King	Saud University Colle	ege of science	Chemistry Dept.	430 Chem.			
MEL	EXAM (30 marks)			8-3-1444 H			
Stude	ent name:		ID#:				
<u>Instru</u>	<u>uctions</u> : Use the followin						
	F = 96485 C/mol e, R =	· · · · · · · · · · · · · · · · · · ·		em. Series is provided			
<u>PART</u>	(I) True (V) or false (X)	<u>questions (10mark</u>	<u>s)</u>				
1-	For the following reaction	on 2Au + 4Cl₂→ 2Au	uCl ₄ Au is the oxidiz	ing agent ()			
	In an electrochemical ce			()			
	Sodium (Na) ca be obtain	- · · · · · · · · · · · · · · · · · · ·	•	()			
4-	For $Cu^{2+} + 2e \rightarrow Cu$ elect		ase the reduction po	otential by increasing			
_	[Cu ²⁺] and the temperate		and alastraastiva	()			
5-	The electron transfer be thermodynamically favo			•			
	LUMO of the reactant [C		illi-level of the elect	()			
6-	The cathodic reaction ra	_	when the applied p	otential is made more			
	negative.			()			
7-	If $(\alpha = 0.3)$ oxation is f	favored which mea	ns the oxidation cur	rent increases more			
	rapidly with η .			()			
8-	The Tafel Slope is an int	ensive parameter o	lepends on the area	of the electrode			
	surface.			()			
	The exchange current (-		()			
10-	Helmholtz double layer l	nypotnesizes rigid i	ayer of opposite ch	arges. ()			
<u>PART</u>	(II) multiple choice que	stions (10 marks)					
	1)The process in which o	chemical change oc	curs on passing elec	tricity is termed			
	A) electrolysis	B) hydrolysis	C) Osmolysis	D) Faradlysis			
	2)The units of (RT/F) &		-				
	A) V ; Am ⁻²	B) V; unitless	C) unitless ; V	D) unitless ; unitless			
	3) The standard free ene	orgy change AG ⁰ in	kI/mal for				
	•	$(E^0 = + 1.61 \text{ V})$					
	A) -622	B) -311	C) -150.5	D) +150.5			
	4) The potential of hydroequals(in V)) The potential of hydrogen electrode $$ in contact with a solution whose pH=10 $$ quals($$ in V $$)					
	A) 0.0951pH	B) -0.951pH	C) 0.951pH	D) 0.0951pH			
	5) E^0_{cell} for [Sn (s) S	Sn ²⁺ (1M) Ag ⁺ (1N	Л) Ag (s)] equals				
	A) +1.82	В) -0.	65 C) +0.	65 D) +0.94			

	A) J A s		B) J A ⁻¹ s ⁻¹	C) J A ⁻¹ s	D) J A s ⁻¹
7) For th	ne electrode: Pt	Fe ³⁺ (0.1M)	, Fe ²⁺ (0.2M) c	alculate (E) at 25	$^{\circ}$ C (E ⁰ = 0.771 V
,	A) +0.375	B) -0).753	C) +0.753	D) +0.380
3) In ord	der to find the e	xchang curre	ent (I ₀) & the s	ymmetry factor (∝) we have to
A	.) plot η (X) agai	nst I (Y)	B) pl	ot η (Y) against Lo	og I (X)
В) plot Log η (X)	against Log I	(Y) D) pl	ot η (X) against Lo	og I (Y)
9) we m	nay obtain the st	tandard pote	ential of a galv	anic cell from the	equation of
A	.) Nernst		B) A	rhenius	
В) Van't Hof		D) No	one of of them	
10) The	strongest Redu	cing agent f	om the follow	ving (Cr , Hg , Mg	, Cl ⁻) is
А) Cr	B) Mg	C) Cl	D) I	Нg
	ulate the mean a			e mean ionic activ	

$\mathbf{i} = \mathbf{i}_0 \left(\mathbf{e}^{(1-\alpha)\eta F/RT} - \mathbf{e}^{-\alpha\eta F/RT} \right).$	3 marks
A An electrochemical galvanic call based on the fallowing two	half reactions
4- An electrochemical galvanic cell based on the following two $Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$	half reactions
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$ $E^{0} = +0.34 \text{ V}$ Calculate ΔG and the equilibrium constant K after identifying the	e anodic and cathodic
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$ $E^{0} = +0.34 \text{ V}$ Calculate ΔG and the equilibrium constant K after identifying the	e anodic and cathodic
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$ $E^{0} = +0.34 \text{ V}$ Calculate ΔG and the equilibrium constant K after identifying the	e anodic and cathodic
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$ $E^{0} = +0.34 \text{ V}$ Calculate ΔG and the equilibrium constant K after identifying the	e anodic and cathodic
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$ $E^{0} = +0.34 \text{ V}$ Calculate ΔG and the equilibrium constant K after identifying the	e anodic and cathodic
$Zn^{2+}(0.01M) + 2e^{-} \rightarrow Zn(s)$ $E^{0} = -0.76 \text{ V}$ $CU^{2+}(0.0M) + 2e^{-} \rightarrow Cu(s)$ $E^{0} = +0.34 \text{ V}$ Calculate ΔG and the equilibrium constant K after identifying the	e anodic and cathodic

3- For $\,\eta$ = 10 mV , i = 0.62 mA through 2 cm² Pt electrode in $H^+|\,H_2\>$ (H^+ + e \to ½ $H_2)$