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Carnosic acid alleviates chlorpyrifos-induced oxidative stress
and inflammation in mice cerebral and ocular tissues
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Abstract
Chlorpyrifos is an organophosphate pesticide whose exposure leads to inhibition of acetylcholinesterase (AChE) enzyme and induces
oxidative stress, inflammation, and neurotoxicity. The current study was designed to evaluate the efficacy of carnosic acid (CA) in
ameliorating CPF-induced cytotoxicity in mice brain and eye tissues. We allocated 40 male Swiss albino mice to receive DMSO 1%
solution, oral CA 60 mg/kg/day bw, CPF 12 mg/kg/day bw via gastric gavage, or CPF plus CA at 30 and 60 mg/kg/day bw. Carnosic
acid was administered once/day for 14 days, while CPF was administered in the last 7 days of the experiment. Biochemical analysis
showed that CPF administration was associated with significant increases in the serum concentrations of interleukin-1β, IL-6, and
tumor necrosis factor-α, while it was associated with significant reductions in serumAChE levels in mice. Moreover, CPF-intoxicated
mice exhibited significantly higher levels of malondialdehyde and nitric oxide in the brain and eye tissues. However, they had
significantly lower levels of reduced glutathione, glutathione peroxidase, superoxide dismutase, and catalase in comparison with
normal controls. Pretreatment with CA at 30 and 60 mg/kg/day bw for 14 days significantly alleviated all the aforementioned CPF-
induced alterations in a dose-dependent manner; more frequent restorations of the normal control ranges were observed in the higher
dose group. In conclusion, CA offers a neuroprotective effect against CPF-induced oxidative stress and inflammation and should be
further studied in upcoming experimental and clinical research.
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Introduction

Pesticides are chemical agents, used globally to control pests in
agriculture (Ma et al. 2013). However, excessive exposure
whether occupational or accidental, especially in developing
countries, may lead to serious side effects. Organophosphates

(OP) are the most commonly used pesticides nowadays (El-
Demerdash 2011). Chlorpyrifos (CPF), [O, O-diethyl-o-(3, 5,
6-trichloro-2-pyridyl) phosphorothionate], is a broad-spectrum
OP pesticide that was introduced in 1965 to control agricultural
and household pests, such as flies and mosquitoes (Ma et al.
2013; Uzun and Kalender 2013).

Chlorpyrifos inhibits the activity of acetylcholinesterase
(AChE), which is essential to maintain balanced neural transmis-
sion. This causes acetylcholine accumulation in the synaptic
clefts and uncontrolled activation of the cholinergic pathwaywith
neurotoxic effects (Ma et al. 2013). These effects include neuro-
behavioral changes, anxiety, cognitive dysfunction, memory im-
pairment, Parkinson’s disease, neuro-developmental delays, and
death (Ahmed et al. 2017; Fereidounni and Dhawan 2018).
Neurotoxicity is the common feature of CPF intoxication
(Uzun and Kalender 2013). However, CPF induces several ad-
verse effects in other systems as reproductive toxicity, teratoge-
nicity, cardiotoxicity, hematotoxicity, immunological abnormali-
ties, hepatic dysfunction, and inflammation (El-Sayed et al.
2018; Ma et al. 2013; Uzun and Kalender 2013). Further, CPF
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increases the production of reactive oxygen species (ROS) by
interfering with the electron reflux of the respiratory chain com-
ponents (Salama et al. 2014) and alters the activities of antioxi-
dant enzymes as superoxide dismutase (SOD), glutathione per-
oxidase (GPx), and catalase (CAT), leading to oxidative stress
and lipid peroxidation (Uzun &Kalender 2013).

Based on the role of oxidative stress in CPF cytotoxic-
ity, the use of antioxidants to prevent or ameliorate its
toxicity is a logical approach. Carnosic acid (CA) is a
natural phenolic diterpene that is present in rosemary
(Rosmarinus officinalis) and Salvia officinalis. It is used
in several types of food and non-food products like tooth-
paste and mouthwash (de Oliveira et al. 2016). Carnosic
acid is used as an antioxidant, anti-carcinogenic (e.g., co-
lonic and mammary tumors), anti-antimicrobial, anti-pro-
liferative, anti-inflammatory, and as a chemoprotective
agent against oxidative stress (González-Vallinas et al.
2015; Satoh et al. 2014; Yanagitai et al. 2012); it inhibits
lipid peroxidation and prevents oxidative hemolysis of
RBCs (Wu et al. 2015). Further, CA showed neuroprotec-
tive effects as it removes the pro-oxidants from the neural
cells to alleviate xenobiotic- (de Oliveira et al. 2016) and
ischemia-induced neuronal injuries (Hou et al. 2012).

Based on our knowledge of the published literature,
data on the neuroprotective role of CA against CPF
intoxication in vivo are lacking. Therefore, this study
was performed to assess the protective effects of CA
against CPF-induced inflammation and oxidative stress
in mice cerebral and ocular tissues.

Methods

Chemicals and kits

Chlorpyrifos [O, O-diethyl-o-(3, 5, 6-trichloro-2-pyridyl)
phosphorothionate] was purchased from Shanxi PUDE
Pharmaceutical Company (Shanxi, China), while CA
(C20H28O4) was obtained from Sigma Co. (St. Louis, MO,
USA). All biochemical kits were purchased from Biodiagnostic
Co. (Cairo, Egypt), except for interleukin-1β (IL-1β) and
interleukin-6 (IL-6) kits (supplied by Glory Science Co. Ltd.,
Del Rio, TX, USA) and tumor necrosis factor-α (TNF-α) kits
(supplied by BioSource International Inc. Camarillo, CA, USA).
Other chemicals used in the present study were of analytical
grade.

Animals

Forty healthy mature male Swiss albino mice (weighing
22 to 28 g; 10 to 12 weeks old) were purchased from the
Egyptian Organization for Biological Products and
Vaccines. The animals were housed in wire-mesh cages

and fed standard laboratory diet and water ad libitum for
10 days at the animal house of the Department of
Pharmacology, Faculty of Veterinary Medicine, Suez
Canal University, Ismailia, Egypt. Mice were exposed to
standard environmental conditions (12-h light-dark cycles,
25 ± 2 °C, and 60 ± 5% humidity). All animals’ proce-
dures were handled according to the standard guide of
laboratory animals, and affirmed by the Ethics Review
Committee at the Faculty of Veterinary Medicine, Suez
Canal University, Ismailia, Egypt (Approval No. 201819).

Experimental design

Mice were divided randomly into five different groups (n =
8/group). Group 1 mice (controls) received DMSO 1% so-
lution daily for 14 days; group 2 mice received oral CA only
at a daily dose of 60 mg/kg bw for 14 days; group 3 mice
received CPF (dissolved in DMSO 1% solution) via oral
gavage at a daily dose of 12 mg/kg bw (Ma et al. 2013)
during the second week of the experiment; and groups 4 and
5 received oral CPF at a dose of 12 mg/kg bw plus oral CA
at a dose of 30 and 60 mg/kg bw (Shan et al. 2015; Xiang
et al. 2013) for the aforementioned durations (Fig. 1).

Serum collection and tissue preparation

Blood samples were withdrawn from mice, after 24 h
from the last CPF dose, under isoflurane anesthesia
from the retro-orbital sinus, and then the mice in each
group were sacrificed through decapitation. The brain
and eyes were dissected from mice to be used for bio-
chemical analysis and washed by distilled water and
NaCl solution (0.9%), and then blotted over apiece of
filter paper. The tissues were homogenized in 0.1 M
potassium phosphate cold buffer (pH 7.4) and centri-
fuged at 2000 rpm for 30 min. The resulting supernatant
was collected into sterile tubes and stored at − 80 °C in
a deep freezer until used for biochemical analysis.

Assay of serum acetylcholinesterase

The collected serum samples were allowed to clot for 30 min
at room temperature then centrifuged at 3000 rpm for 15 min
at 25 °C and preserved at − 20 °C until used for biochemical
assays. Later, the methods described by Ellman et al. were
used to assess the serum activity of AChE (Ellman et al.
1961).

Assay of pro-inflammatory cytokines

The serum levels of IL-1β, IL-6, and TNF-α were measured
by ELISA plates (enzyme-linked immunosorbent assay)
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according to the manufacturers' protocols, and the samples
were read using an ELISA reader at a wavelength of 420 nm.

Assays of lipid peroxidation, nitric oxide,
and antioxidant enzymes

The levels of malondialdehyde (MDA) were assessed in the
brain and ocular tissues according to Mihara and Uchiyama
(1978), while nitric oxide (NO) levels in these tissues were
assessed according to Green et al. (Green et al. 1982). Then,
the tissue concentrations/activities of SOD, CAT, GSH, and
GPx were evaluated according to methods of Nishikimi et al.
(Nishikimi et al. 1972), Aebi (Aebi 1984), Beutler et al. (Beutler
et al. 1963), and Paglia and Valentine (1967), respectively.

Data analysis

The statistical Package for Social Sciences (version 20
for windows) was used for statistical analyses. All data
were expressed as means and standard deviations of the
mean (SD). The one-way ANOVA followed by Tukey’s
post hoc tests was used to compare the means of differ-
ent groups. A p value ≤ 0.05 was considered statistically
significant.

Results

Serum pro-inflammatory cytokines

This study showed that treatment of mice with CA at
60 mg/kg/day was associated with no significant differences
in terms of serum concentrations of IL-1β, IL-6, and TNF-α,
compared with control mice, while administration of CPF at
12 mg/kg/day was associated with significant increases (up to
346.8%, 365.4%, and 319.8%) in serum levels of IL-1β, IL-6,
and TNF-α, respectively, compared with control mice. On the
other hand, pretreatment of mice with CA (at 30 and 60mg/kg/
day doses) was associated with significant reductions in serum
levels of IL-1β (down to 54.1% and 35.2%, respectively), IL-6
(to 55.4% and 31.6%, respectively), and TNF-α (to 49% and
34%, respectively) from the values obtained in CPF-
intoxicated mice. Interestingly, treatment of CPF-intoxicated
mice with CA at the 60 mg/kg/day dose restored the values
of all three parameters to normal control levels (Fig. 2).

Serum acetylcholinesterase level

Treatment with CA alone (at 60 mg/kg/day) was not associat-
ed with a significant change in serum AChE level in

Fig. 1 Summary of the experimental design and biochemical analysis
results. AChE acetylcholinesterase, CAT catalase, CPF chlorpyrifos,
GSH reduced glutathione, GPx glutathione peroxidase, IL interleukin,

MDA malondialdehyde, NO nitric oxide, SOD superoxide dismutase,
TNF tumor necrosis factor
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comparison with control mice. However, a significant reduc-
tion (down to 55.1%) was observed in this parameter after
exposure to CPF at 12 mg/kg/day for 7 days. In contrast, we
observed a significant increase in serum AChE in mice, treat-
ed with CA at 30 and 60 mg/kg (up to 132.3% and 166.1%,
respectively) with restoration of the normal serumAChE level
in the 60 mg/kg/day group.

Brain oxidant/antioxidant parameters

Our analysis highlights the safety of CA at the highest studied
dose (60mg/kg/day); no significant alterations were noticed in
the mice group, treated by CA alone in terms of the cerebral
tissue oxidant (MDA and NO) and antioxidant parameters
(GSH, GPx, SOD, and CAT), compared with normal control
mice. On the contrary, administration of CPF for 14 days was
associated with significant increases in the cerebral tissue
MDA (up to 205%) and NO (201.8%) levels, as well as sig-
nificant decreases in the cerebral tissue GSH (down to 49.4%),
GPx (44 .1%) , SOD (44.1%) , and CAT (34.4%)
concentrations/activities in comparison with normal controls.

Interestingly, pretreatment of CPF-intoxicated mice with
CA at 30 and 60 mg/kg/day for 7 days was associated with
significant decreases in the cerebral tissue concentrations of
MDA (down to 81.1% and 54.2%, respectively) and NO

(79.7% and 57.2, respectively), as well as significant increases
in the cerebral tissue levels of GSH (158.3% and 196.1%,
respectively), GPx (162.8% and 230.3%, respectively), SOD
(149.1% and 203.7, respectively), and CAT (190.9% and
281.8%, respectively). Notably, the 60 mg/kg/dose of CA re-
stored the normal concentration ranges of all parameters, ex-
cept NO in CPF-exposed mice (Fig. 3).

Eye oxidant/antioxidant parameters

We recorded no significant differences between control mice and
those treatedwith CA alone at 60mg/kg/day for 14 days in terms
of MDA, NO, GSH, and GPx; however, the latter group had
significantly higher ocular tissue levels of the antioxidant en-
zymes SOD and CAT. Mice, exposed to CPF, had significantly
higher ocular tissue levels of MDA (up to 228.5%) and NO
(229.2%), as well as significantly lower levels of GSH (down
to 43.8%), GPx (46.8%), SOD (44.6%), and CAT (31.8%) than
normal controls.

However, treatment of CPF-intoxicated micewith CA at 30
and 60 mg/kg/day for 14 days was associated with significant
reductions in the ocular tissue levels of MDA (down to 68.5%
and 45.9%, respectively) and NO (67.4% and 48.6%, respec-
tively), as well as significant elevations in GSH (up to 159.4%
and 214.4%, respectively), GPx (157.1% and 205.5%,

Fig. 2 The effects of carnosic acid (CA, at 30 and 60 mg/kg/day bw)
against chlorpyrifos (CPF, 12mg/kg/day bw) on the serum concentrations
of interleukin 1β, -6, and tumor necrosis factor-α. The presented data are

means ± SD (n = 8 per group). Columns with different superscripts are
significantly different at p ≤ 0.05
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respectively), SOD (161.7% and 202.3%, respectively), and
CAT (171.4% and 285.7%, respectively) levels. The
60 mg/kg/day dose of CA restored the normal control levels
for all measured ocular tissue parameters (Fig. 4).

Discussion

The current study showed the protective effects of CA against
CPF-induced oxidative injuries to the mouse eye and brain tis-
sues. Carnosic acid significantly reduced the oxidative effects of
CPF as evidenced by the lowered levels of oxidants (MDA and

NO) and improved non-enzymatic (GSH) and enzymatic (GPx,
SOD, and CAT) antioxidant defenses in mice eye and brain
tissues. Moreover, it decreased the serum levels of pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-α) and amelio-
rated the CPF-induced reduction in serum AChE activity.

The oxidative stress of CPF results from deficiency in the
antioxidant defense system and increase in ROS (Aly et al.
2010). Reactive oxygen species produced by CPF attack the
cellular DNA, lipids, and proteins and alter the intracellular
calcium and pH resulting in cell death. Malondialdehyde, the
essential indicator of lipid peroxidation, indicates cell damage
through phospholipids degradation (Tsikas 2017). Further,

Fig. 4 The effects of carnosic acid (CA, at 30 and 60 mg/kg/day bw)
against chlorpyrifos (CPF, 12 mg/kg/day bw) on the ocular tissue
concentrations of malondialdehyde (MDA), nitric oxide (NO), reduced
glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase

(SOD), and catalase (CAT) enzymes. The presented data are means ± SD
(n = 8 per group). Columns with different superscripts are significantly
different at p ≤ 0.05

Fig. 3 The effects of carnosic acid (CA, at 30 and 60 mg/kg/day bw)
against chlorpyrifos (CPF, 12 mg/kg/day bw) on the cerebral tissue
concentrations of malondialdehyde (MDA), nitric oxide (NO), reduced
glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase

(SOD), and catalase (CAT) enzymes. The presented data are means ± SD
(n = 8 per group). Columns with different superscripts are significantly
different at p ≤ 0.05
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CPF has been shown to increase the expression of inducible
nitric oxide synthase in the brain of common carb (Wang et al.
2013). This may explain the observed increase in NO levels
after CPF exposure in the current study.

The antioxidant defense system plays an important role in
prevention of oxidative stress. The reduced tissue levels of
GSH were recorded previously in CPF-intoxicated mice
(Goel et al. 2005; Verma et al. 2007). Reduced glutathione is
essential to prevent the damage of free radicals and enhance
detoxification and is an important cofactor for antioxidant
enzymes like GPx, glutathione-S-transferase, and glutathione
reductase (Aly et al. 2010; Hayes et al. 2005). We observed
reduced levels of GPx, SOD, and CAT in CPF-intoxicated
mice. These results are in agreement with Banudevi et al.
(Banudevi et al. 2006) and Bindhumol et al. (Bindhumol
et al. 2003). In contrast, Aly et al. (2010), Yu et al. (Yu et al.
2008) and Oncu et al. (Oncu et al. 2002) reported that SOD
and CATwere increased following CPF intoxication, probably
to counteract H2O2 and superoxide anions elevations.

In addition, our analysis detected significantly lower levels of
AChE in mice intoxicated with CPF in comparison with normal
controls. Ma and colleagues reported that CPF stimulates the
cholinergic neurotransmission, resulting in inhibition of AChE
and leading to neurotoxicity (Ma et al. 2013). This inhibition
occurs after biotransformation of CPF to its oxygenated ana-
logue, mediated by liver cytochrome P450-dependent
desulfuration and resulting in dephosphorylated metabolite tri-
chloropyridinol and diethyl phosphorus formation (Ma et al.
2013; Poet et al. 2003).

Another finding, observed in the current study, is the signifi-
cantly increased levels of IL-1β, IL-6, and TNF-α after CPF
intoxication. These data show that CPF creates a pro-
inflammatory environment in the brain and eye tissues of mice.
Similarly, Hirani and colleagues reported increased levels of IL-6
and TNF-α (in addition to MCP-1 and E-selectin) in different
brain regions of CPF-intoxicated mice (Hirani et al. 2007). These
findings may be explained in light of the published literature;
may occur due to increasing the expression of Th1/Th2 cytokines
(Duramad et al. 2006), increasing the nuclear accumulation on
NF-kB (Lee et al. 2014), and induction of oxidative stress. Of
note, CPF was found to induce the cytokine promoters of
interferon-γ and IL-4 in Jurkat cells (Oostingh et al. 2009) and
the immune organs of common carb (Wang et al. 2011). Similar
mechanisms may be responsible for the observed finding in the
present study.

Carnosic acid is a potent antioxidant owing to its two phenolic
hydroxyl groups (Erkan et al. 2008). Previous studies have
shown its ability to improve the endogenous antioxidant defenses
and prevent lipid peroxidation (Wang et al. 2011; Xiang et al.
2013). Besides, CA has been shown to facilitate the nuclear
translocation of the nuclear factor erythroid 2-related factor 2
(Nrf2), leading to activation of Nrf2-dependant genes that protect
against oxidative stress (Guo et al. 2016). The current study

showed that CA significantly amelioratedCPF-induced increases
in MDA and NO levels and decreases in endogenous antioxi-
dants in the eye and brain tissues of mice.

These results are in agreement with Guo et al. who reported
that CA reduced the levels of MDA and ROS accumulation in
the liver of acetaminophen-intoxicated mice (Guo et al. 2016).
Similarly, Sahu et al. showed that CA enhanced the activities of
GPx, CAT, and SOD in rat kidneys, exposed to toxic doses of
cisplatin. However, they showed increased levels of tissue nitrite
(which indicate the extent of NO) after CA treatment (Sahu et al.
2011). In another study, CA has been reported to reduce oxida-
tive stress, activate Nrf2, and inhibit caspases actions in human
neuroblastoma (SH-SY5Y) cells (de Oliveira et al. 2016).

Moreover, we found that CA pretreatment significantly re-
duced CPF-induced increases in serum IL-1β, IL-6, and
TNF-α concentration in a dose-dependent manner. Similar find-
ings were reported previously in vivo (Kuo et al. 2011; Xiang
et al. 2013) and in cell lines (Tsai et al. 2014). These effects may
be mediated by inhibiting the expression of NF-KB (Li et al.
2016), suppressing the adhesion and migration of monocytes
(Yu et al. 2009), and preventing the activation of p38 MAPK
and cyclooxygenase II enzymes (Hou et al. 2012). Interestingly,
CA also ameliorated CPF-induced reduction in serum AChE
concentrations in a dose-dependent manner. However, some pre-
vious studies have reported that CA inhibits AChE activity and
hence can be used to improve memory function in Alzheimer’s
disease (Merad et al. 2014; Ozarowski et al. 2013; Szwajgier
2013). These studies, however, were not on toxicology models
and the differences in study design and used CA doses may
explain the discrepant results. Carnosic acid is considered a
promising agent for neuroprotection and the current study adds
to the published evidence in this regard (de Oliveira 2018).

In conclusion, CPF induces oxidative stress in the brain and
eye tissues of mice and creates a systemic pro-inflammatory con-
dition in mice. These effects were significantly ameliorated—in a
dose-dependent manner—through pretreatment with CA.
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