STAT 332

Abdulmajeed Alharbi

February 2022

Your neat, clearly-legible solutions should be emailed as a PDF or HTML file to aalharbi10@ksu.edu.sa by the deadline of 23.59 on Friday 13^{th} May 2022 (Any later handing-out will be marked ZERO). A scan of a handwritten solution is acceptable. Since this work is assessed, your submission must be entirely your own work.

Question:

To investigate the linear model $\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$,

we assume the following data:

i	1	2	3	4	5	6	7	8	9	10
X_1	8	8	5	7	5	9	8	7	2	9
X_2	2	5	4	9	8	0	1	5	8	1
Y	7	13	10	20	19	5	6	13	16	6

a. Complete the matrices:

$$X'X = \begin{bmatrix} 10 & 68 & 43 \\ 68 & \square & \square \\ 43 & \square & \square \end{bmatrix} \qquad X'Y = \begin{bmatrix} 115 \\ 715 \\ \square \end{bmatrix}$$

- b. Find the model $\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$.
- c. Find SSR.
- d. Find $SSR(X_2|X_1)$.
- e. Find $SSR(X_1|X_2)$. f. Calculate $r_{Y 2.1}^2$