King Saud University

College of Sciences

Department of Mathematics

151 Math Exercises

(4,1)

Relations and Their Properties

Malek Zein AL-Abidin

1440هـ 2018

DEFINITION 1 Let A and B be sets. A *binary relation from A to B* is a subset of $A \times B$.

In other words, a binary relation from *A* to *B* is a set *T* of ordered pairs where the first element of each ordered pair comes from *A* and the second element comes from *B*. We use the notation a T b to denote that $(a, b) \in T$ and a T b to denote that $(a, b) \notin T$. Moreover, when (a, b) belongs to *T*, *a* is said to be **related to** *b* by *T*. Binary relations represent relationships between the elements of two sets.

EXAMPLE 1 Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. This means, for instance, that 0Ta, but that 1Tb. Relations can be represented graphically, as shown in Figure 1, using arrows to represent ordered pairs.

FIGURE 1 Displaying the Ordered Pairs in the Relation T

Relations on a Set

Relations from a set A to itself are of special interest.

DEFINITION 2 A *relation on a set A* is a relation from A to A. In other words, a relation on a set A is a subset of $A \times A$.

EXAMPLE 2 Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b, we see that

 $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}.$

The pairs in this relation are displayed graphically form in Figure 2.

FIGURE 2 Displaying the Ordered Pairs in the Relation *R* from Example 2.

Properties of Relations

EXAMPLE 3 $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ is reflexive

DEFINITION 4 A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. $\forall a, b \in A$, $aRb \Rightarrow bRa$

EXAMPLE 4 $R = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ is symmetric

DEFINITION 5 A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

EXAMPLE 5 $a \le b \land b \le a \Rightarrow a = b : a, b \in A \quad \therefore \le \text{ is antisymmetric.}$

DEFINITION 6 A relation *R* on a set *A* is called *transitive* if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

 $aRb \& bRc \Rightarrow aRc$

EXAMPLE 6 $a|b \wedge b|c \Rightarrow a|c , \therefore |$ is transitive

Combining Relations

EXAMPLE 7 Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$.

The relations $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$ can be combined to obtain

 $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\},\$

 $R_1 \cap R_2 = \{(1, 1)\},\$

 $R_1 - R_2 = \{(2, 2), (3, 3)\},\$

 $R_2 - R_1 = \{(1, 2), (1, 3), (1, 4)\}.$

 $R_1 \bigoplus R_2 = R_1 \cup R_2 - R_1 \cap R_2 = \{(1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$

DEFINITION 7 Let *R* be a relation from a set *A* to a set *B* and *S* a relation from *B* to a set *C*. The *composite* of *R* and *S* is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of *R* and *S* by $S \circ R$.

EXAMPLE 8 What is the composite of the relations *R* and *S*, where *R* is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and *S* is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

Solution: $S \circ R$ is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S. For example, the ordered pairs (2, 3) in R and (3, 1) in S produce the ordered pair (2, 1)

in $S \circ R$. Computing all the ordered pairs in the composite, we find

 $S \circ R = \{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}.$

DEFINITION 8 Let *R* be a relation on the set *A*. The powers R^n , n = 1, 2, 3, ..., are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$. The definition shows that $R^2 = R \circ R$, $R^3 = R^2 \circ R = (R \circ R) \circ R$, and so on.

EXAMPLE 9 Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R_n , n = 2, 3, 4, ...

Solution: Because $R^2 = R \circ R$, we find that $R^2 = \{(1, 1), (2, 1), (3, 1), (4, 2)\}$.

Furthermore, Because $R^3 = R^2 \circ R$, $R^3 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$.

Additional computation $R^4 = R^3 \circ R$, so $R^4 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}.$

It also follows that $R^n = R^3$ for n = 5, 6, 7, ... The reader should verify this.

THEOREM 1

The relation R on a set A is *transitive* if and only if $R_n \subseteq R$ for n = 1, 2, 3, ...

DEFINITION 9 Let A and B be sets. R is a binary relation from A to B : $R \subseteq A \times B$. Domain of R is $D_R = \{a: a \in A \land \exists b \in B (aRb)\}$, $D_R \subseteq A$ Range of R is $Im R = \{b: b \in B \land \exists a \in A (aRb)\}$, $Im R \subseteq B$

EXAMPLE 10 Let $A = \{0, 1, 2, 3\}$ and $B = \{a, b, c\}$.

 $R = \{ (0, a), (0, b), (1, a), (2, b) \}$ is a relation from A to B. $D_R = \{ 0, 1, 2 \} \subseteq A$ $Im R = \{ a, b \} \subseteq B$

Representing Relations Using Matrices

 $\mathbf{M}_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

EXAMPLE 11 Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Let R be the relation from

A to B containing (a, b), Where $a \in A, b \in B$,

 $R = \{(2, 1), (3, 1), (3, 2)\}$

What is the matrix representing R?

Solution:

The 1s in M_R show that the pairs (2, 1), (3, 1), and (3, 2) belong to R. The 0s show that no other pairs belong to R.

#

EXAMPLE 12 Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation *R* represented by the matrix :

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} ?$$

Solution: Because R consists of those ordered pairs (a_i, b_i) with $m_{ij} = 1$, it follows that

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}.$$

The matrix of a relation on a set, which is a square matrix, can be used to determine whether the relation has certain properties. Recall that a relation *R* on *A* is reflexive if $(a, a) \in R$ whenever $a \in A$.

Thus, *R* is reflexive if and only if $(a_i, a_i) \in R$ for i = 1, 2, ..., n. Hence, *R* is reflexive if and only if $m_{ii} = 1$, for i = 1, 2, ..., n. In other words, *R* is reflexive if all the elements on the main diagonal of \mathbf{M}_R are equal to 1, as shown in Figure 1. Note that the elements off the main diagonal can be either 0 or 1.

The relation *R* is symmetric if $(a, b) \in R \Rightarrow (b, a) \in R$. Consequently, the relation *R* on the set $A = \{a_1, a_2, ..., a_n\}$ is symmetric if and only if $(a_j, a_i) \in R$ whenever $(a_i, a_j) \in R$. In terms of the entries of \mathbf{M}_R , *R* is symmetric if and only if $m_{ji} = 1$ whenever $m_{ij} = 1$. This also means $m_{ji} = 0$ whenever $m_{ij} = 0$. Consequently, *R* is symmetric if and only if $m_{ij} = m_{ji}$, for all pairs of integers *i* and *j* with i = 1, 2, ..., n and j = 1, 2, ..., n.

R is symmetric if and only if $\mathbf{M}_R = (\mathbf{M}_R)^t$, that is, if \mathbf{M}_R is a symmetric matrix. The form of the matrix for a symmetric relation is illustrated in Figure 3(a).

The relation *R* is antisymmetric if and only if $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$.

Consequently, the matrix of an antisymmetric relation has the property that if $m_{ij} = 1$ with $i \neq j$, then $m_{ji} = 0$. Or, in other words, either $m_{ij} = 0$ or $m_{ji} = 0$ when $i \neq j$. The form of the matrix for an antisymmetric relation is illustrated in Figure 3(b).

FIGURE 4 The Zero-One Matrices for Symmetric and Antisymmetric Relations.

EXAMPLE 13 Suppose that the relation *R* on a set is represented by the matrix

$$\mathbf{M}_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Is *R* reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive. Moreover, because \mathbf{M}_R is symmetric, it follows that R is symmetric. It is also easy to see that R is not antisymmetric.

Suppose that R_1 and R_2 are relations on a set A represented by the matrices \mathbf{M}_{R_1} and \mathbf{M}_{R_2} , respectively. The matrix representing the union of these relations has a 1 in the positions where either \mathbf{M}_{R_1} or \mathbf{M}_{R_2} has a 1. The matrix representing the intersection of these relations has a 1 in the positions where both \mathbf{M}_{R_1} and \mathbf{M}_{R_2} have a 1.

Thus, the matrices representing the union and intersection of these relations are

 $\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2}$ and $\mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2}$

EXAMPLE 14 Suppose that the relations R_1 and R_2 on a set A are represented by the matrices $\mathbf{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $\mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

What are the matrices representing $R_1 \cup R_2$ and $R_1 \cap R_2$?

Solution: The matrices of these relations are

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \lor \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$\mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \land \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

EXAMPLE 15 Find the matrix representing the relations $S \circ R$, where the matrices representing *R* and *S* are

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Solution: The matrix for $S \circ R$ is

$$\mathbf{M}_{S \circ R} = \mathbf{M}_{R} \odot \mathbf{M}_{S} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

#

The matrix representing the composite of two relations can be used to find the matrix for M_{R^n} . In particular,

$$\mathbf{M}_{R^n} = \mathbf{M}_{R^{[n]}}$$

EXAMPLE 16 Find the matrix representing the relation R^2 , where the matrix representing *R* is

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Solution: The matrix for R^2 is

$$\mathbf{M}_{R^2} = \mathbf{M}_{R}^{[2]} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \odot \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Representing Relations Using Digraphs

DEFINITION 10 A *directed graph*, or *digraph*, consists of a set V of *vertices* (or *nodes*) together with a set E of ordered pairs of elements of V called *edges* (or *arcs*). The vertex a is called the *initial vertex* of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

EXAMPLE 17 The directed graph with vertices *a*, *b*, *c*, and *d*, and edges (*a*, *b*), (*a*, *d*), (*b*, *b*), (*b*, *d*), (*c*, *a*), (*c*, *b*), and (*d*, *b*) is displayed in Figure 5.

FIGURE 5 A Directed Graph.

EXAMPLE 18 The directed graph of the relation

 $R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}$

on the set {1, 2, 3, 4} is shown in Figure 6.

FIGURE 6 A Directed Graph of the relation R .

EXAMPLE 19 What are the ordered pairs in the relation *R* represented by the directed graph shown in Figure 7?

Solution: The ordered pairs (x, y) in the relation are

 $\mathbf{R} = \{(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)\}.$

Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and (3, 3) corresponding to loops.

FIGURE 7 A Directed Graph of the relation R

EXAMPLE 20 Determine whether the relation for the directed graphs shown in Figure 8 is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

Solution: Because there are loops at every vertex of the directed graph of R, it is *reflexive*. R is *neither symmetric* nor antisymmetric because there is an edge from a to b but not one from b to a, but there are edges in both directions connecting b and c. Finally, R is *not transitive* because there is an edge from a to b and an edge from b to c, but no edge from a to c.

#

#

FIGURE 8 A Directed Graph of the relation R

EXAMPLE 21 Determine whether the relation for the directed graphs shown in Figure 9 is *reflexive, symmetric, antisymmetric, and/or transitive.*

FIGURE 9 A Directed Graph of the relation R

Solution: Because loops are not present at all the vertices of the directed graph of *S*, this relation is *not reflexive*.

It is *symmetric* and *not antisymmetric*, because every edge between distinct vertices is accompanied by an edge in the opposite direction. It is also not hard to see from the directed graph that S is *not transitive*, because (c, a) and (a, b) belong to S, but (c, b) does not belong to S.

EXERCISES

1. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

$m,n\in A$, $m R n \Leftrightarrow n = m^2$

(i) What are the ordered pairs in the relation R?

(ii) Find the domain and the image of R?

(iii) Represent *R* by the directed graph (diagraph)? *Solution:*

2. Let *R* be a relation defined on the set $A = \{1,2,3,4,5\}$

 $x, y \in A$, $x R y \Leftrightarrow xy \leq 9$

(i) What are the ordered pairs in the relation R?

(ii) Find the domain and the image of R?

(iii) Draw the directed graph (diagraph) that represents R?

3. Let *R* be a relation defined on the set $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

 $x, y \in A$, $x R y \Leftrightarrow y = 2x$

(i) What are the ordered pairs in the relation R?

(ii) Find the domain and the image of *R* ? *Solution:*

- 4. Let *R* be a relation defined from the set $A = \{1,2,3,4\}$ to the set $B = \{2,3,4,5\}$ as: $a R b \Leftrightarrow a + b = 5$
- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Represent *R* with a matrix ?

5. Suppose *R* is a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$, as

 $x, y \in A$, $x R y \Leftrightarrow |x - y| < 2$

- (i) What are the ordered pairs in the relation R?
- (ii) Draw the directed graph (diagraph) that represents R
- (iii) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

6. Let *R* be a relation defined on the set $A = \{1,3,4,6\}$

 $a, b \in A$, $a R b \Leftrightarrow a - b = 1$

(i) What are the ordered pairs in the relation R?

(ii) Find the domain and the image of R?

(iii) Draw the directed graph (diagraph) that represents R ? *Solution:*

7. Let *R* be a relation defined on the set $A = \{0,1,2,3\}$

 $a, b \in A$, $a R b \Leftrightarrow a + b = 4$

(i) What are the ordered pairs in the relation R?

(ii) Find the domain and the image of R?

(iii) Draw the directed graph (diagraph) that represents R ? *Solution:*

8. Let *R* be a relation defined on the set $A = \{2,3,4,5,6\}$

 $a, b \in A$, $a R b \Leftrightarrow a. b < 10$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find \mathbf{M}_R .

9. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2, 3, 4\}$

 $a, b \in A$, $a R b \Leftrightarrow a^2 = b^2$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

10. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

 $a, b \in A$, $a R b \Leftrightarrow a. b < 0$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find R^2 .
- (v) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

11. Let *R* be a relation defined on the set $A = \{-2, -1, 0, 1, 2\}$

 $a, b \in A$, $a R b \Leftrightarrow a. b \ge 2$

- (i) What are the ordered pairs in the relation R?
- (ii) Find the domain and the image of R?
- (iii) Draw the directed graph (diagraph) that represents R?
- (iv) Find R^2 .
- (v) Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

- 12. Let $S = \{(1,1), (1,2), (1,3), (2,2), (3,1), (3,3)\}$ be a relation on the set $B = \{1, 2, 3\}$
- (i) Draw the directed graph (diagraph) that represents S?
- (ii) Find S^2 , \overline{S} , $So \overline{S}$
- (iii) Find \mathbf{M}_{S}
- (iv) Determine whether the relation S is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*

13. Let $S = \{(a, c), (b, a), (c, b)\}$ be a relation on the set $B = \{a, b, c\}$.

(i) Find \mathbf{M}_{S} ? (ii) Find $\overline{S} - S^{-1}$

(iii) Find S^2 , S^3

14. Let $S = \{(a, b), (b, c), (c, d), (d, a)\}$ be a relation on the set $B = \{a, b, c, d\}$.

- (i) Find $\mathbf{M}_{\mathbf{S}}$?
- (ii) Find S^2
- (iii) Find $S^{-1} \circ S$

15. Let
$$S = \{(1, v), (1, w), (2, u), (2, v), (3, w)\}$$
 and
 $T = \{(1, u), (1, w), (2, v), (2, w), (3, u), (3, v)\}$ are relations from the set
 $A = \{1, 2, 3\}$ to the set $B = \{u, v, w\}$.
(i) Find \bar{S} , $\bar{S} \cap T$, $T - \bar{S}$

- (ii) Find $T^{-1}o S$
- (iii) Find $S^{-1} \circ T$

16. Let $R = \{(a, c), (a, b), (b, b)\}$ and $S = \{(a, a), (a, c), (b, c), (c, a)\}$ are relations on the set $A = \{a, b, c\}$

- (i) Find $(R \circ S) \cap R^{-1}$
- (ii) Find $S^{-1} \circ R$
- (iii) Find \mathbf{M}_R , \mathbf{M}_S , $\mathbf{M}_{R\cup S}$, $\mathbf{M}_{R\cap S}$, $\mathbf{M}_{R\circ S}$

- **17.** Let $T = \{(1,2), (1,3), (2,2), (2,3)\}$ and $S = \{(1,1), (1,3), (2,1), (3,2)\}$ are relations on the set $E = \{1, 2, 3\}$
- (i) Find $T \circ S$, $\overline{T} \cap S$, $\overline{T} \circ \overline{S}$, $T^2 \circ S^{-1}$
- (ii) Find \mathbf{M}_T , \mathbf{M}_S , $\mathbf{M}_{T \cup S}$, $\mathbf{M}_{T \cap S}$, $\mathbf{M}_{T \circ S}$ Solution:

- **18.** Let $R = \{(a, c), (b, a), (b, b)\}$ and $S = \{(a, b), (b, b), (c, a)\}$ are relations on the set $A = \{a, b, c\}$
- (i) Find $R^{-1} \circ S^{-1}$, $\overline{R} \cap S$, $R^2 \circ S$

(ii) Find \mathbf{M}_R , \mathbf{M}_S , $\mathbf{M}_{R\cup S}$, $\mathbf{M}_{R\cap S}$, $\mathbf{M}_{R\circ S}$ Solution:

19. Suppose *R* is a relation defined on the integers set $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ $m, n \in \mathbb{Z}^+$, $m R n \Leftrightarrow m + n = 20$

Determine whether the relation T is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

Solution:

 $\begin{array}{rcl} 1- & \because & 5+5 \neq 20 \implies (5,5) \notin R \Rightarrow \because & R \ is \ irreflexive \ .\\ 2- & m,n \in \mathbb{Z}^+ \ , & mRn \Leftrightarrow & m+n=20 \\ & \xrightarrow{\text{comutative}} & n+m=20 \Rightarrow & \because & nRm \Rightarrow \because & R \ is \ symmetric \end{array}$

 $3-:: 7R13:7+13=20 \land 13R7:13+7=20$

But $7 \neq 13 \Rightarrow \therefore R$ is not antisymmetric

4- $:: 8 R 12 : 8 + 12 = 20 \land 12 R 8 : 12 + 7 = 20$

but (8,8) $\notin R$: 8 + 8 = 16 \neq 20 \Rightarrow \therefore R is not transitive.

 \therefore *R* is symmetric only

20. Suppose *T* is a relation defined on the integers set \mathbb{Z}

 $m, n \in \mathbb{Z}, \quad m T n \iff m + n \ge 2$

Determine whether the relation T is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

21. Let *T* be a relation defined on the set $\mathbb{N} = \{1, 2, 3, ...\}$, $m, n \in \mathbb{N}$, $mTn \Leftrightarrow m+n > 3$ Determine whether the relation *R* is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

22. Let T be a relation defined on the integers set $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ $m, n \in \mathbb{Z}$, $mTn \Leftrightarrow m+n$ is odd

Determine whether the relation T is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

23. Let *R* be a relation defined on the integers set $\mathbb{N} = \{1, 2, 3, ...\}$

$$x, y \in \mathbb{N}$$
, $x R y \Leftrightarrow x < y$

Determine whether the relation R is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*.

24. Determine whether the relation for the directed graphs shown in the Figure is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*. *Solution:*

25. Determine whether the relation for the directed graphs shown in the Figure is *reflexive*, *symmetric*, *antisymmetric*, and/or *transitive*. *Solution:*

26. Let R be the relation represented by the matrix $\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Find the matrix representing: a) R^{-1} b) \overline{R} c) R^2

27. Let R_1 and R_2 are relations on a set A represented by the matrices $\mathbf{M}_{R_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Find the matrices representing a) $R_1 \cup R_2$ b) $R_1 \cap R_2$ c) $R_1 \circ R_2$ d) $R_2 \circ R_1$ Solution:

28. Let R be the relation represented by the matrix $\mathbf{M}_R = \begin{bmatrix} 0 & 1\\ 0 & 0\\ 1 & 1 \end{bmatrix}$ 0] 1 0 Find the matrix representing: a) R² c) R⁴ b) *R*³ Solution: