King Saud University
College of Sciences
Department of Mathematics

151 Math Exercises

$$
(4,1)
$$

Relations and Their Properties

Malek Zein AL-Abidin

$$
\frac{1440}{2018}
$$

DEFINITION 1 Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation from A to B is a set T of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B. We use the notation $a T b$ to denote that $(a, b) \in T$ and $a \mathrm{~T} b$ to denote that $(a, b) \notin T$. Moreover, when (a, b) belongs to T, a is said to be related to b by T.
Binary relations represent relationships between the elements of two sets.

EXAMPLE 1 Let $A=\{0,1,2\}$ and $B=\{a, b\}$. Then $\{(0, a),(0, b),(1, a),(2, b)\}$ is a relation from A to B. This means, for instance, that $0 T a$, but that $1 \mathrm{~T} b$. Relations can be represented graphically, as shown in Figure 1, using arrows to represent ordered pairs.

FIGURE 1 Displaying the Ordered Pairs in the Relation T

Relations on a Set

Relations from a set A to itself are of special interest.
DEFINITION 2 A relation on a set A is a relation from A to A. In other words, a relation on a set A is a subset of $A \times A$.

EXAMPLE 2 Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation

$$
R=\{(a, b) \mid \text { a divides } b\} ?
$$

Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b, we see that
$R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$.
The pairs in this relation are displayed graphically form in Figure 2.

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin

FIGURE 2 Displaying the Ordered Pairs in the Relation \boldsymbol{R} from Example 2.

Properties of Relations

DEFINITION 3 A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A . \quad \forall a \in A, a R a$

EXAMPLE $3 \quad R=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$ is reflexive

DEFINITION 4 A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A . \forall a, b \in A, a R b \Rightarrow b R a$

EXAMPLE $4 \quad R=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$ is symmetric

DEFINITION 5 A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

EXAMPLE $5 \quad a \leq b \wedge b \leq a \Rightarrow a=b: a, b \in A \quad \therefore \leq$ is antisymmetric.

DEFINITION 6 A relation R on a set A is called transitive
if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$. $a R b \& b R c \Rightarrow a R c$

$$
(a, b) \in R \&(b, c) \in R \Rightarrow(a, c) \in R, \forall a, b, c \in A
$$

EXAMPLE $6 a|b \wedge b| c \Rightarrow a|c, \therefore|$ is transitive

Combining Relations

EXAMPLE 7 Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$.
The relations $R_{1}=\{(1,1),(2,2),(3,3)\}$ and $R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain
$R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$,
$R_{1} \cap R_{2}=\{(1,1)\}$,
$R_{1}-R_{2}=\{(2,2),(3,3)\}$,
$R_{2}-R_{1}=\{(1,2),(1,3),(1,4)\}$.
$R_{1} \oplus R_{2}=R_{1} \cup R_{2}-R_{1} \cap R_{2}=\{(1,2),(1,3),(1,4),(2,2),(3,3)\}$
DEFINITION 7 Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

EXAMPLE 8 What is the composite of the relations R and S, where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?

Solution: $S \circ R$ is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S. For example, the ordered pairs $(2,3)$ in R and $(3,1)$ in S produce the ordered pair $(2,1)$ in $S \circ R$. Computing all the ordered pairs in the composite, we find

$$
S \circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}
$$

DEFINITION 8 Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$, are defined recursively by $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.
The definition shows that $R^{2}=R \circ R, R^{3}=R^{2} \circ R=(R \circ R)^{\circ} R$, and so on.

EXAMPLE 9 Let $R=\{(1,1),(2,1),(3,2),(4,3)\}$. Find the powers $R_{n}, n=2,3,4, \ldots$
Solution: Because $R^{2}=R \circ R$, we find that $R^{2}=\{(1,1),(2,1),(3,1),(4,2)\}$.
Furthermore, Because $R^{3}=R^{2} \circ R, R^{3}=\{(1,1),(2,1),(3,1),(4,1)\}$.
Additional computation $R^{4}=R^{3} \circ R$, so $R^{4}=\{(1,1),(2,1),(3,1),(4,1)\}$.
It also follows that $R^{n}=R^{3}$ for $n=5,6,7, \ldots$ The reader should verify this.

THEOREM 1

The relation R on a set A is transitive if and only if $R_{n} \subseteq R$ for $n=1,2,3, \ldots$

DEFINITION 9 Let A and B be sets. R is a binary relation from A to $B: R \subseteq A \times B$.
Domain of R is $D_{R}=\{a: a \in A \wedge \exists b \in B(a R b)\} \quad, \quad D_{R} \subseteq A$
Range of R is $\operatorname{Im} R=\{b: b \in B \wedge \exists a \in A(a R b)\}, \quad \operatorname{Im} R \subseteq B$

EXAMPLE 10 Let $A=\{0,1,2,3\}$ and $B=\{a, b, c\}$.
$R=\{(0, a),(0, b),(1, a),(2, b)\} \quad$ is a relation from A to B.

$$
\begin{gathered}
D_{R}=\{0,1,2\} \subseteq A \\
\operatorname{Im} R=\{a, b\} \subseteq B
\end{gathered}
$$

Representing Relations Using Matrices

EXAMPLE 11 Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a, b), Where $a \in A, b \in B$,

$$
R=\{(2,1),(3,1),(3,2)\}
$$

What is the matrix representing R ?
Solution: $\quad \mathbf{M}_{R}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right]$
The 1 s in M_{R} show that the pairs $(2,1),(3,1)$, and $(3,2)$ belong to R. The 0 s show that no other pairs belong to R.

EXAMPLE 12 Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. Which ordered pairs are in the relation R represented by the matrix :

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right] \text { ? }
$$

Solution: Because R consists of those ordered pairs $\left(a_{i}, b_{j}\right)$ with $m_{i j}=1$, it follows that

$$
R=\left\{\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right),\left(a_{3}, b_{5}\right)\right\}
$$

The matrix of a relation on a set, which is a square matrix, can be used to determine whether the relation has certain properties. Recall that a relation R on A is reflexive if $(a, a) \in R$ whenever $a \in A$.

Thus, R is reflexive if and only if $\left(a_{i}, a_{i}\right) \in R$ for $i=1,2, \ldots, n$. Hence, R is reflexive if and only if $m_{i i}=1$, for $i=1,2, \ldots, n$. In other words, R is reflexive if all the elements on the main diagonal of \mathbf{M}_{R} are equal to 1, as shown in Figure 1. Note that the elements off the main diagonal can be either 0 or 1 .

FIGURE 3 The Zero-One Matrix for a Reflexive Relation. (Off Diagonal Elements Can Be 0 or 1.)

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
The relation R is symmetric if $(a, b) \in R \Rightarrow(b, a) \in R$. Consequently, the relation R on the set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is symmetric if and only if ($\left.a_{j}, a_{i}\right) \in R$ whenever $\left(a_{i}, a_{j}\right) \in R$. In terms of the entries of \mathbf{M}_{R}, R is symmetric if and only if $m_{j i}=1$ whenever $m_{i j}=1$. This also means $m_{j i}=0$ whenever $m_{i j}=0$. Consequently, R is symmetric if and only if $m_{i j}=m_{j i}$, for all pairs of integers i and j with $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.
R is symmetric if and only if $\mathbf{M}_{R}=\left(\mathbf{M}_{R}\right)^{t}$, that is, if \mathbf{M}_{R} is a symmetric matrix. The form of the matrix for a symmetric relation is illustrated in Figure 3(a).

The relation R is antisymmetric if and only if $(a, b) \in R$ and $(b, a) \in R \Rightarrow a=b$. Consequently, the matrix of an antisymmetric relation has the property that if $m_{i j}=1$ with $i \neq j$, then $m_{j i}=0$. Or, in other words, either $m_{i j}=0$ or $m_{j i}=0$ when $i \neq j$. The form of the matrix for an antisymmetric relation is illustrated in Figure 3(b).

(a) Symmetric

(b) Antisymmetric

FIGURE 4 The Zero-One Matrices for Symmetric and Antisymmetric Relations.

EXAMPLE 13 Suppose that the relation R on a set is represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexive, symmetric, and/or antisymmetric?
Solution: Because all the diagonal elements of this matrix are equal to $1, R$ is reflexive. Moreover, because \mathbf{M}_{R} is symmetric, it follows that R is symmetric. It is also easy to see that R is not antisymmetric.

Suppose that R_{1} and R_{2} are relations on a set A represented by the matrices $\mathbf{M}_{R_{1}}$ and $\mathbf{M}_{\mathrm{R}_{2}}$, respectively. The matrix representing the union of these relations has a 1 in the positions where either $\mathbf{M}_{R_{1}}$ or $\mathbf{M}_{\mathrm{R}_{2}}$ has a 1. The matrix representing the intersection of these relations has a 1 in the positions where both $\mathbf{M}_{R_{1}}$ and $\mathbf{M}_{\mathrm{R}_{2}}$ have a 1 .
Thus, the matrices representing the union and intersection of these relations are

$$
\mathbf{M}_{R_{1} \cup R_{2}}=\mathbf{M}_{R_{1}} \vee \mathbf{M}_{\mathrm{R}_{2}} \quad \text { and } \quad \mathbf{M}_{R_{1} \cap R_{2}}=\mathbf{M}_{R_{1}} \wedge \mathbf{M}_{\mathrm{R}_{2}}
$$

EXAMPLE 14 Suppose that the relations R_{1} and R_{2} on a set A are represented by the matrices $\quad \mathbf{M}_{R_{1}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $\mathbf{M}_{R_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$

What are the matrices representing $R_{1} \cup R_{2}$ and $R_{1} \cap R_{2}$?

Solution: The matrices of these relations are

$$
\begin{aligned}
& \mathbf{M}_{R_{1} \cup R_{2}}=\mathbf{M}_{R_{1}} \vee \mathbf{M}_{\mathrm{R}_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& \mathbf{M}_{R_{1} \cap R_{2}}=\mathbf{M}_{R_{1}} \wedge \mathbf{M}_{\mathrm{R}_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

EXAMPLE 15 Find the matrix representing the relations $S \circ R$, where the matrices representing R and S are

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { and } \mathbf{M}_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Solution: The matrix for $S{ }^{\circ} R$ is

$$
\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{s}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The matrix representing the composite of two relations can be used to find the matrix for $\mathbf{M}_{R^{n}}$. In particular,

$$
\mathbf{M}_{R^{n}}=\mathbf{M}_{R}{ }^{[n]}
$$

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin EXAMPLE 16 Find the matrix representing the relation R^{2}, where the matrix representing R is

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Solution: The matrix for R^{2} is

$$
\mathbf{M}_{R^{2}}=\mathbf{M}_{R}{ }^{[2]}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

\#

Representing Relations Using Digraphs

DEFINITION 10 A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

EXAMPLE 17 The directed graph with vertices a, b, c, and d, and edges $(a, b),(a, d),(b, b),(b, d),(c, a),(c, b)$, and (d, b) is displayed in Figure 5.

FIGURE 5 A Directed Graph.

EXAMPLE 18 The directed graph of the relation

$$
R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}
$$

on the set $\{1,2,3,4\}$ is shown in Figure 6.

FIGURE 6 A Directed Graph of the relation R .

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin EXAMPLE 19 What are the ordered pairs in the relation R represented by the directed graph shown in Figure 7?

Solution: The ordered pairs (x, y) in the relation are

$$
R=\{(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4,1),(4,3)\} .
$$

Each of these pairs corresponds to an edge of the directed graph, with $(2,2)$ and $(3,3)$ corresponding to loops.

FIGURE 7 A Directed Graph of the relation R

\#

EXAMPLE 20 Determine whether the relation for the directed graphs shown in Figure 8 is reflexive, symmetric, antisymmetric, and/or transitive.

Solution: Because there are loops at every vertex of the directed graph of R, it is reflexive. R is neither symmetric nor antisymmetric because there is an edge from a to b but not one from b to a, but there are edges in both directions connecting b and c. Finally, R is not transitive because there is an edge from a to b and an edge from b to c, but no edge from a to c.

FIGURE 8 A Directed Graph of the relation R

\#

EXAMPLE 21 Determine whether the relation for the directed graphs shown in Figure 9 is reflexive, symmetric, antisymmetric, and/or transitive.

FIGURE 9 A Directed Graph of the relation R

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
Solution: Because loops are not present at all the vertices of the directed graph of S, this relation is not reflexive.
It is symmetric and not antisymmetric, because every edge between distinct vertices is accompanied by an edge in the opposite direction. It is also not hard to see from the directed graph that S is not transitive, because (c, a) and (a, b) belong to S, but (c, b) does not belong to S.

EXERCISES

1. Let R be a relation defined on the set $A=\{-2,-1,0,1,2,3,4\}$

$$
m, n \in A, \quad m R n \Leftrightarrow n=m^{2}
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Represent R by the directed graph (diagraph)?

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
2. Let R be a relation defined on the set $A=\{1,2,3,4,5\}$

$$
x, y \in A, \quad x R y \Leftrightarrow x y \leq 9
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ? Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
3. Let R be a relation defined on the set $A=\{-4,-3,-2,-1,0,1,2,3,4\}$

$$
x, y \in A, \quad x R y \Leftrightarrow y=2 x
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
4. Let R be a relation defined from the set $A=\{1,2,3,4\}$ to the set $B=\{2,3,4,5\}$ as: $\quad a R b \Leftrightarrow a+b=5$
(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Represent R with a matrix ?

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
5. Suppose R is a relation defined on the set $A=\{-2,-1,0,1,2\}$, as
$x, y \in A, \quad x R y \Leftrightarrow|x-y|<2$
(i) What are the ordered pairs in the relation R ?
(ii) Draw the directed graph (diagraph) that represents R
(iii) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
6. Let R be a relation defined on the set $A=\{1,3,4,6\}$

$$
a, b \in A, \quad a R b \Leftrightarrow a-b=1
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ?

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
7. Let R be a relation defined on the set $A=\{0,1,2,3\}$

$$
a, b \in A, \quad a R b \Leftrightarrow a+b=4
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ?

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
8. Let R be a relation defined on the set $A=\{2,3,4,5,6\}$

$$
a, b \in A, \quad a R b \Leftrightarrow a . b<10
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ?
(iv) Find \mathbf{M}_{R}.

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
9. Let R be a relation defined on the set $A=\{-2,-1,0,1,2,3,4\}$

$$
a, b \in A, \quad a R b \Leftrightarrow a^{2}=b^{2}
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ?
(iv) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
10. Let R be a relation defined on the set $A=\{-2,-1,0,1,2\}$

$$
a, b \in A, \quad a R b \Leftrightarrow a . b<0
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ?
(iv) Find R^{2}.
(v) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
11. Let R be a relation defined on the set $A=\{-2,-1,0,1,2\}$

$$
a, b \in A, \quad a R b \Leftrightarrow a . b \geq 2
$$

(i) What are the ordered pairs in the relation R ?
(ii) Find the domain and the image of R ?
(iii) Draw the directed graph (diagraph) that represents R ?
(iv) Find R^{2}.
(v) Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
12. Let $S=\{(1,1),(1,2),(1,3),(2,2),(3,1),(3,3)\}$ be a relation on the set $B=\{1,2,3\}$
(i) Draw the directed graph (diagraph) that represents S ?
(ii) Find $S^{2}, \quad \bar{S}$, So \bar{S}
(iii) Find \mathbf{M}_{S}
(iv) Determine whether the relation S is reflexive, symmetric, antisymmetric, and/or transitive

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
13. Let $\mathrm{S}=\{(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{a}),(\mathrm{c}, \mathrm{b})\}$ be a relation on the set $B=\{a, b, c\}$.
(i) Find \mathbf{M}_{S} ?
(ii) Find $\bar{S}-S^{-1}$
(iii) Find S^{2}, S^{3}

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
14. Let $S=\{(a, b),(b, c),(c, d),(d, a)\}$ be a relation on the set $B=\{a, b, c, d\}$.
(i) Find \mathbf{M}_{S} ?
(ii) Find S^{2}
(iii) Find $S^{-1} \circ S$

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
15. Let $S=\{(1, v),(1, w),(2, u),(2, v),(3, w)\} \quad$ and
$T=\{(1, u),(1, w),(2, v),(2, w),(3, u),(3, v)\}$ are relations from the set $A=\{1,2,3\}$ to the set $B=\{u, v, w\}$.
(i) Find $\bar{S}, \bar{S} \cap T, T-\bar{S}$
(ii) Find $T^{-1} o S$
(iii) Find $S^{-1} \circ T$

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
16. Let $R=\{(a, c),(a, b),(b, b)\}$ and $S=\{(a, a),(a, c),(b, c),(c, a)\}$ are relations on the set $A=\{a, b, c\}$
(i) Find $(R$ o $S) \cap R^{-1}$
(ii) Find $S^{-1} \circ R$
(iii) Find $\mathbf{M}_{R}, \mathbf{M}_{S}, \mathbf{M}_{R \cup S}, \mathbf{M}_{R \cap S}, \mathbf{M}_{R \circ S}$

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
17. Let $T=\{(1,2),(1,3),(2,2),(2,3)\} \quad$ and $\quad S=\{(1,1),(1,3),(2,1),(3,2)\}$ are relations on the set $E=\{1,2,3\}$
(i) Find $T o S, \bar{T} \cap S, \bar{T} \circ \bar{S}, T^{2} o S^{-1}$
(ii) Find $\mathbf{M}_{T}, \mathbf{M}_{S}, \mathbf{M}_{T \cup S}, \mathbf{M}_{T \cap S}, \mathbf{M}_{T \circ S}$ Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
18. Let $R=\{(a, c),(b, a),(b, b)\}$ and $S=\{(a, b),(b, b),(c, a)\}$ are relations on the set $A=\{a, b, c\}$
(i) Find R^{-1} o $S^{-1}, \bar{R} \cap S, R^{2} o S$
(ii) Find $\mathbf{M}_{R}, \mathbf{M}_{S}, \mathbf{M}_{R \cup S}, \mathbf{M}_{R \cap S}, \mathbf{M}_{R \circ S}$

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
19. Suppose R is a relation defined on the integers set $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$

$$
m, n \in \mathbb{Z}^{+}, \quad m R n \Leftrightarrow m+n=20
$$

Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

1- $\because 5+5 \neq 20 \Rightarrow(5,5) \notin R \Rightarrow \therefore R$ is irreflexive .
2- $m, n \in \mathbb{Z}^{+}, m R n \Leftrightarrow m+n=20$
$\xrightarrow{\text { comutative }} n+m=20 \Rightarrow \therefore n R m \Rightarrow \therefore \quad R$ is symmetric
3- $\because 7 R 13: 7+13=20 \wedge 13 R 7: 13+7=20$
But $7 \neq 13 \Rightarrow \therefore R$ is not antisymmetric
4- $\because 8 R 12: 8+12=20 \wedge 12 R 8: 12+7=20$
but $(8,8) \notin R: 8+8=16 \neq 20 \Rightarrow \therefore R$ is not transitive.
$\therefore \quad R$ is symmetric only.

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
20. Suppose T is a relation defined on the integers set \mathbb{Z}
$m, n \in \mathbb{Z}, \quad m T n \Leftrightarrow m+n \geq 2$
Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
21. Let T be a relation defined on the set $\mathbb{N}=\{1,2,3, \ldots\}$, $m, n \in \mathbb{N}, \quad m T n \Leftrightarrow m+n>3$
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
22. Let T be a relation defined on the integers set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ $m, n \in \mathbb{Z}, \quad m T n \Leftrightarrow m+n$ is odd
Determine whether the relation T is reflexive, symmetric, antisymmetric, and/or transitive.
Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
23. Let R be a relation defined on the integers set $\mathbb{N}=\{1,2,3, \ldots\}$ $x, y \in \mathbb{N}, \quad x R y \Leftrightarrow x<y$
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive.
Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
24. Determine whether the relation for the directed graphs shown in the Figure is reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

25. Determine whether the relation for the directed graphs shown in the Figure is reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
26. Let R be the relation represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Find the matrix representing:
a) R^{-1}
b) \bar{R}
c) R^{2}

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
27. Let R_{1} and R_{2} are relations on a set A represented by the matrices

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Find the matrices representing
a) $R_{1} \cup R_{2}$
b) $R_{1} \cap R_{2}$
c) $R_{1} \circ R_{2}$
d) $R_{2} \circ R_{1}$

Solution:

Math151 Discrete Mathematics (4,1) Relations and Their Properties By: Malek Zein AL-Abidin
28. Let R be the relation represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Find the matrix representing:
a) R^{2}
b) R^{3}
c) R^{4}

Solution:

