $e^{z}=e^{i z}$.
Solution. We want solutions to $e^{z(1-i)}=1$, so taking logs on both sides we get for any $k \in \mathbb{Z}, z(1-i)=2 \pi i k$, so

$$
z=\frac{2 \pi i k}{1-i}=\frac{(i+1) 2 \pi i k}{2}=(i-1) k \pi .
$$

Question 13 (p. $119 \# 18$). Use logarithms to find solutions to $e^{z}=\left(e^{z}-1\right)^{2}$.
Solution. In other words, we want solutions to $e^{2 z}-3 e^{z}+1=0$. By the quadratic formula, we get that

$$
e^{z}=\frac{3 \pm \sqrt{4-9}}{2}=\frac{3}{2} \pm \frac{\sqrt{5}}{2} .
$$

Taking logs gives that

$$
z=\log \left(\frac{3}{2} \pm \frac{\sqrt{5}}{2}\right)+2 \pi i k
$$

for $k \in \mathbb{Z}$.
Question 14 (p. $119 \# 21$). Use logarithms to find solutions to $e^{e^{z}}=1$.
Solution. First, taking logs we get $e^{z}=2 \pi i k$ for $k \in \mathbb{Z}$. Now for $k>0$, the argument of $2 \pi i k$ is $\frac{\pi}{2}+2 \pi m$ where $m \in \mathbb{Z}$, and for $k<0$, the argument of $2 \pi i k$ is $\frac{3 \pi}{2}+2 \pi m$ (again $m \in \mathbb{Z}$). Thus, for $k>0$,

$$
z=\log (2 \pi k)+i\left(\frac{\pi}{2}+2 m \pi\right)
$$

and for $k<0$,

$$
z=\log (2 \pi k)+i\left(\frac{-\pi}{2}+2 m \pi\right)
$$

Question 15 (p. 119 \#23). Show that

$$
\operatorname{Re}\left(\log \left(1+e^{i \theta}\right)\right)=\log \left|2 \cos \left(\frac{\theta}{2}\right)\right|
$$

where $\theta \in \mathbb{R}$ and $e^{i \theta} \neq-1$.

Solution.

$$
\begin{aligned}
\operatorname{Re}\left(\log \left(1+e^{i \theta}\right)\right) & =\log \left|1+e^{i \theta}\right| \\
& =\frac{1}{2} \log \left((1+\cos \theta)^{2}+\sin ^{2} \theta\right) \\
& =\frac{1}{2} \log (2+2 \cos \theta) \\
& =\frac{1}{2} \log \left(2 \cos ^{2}\left(\frac{\theta}{2}\right)+2 \sin ^{2}\left(\frac{\theta}{2}\right)+2 \cos ^{2}\left(\frac{\theta}{2}\right)-2 \sin ^{2}\left(\frac{\theta}{2}\right)\right) \\
& =\log \left|2 \cos \left(\frac{\theta}{2}\right)\right|
\end{aligned}
$$

Question 16 (p. $170 \# 9$). Intergrate

$$
\int_{1}^{-1} \frac{1}{z} \mathbf{d} z
$$

along $|z|=1$, in the lower half plane.
Solution. Let $z=e^{i t}$, then we are integrating along the interval $t \in[0,-\pi]$. Now, $\mathbf{d} z=i e^{i t} \mathbf{d} t$ so

$$
\int_{1}^{-1} \frac{1}{z} \mathbf{d} z=\int_{0}^{-\pi} \frac{1}{e^{i} t} i e^{i} t \mathbf{d} t=-i \pi
$$

Question 17 (p. $170 \# 11$). Show that $x=2 \cos t, y=\sin t$, where t ranges from 0 to 2π, yields a parametric representation of the ellipse $\frac{x^{2}}{4}+y^{2}=1$. Use this representation to evaluate $\int_{2}^{i} \bar{z} \mathbf{d} z$ along the portion of the ellipse in the first quadrant.

Solution. Note that

$$
\frac{(2 \cos t)^{2}}{4}+\sin ^{2} t=\cos ^{2} t+\sin ^{2} t=1
$$

and furthermore $2 \cos 0=2 \cos 2 \pi=2$ and $\sin 0=\sin 2 \pi=0$. To see that we get all of the ellipse, note that $x=2 \cos t$ has solutions $t \in[0,2 \pi]$ for all $x \in[-2,2]$ and $y=\sin t$ has solutions $t \in[0,2 \pi]$ for all $y \in[-1,1]$. Furthermore, the parametrization is $1: 1$ except for when $x=2, y=0$.

Setting $z=x+i y=2 \cos t+i \sin t$, we get $\mathbf{d} z=(i \cos t-2 \sin t) \mathbf{d} t$, and

$$
\begin{aligned}
\int_{2}^{i} \bar{z} \mathbf{d} z & =\int_{0}^{\frac{\pi}{2}}(2 \cos t-i \sin t)(i \cos t-2 \sin t) \mathbf{d} t \\
& =\int_{0}^{\frac{\pi}{2}}(2 i-3 \sin t \cos t) \mathbf{d} t \\
& =-\frac{3}{2}+i \pi
\end{aligned}
$$

Question 18 (p. $170 \# 14$). Consider $I=\int_{0}^{2+i} e^{z^{2}} \mathbf{d} z$ taken along the line $x=2 y$. Without actually doing the integration, show that $|I| \leq \sqrt{5} e^{3}$.

Solution. Let M be the maximal value attained by $\left|e^{z^{2}}\right|$ along the path of integration. Now, for $x=2 y$,

$$
\left|e^{z^{2}}\right|=\left|e^{x^{2}-y^{2}+2 i x y}\right|=e^{3 y^{2}}
$$

which attains its maximum when y attains a maximum-that is, when $z=2+i$. Therefore $M=e^{3}$. By the pythagorean theorem, the length of the path is $\sqrt{2^{2}+1^{2}}=\sqrt{5}$, so by the ML inequality, $|I| \leq M L=\sqrt{5} e^{3}$.

Question 19 (p. $170 \# 16$). Consider $I=\int_{i}^{1} e^{i \log \bar{z}} \mathbf{d} z$ taken along the parabola $y=1-x^{2}$. Without doing the integration, show that $|I| \leq 1.479 e^{\pi / 2}$.
Solution. Letting $\theta=\arg z$

$$
\begin{aligned}
\left|e^{i \log \bar{z}}\right| & =\left|e^{i(\log |z|-i \theta)}\right| \\
& =\left|e^{i \log |z|} e^{\theta}\right|=e^{\theta} .
\end{aligned}
$$

Along the given path, this attains a maximum when $\theta=\pi / 2$, so let $M=e^{\pi / 2}$.

Now, we need to find the length of the path of integration. So since $\mathbf{d} y=-2 x \mathbf{d} x$,

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+\left(\frac{\mathbf{d} y}{\mathbf{d} x}\right)^{2}} \mathbf{d} x \\
& =\int_{0}^{1} \sqrt{1+4 x^{2}} \mathbf{d} x \\
& <1.479
\end{aligned}
$$

The ML inequality then gives the desired result.
Question 20 (p. $180 \# 2$). Is the Cauchy-Goursat theorem directly applicable to $\oint_{|z|=1} \frac{\sin z}{z+2 i} \mathbf{d} z$?
Solution. Since $\frac{\sin z}{z+2 i}$ is analytic everywhere except for $z=-2 i$ which is not in the unit circle, the C-G theorem is directly applicable.

Question 21 (p. $180 \# 6$). Is the Cauchy-Goursat theorem directly applicable to $\oint_{|z-i-1|=1} \log z \mathbf{d} z$?
Solution. Since 0 is not in the unit circle about $i+1, \log z$ is analytic in the desired region so the C-G theorem is directly applicable.

Question 22 (p. $180 \# 7$). Is the Cauchy-Goursat theorem directly applicable to $\oint_{|z|=1 / 2} \frac{1}{(z-1)^{4}+1} \mathbf{d} z$?
Solution. Observe that we have a singularity when $z-1$ is a primitive $8^{\text {th }}$ root of unity-that is, when $(z-1)^{4}=-1$. These roots of unity lie on the unit circle, so shifting over by 1 , we need to determine if the roots closest to the origin, at $z=e^{i \pi 3 / 4}+1$ and $z=e^{i \pi 5 / 4}+1$ have absolute value greater than $1 / 2$. By geometry (right angle triangles), it can be seen that at these points,

$$
|z|=\sqrt{\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}>1 / 2
$$

so the C-G theorem directly applies.
Question 23 (p. $180 \# 9$). Is the Cauchy-Goursat theorem directly applicable to

$$
\oint_{|z|=b} \frac{1}{z^{2}+b z+1} \mathbf{d} z
$$

where $0<b<1$?
Solution. In this case the singularities are at the roots of the equation $x^{2}+b x+1$, that is, when

$$
z=\frac{-b \pm \sqrt{b^{2}-4}}{2}=\frac{-b}{2} \pm i \frac{\sqrt{4-b^{2}}}{2} .
$$

Here,

$$
|z|=\sqrt{\frac{b^{2}}{4}+\frac{4-b^{2}}{4}}=1>b
$$

therefore C-G applies directly.
Question 24 (p. $180 \# 13$). Prove that

$$
\int_{0}^{2 \pi} e^{\cos \theta}(\sin (\sin \theta+\theta)) \mathbf{d} \theta=0
$$

Begin with $\oint e^{z} \mathbf{d} z$ performed around $|z|=1$. Use the parametric representation $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$. Separate your equation into real and imaginary parts.
Solution. Let $z=e^{i \theta}=\cos \theta+i \sin \theta$, so $\mathbf{d} z=e^{i \theta} i \mathbf{d} \theta$. Since e^{z} is analytic,

$$
\oint_{|z|=1} e^{z} \mathbf{d} z=\int_{0}^{2 \pi} e^{\cos \theta+i \sin \theta} e^{i \theta} i \mathbf{d} \theta=0
$$

But then

$$
\int_{0}^{2 \pi} e^{\cos \theta+i(\sin \theta+\theta)} \mathbf{d} \theta=\int_{0}^{2 \pi} e^{\cos \theta}(\cos (\theta+\sin \theta)+i \sin (\theta+\sin \theta)) \mathbf{d} \theta=0
$$

so by equating the imaginary part with zero we get the desired result.

