
 

 

PHYSICS 507 – SPRING 2021 
3rd HOMEWORK- Solutions 
Dr. V. Lempesis 
 
Hand in: Wednesday 17th of February at 23:59 
 

 
1. Two very long cylindrical conductors, separated by a distance d, form a 

capacitor. Cylinder 1 has surface charge density λ and radius a1, and cylinder 
number 2 has surface charge density -λ  and radius a2 (see figure). The electric 
field for each of the cylinders is radially directed outward and is given by (for 

each of the conductors) :  

 

 
(a) Calculate the total electric field at a generic point P (at a distance ρ 

from 0). 
(b) Consider that d is far larger than the radii a1 and a2 (d >> a1, a2 so in 

this case you can consider them equal to a). In this case calculate the 
potential difference between the two cylindrical surfaces. 

(c) Calculate the capacitance per unit length of the system. 
 

Solution: 
 
At a generic point P which is at a distance ρ from 0 we have the superposition 
of the two fields of the two cylinders as: 
 

 

 
The potential difference between the two cylinders is: 
 

 
 
If the radii are almost equal then 
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b) The capacitance per unit length is  
 

 

 
 

3. The spherical shell with inner and outer radii R1 and R2 carries an electric 
charge Q. The spherical shell with inner and outer radii R3 and R4 carries a 
charge q, while at the centre there is a point-like charge q0. The shells are made 
of conducting material. (i) Find the electric field in all five regions of space 
(ii) Find the electric potential in all five regions of space. 
 
 
 

 
 
Solution: 
In the figure we see five regions. In regions II and IV we have E = 0 because 
we are inside a conductor. 
 
All the charge Q of the shell II rests on its inner and outer surface. Since we 
do not know these charges we write: 
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All the charge q of the shell IV rests on its inner and outer surface. Since we 
do not know these charge we write: 
 

     (2) 
 
Thus the surfaces of radii R1, R2,  R3, R4 carry charges Q1, Q2, Q3 and Q4  
respectively that are distributed uniformly on them so the create electric fields 
with radial direction. If we apply Gauss law for the five regions (drawing 
proper Gaussian surfaces) we get: 
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Since in the conducting regions II and IV we have zero electric field then form 
(4) and (6) we have: 
 

   (8)   and      (9) 
 
Combining (1), (2) with (8) and (9) we get: 
 

 
 
Thus the electric fields now are given by: 
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(ii) If we take as our reference point the infinity then  
 
a) For  
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Commented [VL1]: This part is the most important part 
of the solution 



 

 

   

This relation holds also for r = R4  and since a conductor has a constant 
potential it is true for al region IV thus 
 

 

 
b) For  
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The relation is true for r = R2 

 

 

 
and this is the potential for the region II which is a conductor 
 

 

 
c) For  
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Notes: 
1. We see that in such problems there are unknown charges on the 

surface of the conductors which we calculate from the condition that 
inside a conductor the field is zero and from the given charge of each 
conductor. This is very important. 

2. If the charge of a shell is zero then we follow the same process. We 
have unknown charges on the conductor surfaces but the total charge 
is zero. 

3. If a shell is grounded then its potential is zero. Its charge is unknown. 
The charges on its surfaces are also unknown. Then in order to find 
the charges we use the fact the electric field is zero inside the 
conductor and the equation of the potential with value equal to zero. 
The same we do if the potential has a constant value V0 on the 
conductor. 
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