

Fundamentals of Analytical Chemistry

Stoichiometric Calculations

Ahmad Aqel Ifseisi

Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building: 05, Office: 2A/149 & AA/53 Tel. 014674198, Fax: 014675992 Web site: http://fac.ksu.edu.sa/aifseisi E-mail: ahmad3qel@yahoo.com aifseisi@ksu.edu.sa

Amount of Substance – The Mole

The mole is the **SI** unit for the amount of a chemical substance. It is always associated with specific microscopic entities such as atoms, molecules, ions, electrons or other particles.

It is the amount of the specified substance that contains the same number of particles as the number of carbon atoms in exactly 12 grams of 12 C.

6.022×10²³ atoms

This important number is Avogadro's number:

 $N_A = 6.022 \times 10^{23}$

The definition was adopted in November 2018 as one of the seven SI base units; It is defined as exactly 6.022×10²³ constitutive particles, which may be atoms, molecules, ions or electrons.

The molar mass \mathcal{M} of a substance is the mass in grams of 1 mole of that substance.

The notions of Avogadro's number and molar mass enable us to carry out conversions between mass and moles of atoms and between moles and number of atoms

 $Moles = \frac{grams}{formula weight (g/mol)}$

Since many experiments deal with very small quantities, a more convenient form of measurement is the millimole.

 $Millimoles = \frac{milligrams}{formula weight (mg/mmol)}$

Note that...

g/mol is the same as mg/mmol

g/L is the same as mg/mL

mol/L is the same as mmol/mL

Calculate the number of moles in 500 mg Na_2WO_4 (sodium tungstate).

Solution

 \mathcal{M} of the Na₂WO₄ = 293.8 g/mol n = 1.7 x 10⁻³ mol

Example

What is the weight, in milligrams, of 0.250 mmol Fe_2O_3 (ferric oxide)?

Solution

 \mathcal{M} of the Fe₂O₃ = 159.7 g/mol mass = 39.9 mg

Sulfur (S) is a nonmetallic element that is present in coal. When coal is burned, sulfur is converted to sulfur dioxide and eventually to sulfuric acid that gives rise to the acid rain phenomenon. How many atoms are in 16.3 g of S?

Solution

1 mol S = 32.07 g S

the conversion factor is

 $\frac{1 \text{ mol S}}{32.07 \text{ g S}}$

 $1 \text{ mol} = 6.022 \text{ x} 10^{23} \text{ particles (atoms)}$

the conversion factors are $\frac{6.022 \times 10^{23} \text{ S atoms}}{1 \text{ mol S}} \text{ and } \frac{1 \text{ mol S}}{6.022 \times 10^{23} \text{ S atoms}}$ $16.3 \text{ g/S} \times \frac{1 \text{ mol S}}{32.07 \text{ g/S}} \times \frac{6.022 \times 10^{23} \text{ S atoms}}{1 \text{ mol S}} = 3.06 \times 10^{23} \text{ S atoms}$

How many hydrogen atoms are present in 25.6 g of urea $[(NH_2)_2CO]$, which is used as a fertilizer, in animal feed, and in the manufacture of polymers? The molar mass of urea is 60.06 g/mol.

Solution

$$25.6 \text{ g} (\text{NH}_2)_2 \text{CO} \times \frac{1 \text{ mol} (\text{NH}_2)_2 \text{CO}}{60.06 \text{ g} (\text{NH}_2)_2 \text{CO}} \times \frac{4 \text{ mol} \text{ H}}{1 \text{ mol} (\text{NH}_2)_2 \text{CO}} \times \frac{6.022 \times 10^{23} \text{ H} \text{ atoms}}{1 \text{ mol} \text{ H}}$$

= 1.03 x 10²⁴ H atoms

How Do We Express Concentrations of Solutions?

Solutions are **homogeneous** mixtures of two or more pure substances. In a solution; the **solute** is dispersed uniformly throughout the **solvent**.

Component 1 (solute)	Component 2 (solvent)	State of Resulting solution	Examples
Gas	Gas	Gas	Air (N ₂ , O ₂ , Ar, CO ₂)
Gas	Liquid	Liquid	Soda water (CO ₂ in water), O ₂ in water
Gas	Solid	Solid	H ₂ gas in palladium
Liquid	Liquid	Liquid	Ethanol in water
Liquid	Solid	Solid	Mercury in silver
Solid	Liquid	Liquid	Salt in water
Solid	Solid	Solid	Brass (Cu/Zn), Solder (Sn/Pb), Silver in gold

Solvent presents in the greater quantities and is used to dissolve the solute. All other substances are solutes. solutes present in smallest amount and is the substance dissolved in the solvent.

Ways of Expressing Concentration

The **concentration** of a solution is the amount of solute present in a given amount of solvent, or a given amount of solution.

The concentration of a solution can be expressed either:

- Qualitatively
- Quantitatively

The terms **dilute** and **concentrated** are used to describe a solution qualitatively (unsaturated, saturated and supersaturated solution).

Chemists use several different concentration units (different expressions), each of which has advantages as well as limitations;

- Mass percentage
- Mole fraction
- Molarity
- Molality

Mass Percentage, ppm and ppb

Mass % of component =	mass of component in soln	\sim	100
	total mass of soln	~	100

A solution of hydrochloric acid with 36% **HCI** by mass contains 36 g of **HCI** for each 100 g of solution.

```
Solute weight = 36 g
Solvent weight = 64 g
Total solution weight = 100 g
```

The concentrations of very dilute solution often express in parts per million (**ppm**) or part per billion (**ppb**).

1 ppm = 1000 ppb

ppm of component =	mass of component in soln		$\times 10^{6}$
	total mass of soln	_ ^	10

A solution whose solute concentration is 1 ppm contains 1 g of solute for each million (10^6) grams of solution.

This equivalent 1 mg of solute per kilogram of solution (**mg / kg**).

For aqueous solutions, because the density of water is 1 g/mL, this equivalent 1 mg of solute per liter of solution (mg / L).

The acceptable maximum concentrations of toxic or carcinogenic substances in the environment are often expressed in ppm or ppb. e.g., the maximum allowable concentration of arsenic in drinking water in USA is 0.010 ppm; that is 0.010 mg of arsenic per liter of water, this corresponds to 10 ppb.

ppm and ppb expressions are very useful in trace and ultra-trace analyses.

-	Nutritic Serving Size Bills Servings Per Care	Nutrition Facts Serving Star EH or (200ml) Servings Per Consultant 2		
Cover 1	Answer Per Sonning	Par	Per	
and the state	Calories	Serving 15	30	
Dynamic Party		5 2 4 2	tone-	
pring and	Total Fat 0p*	0%	0%	
ater°	Sedium 60mg	3%	\$%	
	Total Carbobydra	44.50.1%	2%	
	Sugars 2g			
	Protoin by		-	
	Vitamin E	15%	30%	
SERVICE AND A	Nach	15%	30%	
in themes which have the	Vitamin B5	15%	30%	
	Vitamin 812	15%	30%	
	Not a significant from fat, saturate cholecterol, dista	source of ca cilias, trans sty fiber, vite	alories fat, smin	

Per Serving 15	Per Exte
15	
	30
5 2 4 2 1	value?
0%	0%
3%	\$%
50.1%	2%
	- 1
15%	30%
15%	30%
15%	30%
15%	30%
unce of ci lat, trans t titue, vita miand intr ving Juan are t	iloties lat, min h
	N Salay 9% 3% 3% 3% 3% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15

National Ambient Air Quality Standards

	Prir	Secondary Standards		
Pollutant	Level	Averaging Time	Level Averaging Time	
Carbon Monoxide	9 ppm (10 mg/m^3)	8-hour ⁽¹⁾	None	
	$35 \text{ ppm} (40 \text{ mg/m}^3)$	1-hour ⁽¹⁾	None	
Lead	$0.15 \ \mu g/m^{3}$ $^{(2)}$	Rolling 3-Month Average	Same as Primary	
	$1.5 \ \mu g/m^3$	Quarterly Average	Same as Primary	
Nitrogen Dioxide	53 ppb ⁽³⁾	Annual (Arithmetic Average)	Same as Primary	
	100 ppb	1-hour ⁽⁴⁾	None	
Particulate Matter (PM ₁₀)	$150 \ \mu g/m^3$	24-hour ⁽⁵⁾	Same as Primary	
Particulate Matter (PM _{2.5})	$15.0 \ \mu g/m^3$	Annual ⁽⁶⁾ (Arithmetic Average)	Same as Primary	
	$35 \mu g/m^3$	24-hour ⁽⁷⁾	Same as Primary	
Ozone	0.075 ppm (2008 std)	8-hour ⁽⁸⁾	Same as Primary	
	0.08 ppm (1997 std)	8-hour ⁽⁹⁾	Same as Primary	
	0.12 ppm	1-hour ⁽¹⁰⁾	Same as Primary	
Sulfur Dioxide	0.03 ppm	Annual (Arithmetic Average)	0.5 ppm 3-hour ⁽¹⁾	
	0.14 ppm	24-hour ⁽¹⁾	None	
	75 ppb ⁽¹¹⁾	1-hour	None	

Trace analysis is usually analytical methods used to detect and/or quantify trace (very small amounts) of substances.

Common Units for Expressing Trace Concentrations

Unit	Abbreviation	wt/wt	wt/vol	vol/vol
Parts per million	ppm	mg/kg µg/g	mg/L µg/mL	µL/L nL/mL
Parts per billion	ppb	µg/kg ng/g	µg/L ng/mL	nL/L pL/mL
Milligram percent	mg%	mg/100g	mg/100mL	

Sometimes for this reason, these concentrations are written as ppmv or ppbv, and so on, indicating "by volume".

Mole Fraction

Mole fraction of component = $\frac{\text{moles of component}}{\text{total moles of all components}}$

The symbol \boldsymbol{X} is commonly used for mole fraction, with a subscript to indicate the component of interest.

 $X_{A} = \frac{\text{moles of A}}{\text{total moles in solution}}$

For example; a solution containing 1.00 mol of HCI (36.5 g) and 8.00 mol water (144 g) has a mole fraction of HCI and water: $X_{HCI} = (1.00 \text{ mol}) / (1.00 \text{ mol} + 8.00 \text{ mol}) = 0.111$ $X_{H2O} = (8.00 \text{ mol}) / (1.00 \text{ mol} + 8.00 \text{ mol}) = 0.889 \text{ or } 1.00 - 0.111 = 0.889$

Mole fraction has no unit (the units in the numerator and the denominator cancel). The sum of the mole fractions of all components of a solution must equal 1.

Molarity and Molality

The Molarity **M** of a solute in a solution is defined as:

Molarity = $\frac{\text{moles solute}}{\text{liters soln}}$

Molarity is the most widely used

Since volume is temperature-dependent, molarity can change with temperature.

The Molality *m* of a solution, defined as:

 $Molality = \frac{moles of solute}{kilograms of solvent}$

Since both moles and mass do not change with temperature, molality (unlike molarity) is *not* temperature-dependent. Thus molality is often the concentration unit of choice when a solution is to be used over a range of temperatures.

A sample of 0.892 g of potassium chloride (KCI) is dissolved in 54.6 g of water. What is the percent by mass of KCI in the solution?

Solution

percent by mass of KCl =
$$\frac{\text{mass of solute}}{\text{mass of soln}} \times 100\%$$

= $\frac{0.892 \text{ g}}{0.892 \text{ g} + 54.6 \text{ g}} \times 100\%$
= 1.61%

(a) A solution is made by dissolving 13.5 g of glucose $(C_6H_{12}O_6)$ in 0.100 kg of water. What is the mass percentage of solute in this solution?

(b) A 2.5 g sample of groundwater was found to contain 5.4 μ g of Zn²⁺. What is the concentration of Zn²⁺ in ppm?

Solution

(a) The mass percentage of water in this solution is (100 - 11.9)% = 88.1%.

Solve: Mass % of glucose =
$$\frac{\text{mass glucose}}{\text{mass soln}} \times 100 = \frac{13.5 \text{ g}}{13.5 \text{ g} + 100 \text{ g}} \times 100 = 11.9\%$$

(b) In this case we are given the number of micrograms of solute. Because 1 μ g is 1 x 10⁻⁶ g, 5.4 μ g = 5.4 x 10⁻⁶ g.

Solve: ppm =
$$\frac{\text{mass of solute}}{\text{mass of soln}} \times 10^6 = \frac{5.4 \times 10^{-6} \text{ g}}{2.5 \text{ g}} \times 10^6 = 2.2 \text{ ppm}$$

Calculate the molar concentrations of 1 ppm solutions each of Li⁺ and Pb²⁺.

Solution

1 ppm = 1 mg/L

$$M_{\rm Li} = \frac{1.00 \text{ mg Li/L} \times 10^{-3} \text{g/mg}}{6.94 \text{ g Li/mol}} = 1.44 \times 10^{-4} \text{ mol/L Li}$$

$$M_{\rm Pb} = \frac{1.00 \text{ mg Pb/L} \times 10^{-3} \text{g/mg}}{207 \text{ g Pb/mol}} = 4.83 \times 10^{-6} \text{ mol/L Pb}$$

Because lead is much heavier than lithium, a given weight contains a smaller number of moles and its molar concentration is less

Calculate the molality of a sulfuric acid solution containing 24.4 g of sulfuric acid in 198 g of water. The molar mass of sulfuric acid is 98.09 g.

Solution

moles of $H_2SO_4 = 24.4 \text{ g} \cdot H_2SO_4 \times \frac{1 \text{ mol } H_2SO_4}{98.09 \text{ g} \cdot H_2SO_4}$ = 0.249 mol H_2SO_4

 $m = \frac{0.249 \text{ mol } \text{H}_2\text{SO}_4}{0.198 \text{ kg } \text{H}_2\text{O}}$ = 1.26 m

Calculate the molality of a 35.4 percent (by mass) aqueous solution of phosphoric acid (H_3PO_4). The molar mass of phosphoric acid is 97.99 g.

Solution

Suppose that you start with a 100.0 g of the solution, then the mass of phosphoric acid is 35.4 percent, or 35.4 g, and mass of water must be 100.0% - 35.4% = 64.6% or 64.6 g.

```
moles of H_3PO_4 = 35.4 \text{ g} \cdot H_3PO_4 \times \frac{1 \text{ mol } H_3PO_4}{97.99 \text{ g} \cdot H_3PO_4}
= 0.361 mol H_3PO_4
```

The mass of water is 64.6 g, or 0.0646 kg.

The density of a 2.45 M aqueous solution of methanol (CH₃OH) is 0.976 g/mL. What is the molality of the solution? The molar mass of methanol is 32.04 g.

Solution

The total mass of 1 L of a 2.45 M solution of methanol is

 $1 \text{ L-sotn} \times \frac{1000 \text{ mL-sotn}}{1 \text{ L-sotn}} \times \frac{0.976 \text{ g}}{1 \text{ mL-sotn}} = 976 \text{ g}$

Because this solution contains 2.45 moles of methanol, the amount of water (solvent) in the solution is

mass of H₂O = mass of soln - mass of solute = 976 g - $\left(2.45 \text{ mol} \text{-CH}_3\text{OH} \times \frac{32.04 \text{ g} \text{-CH}_3\text{OH}}{1 \text{ mol} \text{-CH}_3\text{OH}}\right)$ = 898 g molality = $\frac{2.45 \text{ mol} \text{-CH}_3\text{OH}}{0.898 \text{ kg} \text{-H}_2\text{O}}$ = 2.73 m

An aqueous solution of hydrochloric acid contains 36% HCl by mass. (a) Calculate the mole fraction of HCl in the solution. (b) Calculate the molality of HCl in the solution.

Solution

(a) To calculate the mole fraction of HCl, we convert the masses of HCl and H_2O to moles:

(b) To calculate the molality of HCl in the solution, We use the calculated number of moles of HCl in part (a), and the mass of solvent is 64 g = 0.064 kg:

$$\begin{aligned} \text{Moles HCl} &= (36 \text{ g HCl}) \left(\frac{1 \text{ mol HCl}}{36.5 \text{ g HCl}} \right) = 0.99 \text{ mol HCl} \\ \text{Moles H}_2\text{O} &= (64 \text{ g H}_2\text{O}) \left(\frac{1 \text{ mol H}_2\text{O}}{18 \text{ g H}_2\text{O}} \right) = 3.6 \text{ mol H}_2\text{O} \\ X_{\text{HCl}} &= \frac{\text{moles HCl}}{\text{moles H}_2\text{O} + \text{moles HCl}} = \frac{0.99}{3.6 + 0.99} = \frac{0.99}{4.6} = 0.22 \end{aligned}$$
$$\begin{aligned} \text{Molality of HCl} &= \frac{0.99 \text{ mol HCl}}{0.064 \text{ kg H}_2\text{O}} = 15 \text{ m} \end{aligned}$$

A solution with a density of 0.876 g/mL contains 5.0 g of toluene (C_7H_8) and 225 g of benzene. Calculate the molarity and the molality of the solution.

Solution

The volume of the solution is obtained from the mass of the solution (mass of solute + mass of solvent = 5.0 g + 225 g = 230 g) and its density.

Moles $C_7H_8 = (5.0 \text{ g } C_7H_8) \left(\frac{1 \text{ mol } C_7H_8}{92 \text{ g } C_7H_8}\right) = 0.054 \text{ mol}$

The density of the solution is used to convert the mass of the solution to its volume:

Milliliters soln =
$$(230 \text{ g})\left(\frac{1 \text{ mL}}{0.876 \text{ g}}\right) = 263 \text{ mL}$$

Molarity = $\left(\frac{\text{moles } C_7H_8}{\text{liter soln}}\right) = \left(\frac{0.054 \text{ mol } C_7H_8}{263 \text{ mL soln}}\right)\left(\frac{1000 \text{ mL soln}}{1 \text{ L soln}}\right) = 0.21 M$

Molality:

 $(0.054 \text{ mol } C_7H_8)/(0.225 \text{ kg solvent}) = 0.24 m$

Preparation of Standard Solution

Procedure for preparation of 250 mL of 1.00 M solution of $CuSO_4$ ($\mathcal{M}=159.5$ g/mol).

0.25 mole of $CuSO_4$ (39.9 g) is weighed out and placed in the volumetric flask. Water is added to dissolve the salt, and the resultant solution is diluted to a total volume of 0.250 L. The molarity of the solution is:

 $M = (0.250 \text{ mol } \text{CuSO}_4) / (0.250 \text{ L soln}) = 1.00 \text{ M}$

How many grams of potassium dichromate ($K_2Cr_2O_7$) are required to prepare a 250 mL solution whose concentration is 2.16 *M*?

Solution

moles of solute = molarity $x \vee soln.$ (L)

moles of
$$K_2Cr_2O_7 = \frac{2.16 \text{ mol } K_2Cr_2O_7}{1 \text{ L-soln}} \times 0.250 \text{ L-soln}$$

= 0.540 mol $K_2Cr_2O_7$

The molar mass of $K_2Cr_2O_7$ is 294.2 g, so

grams of K₂Cr₂O₇ needed = 0.540 mol K₂Cr₂O₇ ×
$$\frac{294.2 \text{ g K}_2\text{Cr}_2\text{O}_7}{1 \text{ mol K}_2\text{Cr}_2\text{O}_7}$$

= 159 g K₂Cr₂O₇

In a biochemical assay, a chemist needs to add 3.81 g of glucose to a reaction mixture. Calculate the volume in milliliters of a 2.53 *M* glucose solution that should use for the addition.

Solution

The molar mass of $C_6H_{12}O_6$ is 180.2 g, so

 $3.81 \text{ g } C_6 H_{12} O_6 \times \frac{1 \text{ mol } C_6 H_{12} O_6}{180.2 \text{ g } C_6 H_{12} O_6} = 2.114 \times 10^{-2} \text{ mol } C_6 H_{12} O_6$

$$V = \frac{n}{M}$$

= $\frac{2.114 \times 10^{-2} \text{ mol } C_6 H_{12} O_6}{2.53 \text{ mol } C_6 H_{12} O_6 / L \text{ soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}}$
= 8.36 mL soln

Dilution of Solutions

Concentrated solutions are often stored in the laboratory for use as needed; "**stock**" solutions are frequently diluted before working with them.

Dilution is the procedure for preparing a less concentrated solution from a more concentrated one.

Two potassium permanganate (KMnO₄) solutions of different concentrations

moles of solute before dilution = moles of solute after dilution

$M_{ m i}V_{ m i}$	=	$M_{ m f}V_{ m f}$
moles of solute		moles of solute
before dilution		after dilution

where M_i and M_f are the initial and final concentrations of the solution in molarity and V_i and V_f are the initial and final volumes of the solution, respectively.

The units of V_i and V_f must be the same (mL or L) for the calculation to work.

 $M_{\rm i} > M_{\rm f}$ and $V_{\rm f} > V_{\rm i}$

Describe how you would prepare 5.00 x 10^2 mL of a 1.75 M H₂SO₄ solution, starting with an 8.61 M stock solution of H₂SO₄.

Solution

 $\begin{array}{ll} M_{\rm i} = 8.61 \ M & M_{\rm f} = 1.75 \ M \\ V_{\rm i} = ? & V_{\rm f} = 5.00 \times 10^2 \ {\rm mL} \end{array}$

$$(8.61 M)(V_{\rm i}) = (1.75 M)(5.00 \times 10^{2} \,{\rm mL})$$
$$V_{\rm i} = \frac{(1.75 M)(5.00 \times 10^{2} \,{\rm mL})}{8.61 M}$$
$$= 102 \,{\rm mL}$$

Thus, we must dilute 102 mL of the 8.61 MH_2SO_4 solution with sufficient water to give a final volume of 5.00 x 10² mL in a 500-mL volumetric flask to obtain the desired concentration.

How many milliliters of 3.0 MH_2SO_4 are needed to make 450 mL of 0.10 MH_2SO_4 ?

Solution

Calculating the moles of H_2SO_4 in the dilute solution:

moles
$$H_2SO_4$$
 in dilute solution = $(0.450 \text{ L-soln})\left(\frac{0.10 \text{ mol } H_2SO_4}{1 \text{ L-soln}}\right)$
= 0.045 mol H_2SO_4

Calculating the volume of the concentrated solution that contains 0.045 mol H_2SO_4 :

$$L \operatorname{conc} \operatorname{soln} = (0.045 \operatorname{mol} H_2 SO_4) \left(\frac{1 \operatorname{L} \operatorname{soln}}{3.0 \operatorname{mol} H_2 SO_4} \right) = 0.015 \operatorname{L} \operatorname{soln}$$

Converting liters to milliliters gives 15 mL. If we apply dilution low, we get the same result:

$$(3.0 M)(V_{\text{conc}}) = (0.10 M)(450 \text{ mL})$$
$$(V_{\text{conc}}) = \frac{(0.10 M)(450 \text{ mL})}{3.0 M} = 15 \text{ mL}$$

Either way, we see that if we start with 15 mL of 3.0 M H_2SO_4 and dilute it to a total volume of 450 mL, the desired 0.10 M solution will be obtained.

You wish to prepare a calibration curve for the spectrophotometric determination of permanganate. You have a stock 0.100 M solution of $KMnO_4$ and a series of 100 mL volumetric flasks. What volumes of the stock solution will you have to pipet into the flasks to prepare standards of 1.00, 2.00, 5.00, and 10.0 x 10^{-3} M $KMnO_4$ solutions?

Solution

 $C_1V_1 = C_2V_2$

 $0.100 \text{ M x V}_1 \text{ mL} = 1.00 \text{x} 10^{-3} \text{ M x} 100 \text{ mL}$

 $V_1 = 1.00 \text{ mL}$

Similarly, for the other solutions we will need 2.00, 5.00, and 10.0 mL of the stock solution, which will be diluted to 100 mL

p-Functions

Scientists frequently express the concentration of a species in terms of its pfunction, or p-value. The p-value is the negative logarithm (to the base 10) of the molar concentration of that species. Thus, for the species X,

pX = -log [X]

p-Values offer the advantage of allowing concentrations that vary over ten or more orders of magnitude to be expressed in terms of small positive numbers.

The best-known p-function is pH, which is the negative logarithm of [H⁺]. **pH = -log [H⁺]**

Calculate the p-value for each ion in a solution that is 2.00 x 10^{-3} M in NaCl and 5.4 x 10^{-4} M in HCl.

Solution

$$pH = -log [H^+] = -log (5.4 \times 10^{-4}) = 3.27$$

To obtain pNa, we write pNa = $-\log[Na^+] = -\log(2.00 \times 10^{-3}) = -\log(2.00 \times 10^{-3}) = 2.699$

The total CI⁻ concentration is given by the sum of the concentrations of the two solutes:

$$[CI^{-}] = (2.00 \times 10^{-3}) + (5.4 \times 10^{-4})$$

= 2.54 x 10⁻³ M
pCI = -log[CI^{-}] = -log (2.54 x 10^{-3}) = 2.595

Calculate the molar concentration of Ag⁺ in a solution that has a pAg of 6.372.

Solution

```
pAg = -log [Ag^+] = 6.372
```

 $\log [Ag^+] = -6.372$

anti-log [Ag⁺] = 4.25 x 10⁻⁷ M

Density and Specific Gravity of Solutions

Density expresses the mass of a substance per unit volume. Density is expressed in units of kg/L or alternatively g/mL.

Specific gravity is the ratio of the mass of a substance to the mass of an equal volume of water.

Specific Gravities of Commercial Concentrated Acids and Bases				
ReagentConcentration, % (w/w)Specific G				
99.7	1.05			
29.0	0.90			
37.2	1.19			
49.5	1.15			
70.5	1.42			
71.0	1.67			
86.0	1.71			
96.5	1.84			
	Commercial Concentrated A Concentration, % (w/w) 99.7 29.0 37.2 49.5 70.5 71.0 86.0 96.5			

Calculate the molar concentration of HNO_3 (63.0 g/mol) in a solution that has a specific gravity of 1.42 and is 70.5% HNO_3 (w/w).

Solution

```
70.5% HNO<sub>3</sub> mass by mass
Suppose the mass of solution = 100 g
Mass HNO<sub>3</sub> = 70.5 g,
mole HNO<sub>3</sub> = 70.5 / 63.0 = 1.119 mole
Mass H<sub>2</sub>O (solvent) = 63 g
m = n (solute) / kg (solvent) = 1.015 / 0.063 = 16.111 m
To calculate M
Mass of solution = 100g
d = m / v then, v = 100 / 1.42 = 70.42 mL
```

```
M = n (solute) / v (soln, L) = 1.119 / 0.07042 = 15.89 M
```

Or directly,,,

```
M = (assay x density x 10) / molar mass = 70.5 x 1.42 x 10 / 63.0 = 15.89 mol/L
```

Describe the preparation of 100 mL of 6.0 M HCl from a concentrated solution that has a specific gravity of 1.18 and is 37% (w/w) HCl (36.5 g/mol).

Solution

The concentration of the reagent,

$$c_{\rm HCl} = \frac{1.18 \times 10^3 \text{ g reagent}}{\text{L reagent}} \times \frac{37 \text{ g HCl}}{100 \text{ g reagent}} \times \frac{1 \text{ mol HCl}}{36.5 \text{ g HCl}} = 12.0 \text{ M}$$

The volume of concentrated reagent, $M_1V_1 = M_2V_2$ $12 \times V_1 = 6 \times 100$ $V_1 = 50 \text{ mL}$

Expressing the Concentration of an Electrolyte

-When an ionic substance dissolves in water, the solvent pulls the individual ions from the crystal and solvates them.

-This process is called **dissociation**.

-An **electrolyte** is a substances that dissociates into ions when dissolved in water.

-A **nonelectrolyte** may dissolve in water, but it does not dissociate into ions when it does so.

Strong and Weak Electrolytes

A **strong electrolyte** dissociates completely when dissolved in water (soluble ionic salts, strong acids and strong bases). For example:

$$\operatorname{HCl}(aq) \longrightarrow \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$$

A **weak electrolyte** only dissociates partially when dissolved in water (produce a small concentration of ions when they dissolve, these ions exist in *equilibrium* with the unionized substance).

For example:

$HC_2H_3O_2(aq) = H^+(aq) + C_2H_3O_2(aq)$

When an ionic compound dissolves, the relative concentrations of the ions introduced into the solution depend on the chemical formula of the compound.

For example, a 1.0 M solution of NaCl is 1.0 M in Na⁺ ions and 1.0 M in Cl⁻ ions. Similarly, a 1.0 M solution of Na₂SO₄ is 2.0 M in Na⁺ ions and 1.0 M in SO₄⁻² ions

Molarity refers only to the amount of solute originally dissolved in water and does not take into account any **subsequent processes**, such as the **dissociation** of a salt or the ionization of an acid.

Consider what happens when a sample of potassium chloride (KCI) is dissolved in enough water to make a 1 *M* solution:

 $\operatorname{KCl}(s) \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{K}^+(aq) + \operatorname{Cl}^-(aq)$

Because KCI is a **strong electrolyte**, it undergoes complete dissociation in solution. Thus, a 1 *M*KCl solution contains 1 mole of K⁺ ions and 1 mole of Cl⁻ ions, and no KCl units are present.

The concentrations of the ions can be expressed as $[K^+] = 1 M$ and $[CI^-] = 1 M$.

Similarly, in a 1 *M* barium nitrate $[Ba(NO_3)_2]$ solution

 $\operatorname{Ba}(\operatorname{NO}_3)_2(s) \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{Ba}^{2+}(aq) + 2\operatorname{NO}_3^-(aq)$

we have $[Ba^{2+}] = 1 M$ and $[NO_3^-] = 2 M$ and no $Ba(NO_3)_2$ units at all.

What are the molar concentrations of each of the ions present in a 0.025 M aqueous solution of calcium nitrate? (Ca(NO₃)₂)

Solution

 $Ca(NO_3)_2$ composed of two NO_3^- ions for each Ca^{2+} ion in the compound, each mole of $Ca(NO_3)_2$ that dissolves dissociates into 1 mol of Ca^{2+} and 2 mol of NO_3^- .

Thus, a solution that is 0.025 *M* in Ca(NO₃)₂ is 0.025 *M* in Ca²⁺ and 2 × 0.025 *M* = 0.050 *M* in NO₃⁻:

$$\frac{\text{mol NO}_3^-}{\text{L}} = \left(\frac{0.025 \text{ mol Ca(NO}_3)_2}{\text{L}}\right) \left(\frac{2 \text{ mol NO}_3^-}{1 \text{ mol Ca(NO}_3)_2}\right) = 0.050 \text{ M}$$

The concentration of NO³⁻ ions is twice that of Ca²⁺ ions, as the subscript 2 after the NO³⁻ in the chemical formula Ca(NO₃)₂ suggests it should be.

Chemical Stoichiometry

How much product will be formed from specific amounts of starting materials (reactants)?

How much starting material must be used to obtain a specific amount of product?

Stoichiometry is the quantitative study of reactants and products in a chemical reaction.

To interpret a reaction quantitatively, we need to apply our knowledge of molar masses and the mole concept.

Mole method means that the stoichiometric coefficients in a chemical equation can be interpreted as the number of moles of each substance.

Stoichiometry deals with the ratios in which chemicals reacts

Law of Conservation of Mass

"We may lay it down as an incontestable axiom that, in all the operations of art and nature, nothing is created; an equal amount of matter exists both before and after the experiment. Upon this principle, the whole art of performing chemical experiments depends."

-- Antoine Lavoisier.

Atoms are neither created nor destroyed during any chemical reaction. The changes that occur during any reaction merely rearrange the atoms. The same collection of atoms is present both before and after the reaction.

-- Dalton's atomic theory.

What happens when hydrogen gas (H_2) burns in air (which contains oxygen, O_2) to form water (H_2O) . This reaction can be represented by the chemical equation

 $H_2 + O_2 \longrightarrow H_2O$

To conform with the **law of conservation of mass**, there must be the same number of each type of atom on both sides of the arrow (we should balance the equation).

Stoichiometric Calculations

For the following general reaction:

$A + 2B \rightarrow 3C + \frac{1}{2}D$ $mol A = \frac{mol B}{2} = \frac{mol C}{3} = 2 mol D$

Note... Limiting reactant criteria should be applied

The food we eat is degraded, or broken down, in our bodies to provide energy for growth and function. A general overall equation for this very complex process represents the degradation of glucose ($C_6H_{12}O_6$) to carbon dioxide (CO_2) and water (H_2O):

 $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$

If 856 g of $C_6H_{12}O_6$ is consumed by a person over a certain period, what is the mass of CO_2 produced?

grams of $C_6H_{12}O_6 \longrightarrow$ moles of $C_6H_{12}O_6 \longrightarrow$ moles of $CO_2 \longrightarrow$ grams of CO_2

$$856 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6 \times \frac{1 \text{ mol } \text{C}_6\text{H}_{12}\text{O}_6}{180.2 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6} = 4.750 \text{ mol } \text{C}_6\text{H}_{12}\text{O}_6$$

$$4.750 \text{ mol } C_6 H_{12} O_6 \times \frac{6 \text{ mol } CO_2}{1 \text{ mol } C_6 H_{12} O_6} = 28.50 \text{ mol } CO_2$$

28.50 mol
$$CO_2 \times \frac{44.01 \text{ g CO}_2}{1 \text{ mol } CO_2} = 1.25 \times 10^3 \text{ g CO}_2$$

mass of CO₂ = 856 g C₆H₁₂O₆ ×
$$\frac{1 \text{ mol } C_6H_{12}O_6}{180.2 \text{ g } C_6H_{12}O_6}$$
 × $\frac{6 \text{ mol } CO_2}{1 \text{ mol } C_6H_{12}O_6}$ × $\frac{44.01 \text{ g } CO_2}{1 \text{ mol } CO_2}$
= $1.25 \times 10^3 \text{ g } CO_2$

All alkali metals react with water to produce hydrogen gas and the corresponding alkali metal hydroxide. A typical reaction is that between lithium and water:

 $2\text{Li}(s) + 2\text{H}_2\text{O}(l) \longrightarrow 2\text{LiOH}(aq) + \text{H}_2(g)$

How many grams of Li are needed to produce 9.89 g of H_2 ?

grams of
$$H_2 \longrightarrow$$
 moles of $H_2 \longrightarrow$ moles of Li \longrightarrow grams of Li

9.89 g H₂ ×
$$\frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2}$$
 × $\frac{2 \text{ mol Li}}{1 \text{ mol H}_2}$ × $\frac{6.941 \text{ g Li}}{1 \text{ mol Li}}$ = 68.1 g Li

(a) What mass of AgNO₃ (169.9 g/mol) is needed to convert 2.33 g of Na₂CO₃ (106.0 g/mol) to Ag₂CO₃? (b) What mass of Ag₂CO₃ (275.7 g/mol) will be formed?

Solution

$$Na_2CO_3(aq) + 2AgNO_3(aq) \rightarrow Ag_2CO_3(s) + 2NaNO_3(aq)$$

(a)
amount Na₂CO₃ =
$$n_{Na_2CO_3} = 2.33 \text{ g} \text{ Na_2CO_3} \times \frac{1 \text{ mol Na_2CO_3}}{106.0 \text{ g} \text{ Na_2CO_3}}$$

= 0.02198 mol Na₂CO₃

amount AgNO₃ =
$$n_{AgNO_3}$$
 = 0.02198 mol Na₂CO₃ × $\frac{2 \text{ mol AgNO}_3}{1 \text{ mol Na}_2CO_3}$
= 0.04396 mol AgNO₃

mass AgNO₃ = 0.04396 mol AgNO₃ ×
$$\frac{169.9 \text{ g AgNO}_3}{\text{mol AgNO}_3}$$
 = 7.47 g AgNO₃

(b) amount
$$Ag_2CO_3 = amount Na_2CO_3 = 0.02198 mol$$

mass
$$Ag_2CO_3 = 0.02198 \text{ mol} Ag_2CO_3 \times \frac{275.7 \text{ g} Ag_2CO_3}{\text{mol} Ag_2CO_3} = 6.06 \text{ g} Ag_2CO_3$$

What mass of Ag_2CO_3 (275.7 g/mol) is formed when 25.0 mL of 0.200 M AgNO₃ are mixed with 50.0 mL of 0.0800 M Na₂CO₃?

Solution

 $Na_2CO_3(aq) + 2AgNO_3(aq) \rightarrow Ag_2CO_3(s) + 2NaNO_3(aq)$ The initial amounts of reactants are:

amount AgNO₃ =
$$n_{AgNO_3}$$
 = 25.0 mL AgNO₃ × $\frac{1 \text{ LAgNO}_3}{1000 \text{ mL AgNO}_3}$
× $\frac{0.200 \text{ mol AgNO}_3}{\text{ LAgNO}_3}$ = 5.00 × 10⁻³ mol AgNO₃
amount Na₂CO₃ = $n_{Na_2CO_3}$ = 50.0 mL Na₂CO₃ soln × $\frac{1 \text{ LNa}_2CO_3}{1000 \text{ mL Na}_2CO_3}$
× $\frac{0.0800 \text{ mol Na}_2CO_3}{\text{ LNa}_2CO_3}$ = 4.00 × 10⁻³ mol Na₂CO₃

Because 1 mole of Na_2CO_3 is only needed to react with 2 mole AgNO₃ AgNO₃ is the limiting reactant

$$\begin{array}{l} \mathrm{mass} \ \mathrm{Ag_2CO_3} = 5.00 \times 10^{-3} \ \mathrm{mol} \ \mathrm{AgNO_3} \times \frac{1 \ \mathrm{mol} \ \mathrm{Ag_2CO_3}}{2 \ \mathrm{mol} \ \mathrm{AgNO_3}} \times \frac{275.7 \ \mathrm{g} \ \mathrm{Ag_2CO_3}}{\mathrm{mol} \ \mathrm{Ag_2CO_3}} \\ = 0.689 \ \mathrm{g} \ \mathrm{Ag_2CO_3} \end{array}$$

