Hand in: Wednesday 17th of February at 23:59

1. Two very long cylindrical conductors, separated by a distance d, form a capacitor. Cylinder 1 has surface charge density λ and radius a_{1}, and cylinder number 2 has surface charge density $-\lambda$ and radius a_{2} (see figure). The electric field for each of the cylinders is radially directed outward and is given by (for each of the conductors) $\mathbf{E}=\frac{\lambda}{2 \pi \varepsilon_{0}|\mathbf{r}|} \hat{\rho}$:

(a) Calculate the total electric field at a generic point P (at a distance ρ from 0).
(b) Consider that d is far larger than the radii a_{1} and $\mathrm{a}_{2}\left(d \gg \mathrm{a}_{1}, \mathrm{a}_{2}\right.$ so in this case you can consider them equal to a). In this case calculate the potential difference between the two cylindrical surfaces.
(c) Calculate the capacitance per unit length of the system.

Solution:

At a generic point P which is at a distance ρ from 0 we have the superposition of the two fields of the two cylinders as:
$\mathbf{E}=\frac{\lambda}{2 \pi \varepsilon_{0}}\left(\frac{1}{\rho}+\frac{1}{d-\rho}\right) \hat{\rho}$
The potential difference between the two cylinders is:
$V_{\mathrm{a} 2}-V_{\mathrm{a} 1}=-\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{d-\mathrm{a} 2}^{\mathrm{a} 1}\left(\frac{1}{\rho}+\frac{1}{d-\rho}\right) d \rho=-\frac{\lambda}{2 \pi \varepsilon_{0}}\left[\ln a_{1}+\ln \left(d-a_{1}\right)+\ln \left(d-a_{2}\right)-\ln a_{2}\right]$

If the radii are almost equal then
$V_{\mathrm{a} 2}-V_{\mathrm{a} 1}=-\frac{\lambda}{2 \pi \varepsilon_{0}}[\ln a+\ln (d-a)+\ln (d-a)-\ln a]=-\frac{\lambda}{\pi \varepsilon_{0}}[\ln (d-a)-\ln a]$
$=-\frac{\lambda}{\pi \varepsilon_{0}} \ln \left(\frac{d-a}{a}\right) \approx-\frac{\lambda}{\pi \varepsilon_{0}} \ln \left(\frac{d}{a}\right) \approx \frac{\lambda}{\pi \varepsilon_{0}} \ln \left(\frac{a}{d}\right)$
b) The capacitance per unit length is
$C=\frac{\lambda}{V_{\mathrm{a} 2}-V_{\mathrm{a} 1}}=\frac{\lambda}{\frac{\lambda}{\pi \varepsilon_{0}} \ln \left(\frac{d}{a}\right)}=\frac{\pi \varepsilon_{0}}{\ln \left(\frac{d}{a}\right)}$
3. The spherical shell with inner and outer radii R_{1} and R_{2} carries an electric charge Q. The spherical shell with inner and outer radii R_{3} and R_{4} carries a charge q, while at the centre there is a point-like charge q_{0}. The shells are made of conducting material. (i) Find the electric field in all five regions of space (ii) Find the electric potential in all five regions of space.

Solution:

In the figure we see five regions. In regions II and IV we have $\mathbf{E}=0$ because we are inside a conductor.

All the charge Q of the shell II rests on its inner and outer surface. Since we do not know these charges we write:

$$
Q=Q_{1}+Q_{2}
$$

All the charge q of the shell IV rests on its inner and outer surface. Since we do not know these charge we write:
$q=Q_{3}+Q_{4}$
Thus the surfaces of radii $R_{1}, R_{2}, R_{3}, R_{4}$ carry charges Q_{1}, Q_{2}, Q_{3} and Q_{4} respectively that are distributed uniformly on them so the create electric fields with radial direction. If we apply Gauss law for the five regions (drawing proper Gaussian surfaces) we get:
$E_{\mathrm{I}} 4 \pi r^{2}=\frac{q_{0}}{\varepsilon_{0}} \Rightarrow \mathbf{E}_{\mathrm{I}}=\frac{q_{0}}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
$E_{\mathrm{II}} 4 \pi r^{2}=\frac{\left(q_{0}+Q_{1}\right)}{\varepsilon_{0}} \Rightarrow \mathbf{E}_{\mathrm{I}}=\frac{\left(q_{0}+Q_{1}\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
$E_{\text {III }} 4 \pi r^{2}=\frac{\left(q_{0}+Q_{1}+Q_{2}\right)}{\varepsilon_{0}} \Rightarrow \mathbf{E}_{\text {III }}=\frac{\left(q_{0}+Q_{1}+Q_{2}\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
$E_{\mathrm{IV}} 4 \pi r^{2}=\frac{\left(q_{0}+Q_{1}+Q_{2}+Q_{3}\right)}{\varepsilon_{0}} \Rightarrow \mathbf{E}_{\mathrm{IV}}=\frac{\left(q_{0}+Q_{1}+Q_{2}+Q_{3}\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
$E_{\mathrm{V}} 4 \pi r^{2}=\frac{\left(q_{0}+Q_{1}+Q_{2}+Q_{3}+Q_{4}\right)}{\varepsilon_{0}} \Rightarrow \mathbf{E}_{\mathrm{V}}=\frac{\left(q_{0}+Q_{1}+Q_{2}+Q_{3}+Q_{4}\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$

Since in the conducting regions II and IV we have zero electric field then form (4) and (6) we have:
$q_{0}+Q_{1}=0 \quad$ (8) and $q_{0}+Q_{1}+Q_{2}+Q_{3}=0$

Combining (1), (2) with (8) and (9) we get:
$Q_{1}=-q_{0}, \quad Q_{2}=q_{0}+Q, \quad Q_{3}=-q_{0}-Q, \quad Q_{4}=q_{0}+Q+q$
Commented [VL1]: This part is the most important part

Thus the electric fields now are given by:
$\mathbf{E}_{\mathrm{I}}=\frac{q_{0}}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, \quad \mathbf{E}_{\mathrm{II}}=0, \quad \mathbf{E}_{\mathrm{III}}=\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r}, \quad \mathbf{E}_{\mathrm{IV}}=0, \quad \mathbf{E}_{\mathrm{V}}=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
(ii) If we take as our reference point the infinity then
a) For $r \geq R_{4}$

$$
\begin{aligned}
& V_{V}(r)-V(\infty)=\int_{r}^{+\infty} \mathbf{E}_{\mathrm{V}} \cdot d \mathbf{r} \Rightarrow V_{V}(r)=\int_{r}^{+\infty} \frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \cdot(d r) \hat{r} \\
& \Rightarrow V_{V}(r)=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0}} \int_{r}^{+\infty} \frac{d r}{r^{2}} \Rightarrow V_{V}(r)=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} r}
\end{aligned}
$$

This relation holds also for $r=R_{4}$ and since a conductor has a constant potential it is true for al region IV thus

$$
V_{V}\left(R_{4}\right)=V_{\mathrm{IV}}=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}
$$

b) For $R_{2} \leq r \leq R_{3}$

$$
\begin{aligned}
& \left.V_{\mathrm{III}}(r)-V\left(R_{3}\right)=\int_{r}^{R_{3}} \mathbf{E}_{\mathrm{II}} \cdot d \mathbf{r} \Rightarrow V_{\mathrm{III}}(r)-V\left(R_{3}\right)=\int_{r}^{R_{3}} \frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \cdot d r\right) \hat{r} \\
& \Rightarrow V_{\mathrm{III}}(r)-V\left(R_{3}\right)=\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}} \int_{r}^{R_{3}} \frac{1}{r^{2}} \hat{r} \cdot(d r) \hat{r} \\
& \Rightarrow V_{\mathrm{III}}(r)-V\left(R_{3}\right)=\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R_{3}}\right)
\end{aligned}
$$

But
$V\left(R_{3}\right)=V\left(R_{4}\right)=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}$ so
$V_{\mathrm{III}}(r)-\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}=\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R_{3}}\right) \Rightarrow$
$V_{\text {III }}(r)=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}+\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R_{3}}\right)$
The relation is true for $r=R_{2}$
$V\left(R_{2}\right)=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}+\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{2}}-\frac{1}{R_{3}}\right)$
and this is the potential for the region II which is a conductor

$$
V_{\mathrm{II}}=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}+\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{2}}-\frac{1}{R_{3}}\right)
$$

c) For $r \leq R_{1}$

$$
\begin{aligned}
& V_{\mathrm{I}}(r)-V\left(R_{\mathrm{1}}\right)=\int_{r}^{R_{1}} \mathbf{E}_{\mathrm{I}} \cdot d \mathbf{r} \Rightarrow V_{\mathrm{I}}(r)-V\left(R_{\mathrm{1}}\right)=\int_{r}^{R_{1}} \frac{q_{0}}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \cdot(d r) \hat{r} \\
& \Rightarrow V_{\mathrm{I}}(r)-V\left(R_{\mathrm{l}}\right)=\frac{q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R_{1}}\right)
\end{aligned}
$$

But

$$
\begin{aligned}
& V\left(R_{1}\right)=V\left(R_{2}\right)=V_{\mathrm{II}}=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}+\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{2}}-\frac{1}{R_{3}}\right) \text { so } \\
& V_{\mathrm{I}}(r)=\frac{\left(q_{0}+Q+q\right)}{4 \pi \varepsilon_{0} R_{4}}+\frac{\left(q_{0}+Q\right)}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{2}}-\frac{1}{R_{3}}\right)+\frac{q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R_{1}}\right)
\end{aligned}
$$

Notes:

1. We see that in such problems there are unknown charges on the surface of the conductors which we calculate from the condition that inside a conductor the field is zero and from the given charge of each conductor. This is very important.
2. If the charge of a shell is zero then we follow the same process. We have unknown charges on the conductor surfaces but the total charge is zero.
3. If a shell is grounded then its potential is zero. Its charge is unknown. The charges on its surfaces are also unknown. Then in order to find the charges we use the fact the electric field is zero inside the conductor and the equation of the potential with value equal to zero. The same we do if the potential has a constant value V_{0} on the conductor.
