Chapter 4

Continuous-Time

Fourier Transform

Introduction

- Periodic signals are represented as linear combination of harmonically related complex exponentials (Fourier Series).
- Non-periodic (Aperiodic) signals are represented by complex exponentials using Fourier Transform.

$$
\text { Fourier Transform of } x(t) \quad X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

Inverse Fourier Transform of $X(j \omega) \quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega$

Fourier Transform - Example 1

Consider the signal $\quad x(t)=e^{-a t} u(t), a>0$
Find its Fourier transform.

Fourier transform $\quad X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

$$
=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-(a+j \omega) t} d t=\left.\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right|_{0} ^{\infty}=\frac{1}{a+j \omega}
$$

Module $|X(j \omega)|=\left|\frac{1}{a+j \omega}\right|=\left|\frac{a-j \omega}{a^{2}+\omega^{2}}\right|=\sqrt{\frac{a^{2}}{\left(a^{2}+\omega^{2}\right)^{2}}+\frac{\omega^{2}}{\left(a^{2}+\omega^{2}\right)^{2}}}=\frac{1}{\sqrt{a^{2}+\omega^{2}}}$
Phase $\quad \angle X(j \omega)=\tan ^{-1}\left(\frac{-\omega}{a^{2}+\omega^{2}} / \frac{a}{a^{2}+\omega^{2}}\right)=-\tan ^{-1}\left(\frac{\omega}{a}\right)$

Fourier Transform - Example 2

Find Fourier transform of:

$$
x(t)=e^{-a|t|}, a>0
$$

The Fourier transform of the signal is:

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j j x} d t=\int_{-\infty}^{\infty} e^{-a t t} e^{-j j x} d t \\
& \\
& =\int_{-\infty}^{\infty} e^{a t} e^{-j \omega t} d t+\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t \quad \quad \text { Frequency-domain } \\
& \\
& =\left.\frac{e^{(a-j \omega) t}}{(a-j \omega)}\right|_{-\infty} ^{0}+\left.\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right|_{0} ^{\infty} \\
& =\frac{1}{a-j \omega}+\frac{1}{a+j \omega}=\frac{a+j \omega+a-j \omega}{a^{2}+\omega^{2}}=\frac{2 a}{a^{2}+\omega^{2}} \quad
\end{aligned}
$$

Fourier Transform - Example 3
Find Fourier transform of:

$$
x(t)= \begin{cases}1, & |t|<T_{1} \\ 0, & |t|>T_{1}\end{cases}
$$

$$
\begin{aligned}
& X(j \omega)=\int_{-T_{1}}^{T_{1}} 1 \cdot e^{-j \omega t} d t=\left.\frac{e^{-j \omega t}}{-j \omega}\right|_{-T_{1}} ^{T_{1}}=-\frac{1}{j \omega}\left[e^{-j \omega T_{1}}-e^{j \omega T_{1}}\right] \\
& =\frac{1}{j \omega}\left[e^{j \omega T_{1}}-e^{-j \omega T_{1}}\right]=\frac{2 j \sin \left(\omega T_{1}\right)}{j \omega}=\frac{2 \sin \left(\omega T_{1}\right)}{\omega}
\end{aligned}
$$

Fourier Transform - Example 4

Find the inverse Fourier transform of:

$$
X(j \omega)= \begin{cases}1, & |\omega|<W \\ 0, & |\omega|>W\end{cases}
$$

the inverse Fourier transform

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
& x(t)=\frac{1}{2 \pi} \int_{-W}^{W} e^{j \omega t} d \omega=\frac{1}{2 \pi}\left[\frac{e^{j \omega t}}{j t}\right]_{-W}^{W} \\
& x(t)=\frac{1}{2 \pi}\left[\frac{e^{j W t}}{j t}-\frac{e^{-j W t}}{-j t}\right]=\frac{1}{\pi t}\left[\frac{e^{j W t}-e^{-j W t}}{j 2}\right]=\frac{W}{\pi} \frac{\sin (W t)}{W t}
\end{aligned}
$$

Problem 1

Use the Fourier transform analysis equation to calculate the Fourier transforms of :
(a) $e^{-2(t-1)} u(t-1)$
(b) $e^{-2|t-1|}$
(a) $\quad e^{-2(t-1)} u(t-1)$
$X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{-2(t-1)} u(t-1) e^{-j \omega t} d t$
$\tau=\mathrm{t}-1$
$=\int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) e^{-j \omega(\tau+1)} d \tau=e^{-j \omega} \int_{-\infty}^{\infty} e^{-2 \tau} u(\tau) e^{-j \omega \tau} d \tau$
$=e^{-j \omega} \int_{0}^{\infty} e^{-(2+j \omega) t} d \tau=\left.e^{-j \omega} \frac{e^{-(2+j \omega) \tau}}{-(2+j \omega)}\right|_{0} ^{\infty}$

$$
=\frac{e^{-j \omega}}{2+j \omega}
$$

(b) $\quad e^{-2|t-1|}$

$$
\begin{aligned}
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{-2|t-1|} e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} e^{-2|\tau|} e^{-j \omega(\tau+1)} d \tau=e^{-j \omega} \int_{-\infty}^{\infty} e^{-2|\tau|} e^{-j \omega \tau} d \tau \\
& =e^{-j \omega} \int_{-\infty}^{0} e^{2 \tau} \cdot e^{-j \omega \tau} d \tau+e^{-j \omega} \int_{n}^{\infty} e^{-2 \tau} \cdot e^{-j \omega \tau} d \tau \\
= & e^{-j \omega}\left[\left.\frac{e^{(2-j \omega) \tau}}{(2-j \omega)}\right|_{-\infty} ^{0}+\left.\frac{e^{-(2+j \omega) \tau}}{-(2+j \omega)}\right|_{0} ^{\infty}\right] \\
& =\frac{4 e^{-j \omega}}{4+\omega^{2}}
\end{aligned}
$$

Problem 2

Use the Fourier transform analysis equation to calculate the Fourier transforms of :

$$
\delta(t+1)+\delta(t-1)
$$

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty}[\delta(t+1)+\delta(t-1)] e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} \delta(t+1) e^{-j \omega t} d t+\int_{-\infty}^{\infty} \delta(t-1) e^{-j \omega t} d t \\
& =e^{-j \omega(-1)}+e^{-j \omega(1)}=e^{j \omega}+e^{-j \omega} \\
& \quad=2 \times\left(\frac{e^{j \omega}+e^{-j \omega}}{2}\right)=2 \cos \omega \\
& |X(j \omega)|=2|\cos (\omega)|
\end{aligned}
$$

Some useful Fourier transform:

$$
\begin{aligned}
& x(t)=\delta(t) \\
& \Rightarrow X(j \omega)=1 \\
& x(t)=\delta(t+1) \\
& \Rightarrow X(j \omega)=e^{j \omega} \\
& x(t)=\delta(t-1) \\
& \Rightarrow X(j \omega)=e^{-j \omega}
\end{aligned}
$$

Use the Fourier transform analysis equation to calculate the Fourier transforms of :

$$
\frac{d}{d t}\{u(-2-t)+u(t-2)\}
$$

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{\infty} \frac{d}{d t}\{u(-2-t)+u(t-2)\} e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty}-\delta(-2-t) e^{-j \omega t} d t+\int_{-\infty}^{\infty} \delta(t-2) e^{-j \omega t} d t \\
& \quad=I_{1}+I_{2} \\
& I_{1}=\int_{-\infty}^{\infty}-\delta(-2-t) e^{-j \omega t} d t, \text { Let } \tau=-2-t, d \tau=-d t \\
& =\int_{\infty}^{-\infty}-\delta(\tau) e^{j \omega(\tau+2)}(-d \tau)=-e^{2 j \omega} \int_{-\infty}^{\infty} \delta(\tau) e^{j \omega \tau} d \tau=-e^{2 j \omega} \\
& I_{2}=\int_{-\infty}^{\infty} \delta(t-2) e^{-j \omega t} d t=e^{-2 j \omega}
\end{aligned}
$$

$$
\begin{aligned}
& X(j \omega)=-e^{2 j \omega}+e^{-2 j \omega} \\
& \quad=-2 j \times\left(\frac{e^{2 j \omega}-e^{-2 j \omega}}{2 j}\right) \\
& =-2 j \sin (2 \omega)
\end{aligned}
$$

$$
|X(j \omega)|=2|\sin (2 \omega)|
$$

Fourier Transform for Periodic Signals

Obtain the Fourier transform of a periodic signal $x(t)$ directly from its Fourier series a_{k}

$$
\begin{aligned}
& X(j \omega)=\sum_{k=-\infty}^{\infty} a_{k} 2 \pi \delta\left(\omega-k \omega_{0}\right) \quad \text { Inverse FT } \\
& \text { Proof } x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
& \qquad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} a_{k} 2 \pi \delta\left(\omega-k \omega_{0}\right) e^{j \omega t} d \omega=\sum_{k=-\infty}^{\infty} a_{k} \frac{2 \pi}{2 \pi} \int_{-\infty}^{\infty} \delta\left(\omega-k \omega_{0}\right) e^{j \omega t} d \omega=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
\end{aligned}
$$

Fourier transform of a symmetric periodic square wave
Fourier transform

$$
X(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi \frac{\sin \left(k \omega_{0} T_{1}\right)}{\pi k} \delta\left(\omega-k \omega_{0}\right)=\sum_{k=-\infty}^{\infty} 2 \frac{\sin \left(k \omega_{0} T_{1}\right)}{k} \delta\left(\omega-k \omega_{0}\right)^{p}
$$

Example 6

Obtain the Fourier transform of

$$
x(t)=\sin \left(\omega_{0} t\right)
$$

$$
x(t)=\sin \left(\omega_{0} t\right)=\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t}
$$

Fourier series coefficients: $a_{1}=\frac{1}{2 j}, a_{-1}=-\frac{1}{2 j}, a_{k}=0$ for $|k| \neq 1$

Fourier transform $\quad X(j \omega)=\sum_{k=-\infty}^{\infty} a_{k} 2 \pi \delta\left(\omega-k \omega_{0}\right)$

$$
\begin{aligned}
= & \frac{2 \pi}{2 j} \delta\left(\omega-\omega_{0}\right)-\frac{2 \pi}{2 j} \delta\left(\omega+\omega_{0}\right) \\
& =\frac{\pi}{j} \delta\left(\omega-\omega_{0}\right)-\frac{\pi}{j} \delta\left(\omega+\omega_{0}\right)
\end{aligned}
$$

Example 6
Obtain the Fourier transform of the impulse train

$$
x(t)=\sum_{k=-\infty}^{\infty} \delta(t-k T)
$$

Solution:

The Fourier series coefficients for this signal are:
$a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-j k \omega_{0} t} d t=\frac{1}{T} e^{0}=\frac{1}{T}$

Therefore, the Fourier transform is:

$$
\begin{aligned}
& X(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \omega_{0}\right) \\
& =\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi}{T} k\right)
\end{aligned}
$$

Fourier transform of Periodic impulse train

Determine the Fourier transform of Problem 4 each of the following periodic signals.
(b) $1+\cos \left(6 \pi t+\frac{\pi}{8}\right)$

Solution: $\quad(\mathrm{a}) \quad x(t)=\sin \left(2 \pi t+\frac{\pi}{4}\right)$;
comparina with $x(t)=\sin \left(\omega_{0} t+\frac{\pi}{4}\right)$,

$$
\Rightarrow \omega_{0}=2 \pi ; T=1
$$

and $T=\frac{2 \pi}{\omega_{0}}$

$$
x(t)=\frac{e^{j\left(2 \pi t+\frac{\pi}{4}\right)}-e^{-j\left(2 \pi t+\frac{\pi}{4}\right)}}{2 j}
$$

The Fourier transform of the periodic signal

$$
\begin{aligned}
X(j \omega)= & \sum_{k=-\infty}^{\infty}
\end{aligned} a_{k} 2 \pi \delta\left(\omega-k \omega_{0}\right) .
$$

(b) $x(t)=1+\cos \left(6 \pi t+\frac{\pi}{8}\right) \Rightarrow \omega_{0}=6 \pi$

The Fourier transform of the periodic signal

$$
X(j \omega)=\sum_{k=-\infty}^{\infty} a_{k} 2 \pi \delta\left(\omega-k \omega_{0}\right)
$$

$$
=2 \pi \delta(\omega)+\pi e^{j \frac{\pi}{8}} \delta\left(\omega-6 \omega_{0}\right)+\pi e^{-j \frac{\pi}{8}} \delta\left(\omega+6 \omega_{0}\right)
$$

Problem 5
Use the Fourier synthesis equations to determine the Inverse Fourier transform of

$$
X_{1}(j \omega)=2 \pi \delta(\omega)+\pi \delta(\omega-4 \pi)+\pi \delta(\omega+4 \pi)
$$

Solution:
(a)

$$
\begin{aligned}
& x_{1}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}[2 \pi \delta(\omega)+\pi \delta(\omega-4 \pi)+\pi \delta(\omega+4 \pi)]^{j \omega t} d \omega \\
& =\int_{-\infty}^{\infty} \delta(\omega) e^{j \omega t} d \omega+\frac{1}{2} \int_{-\infty}^{\infty} \delta(\omega-4 \pi) e^{j \omega t} d \omega \\
& \quad+\frac{1}{2} \int_{-\infty}^{\infty} \delta(\omega+4 \pi) e^{j \omega t} d \omega \\
& =e^{0}+\frac{1}{2} e^{j 4 \pi t}+\frac{1}{2} e^{-j 4 \pi t} \\
& =1+\cos (4 \pi t)
\end{aligned}
$$

(b)
(b) $X_{2}(j \omega)=\left\{\begin{array}{cc}2, & 0 \leq \omega<2 \\ -2, & -2 \leq \omega<0 \\ 0, & |\omega|>0\end{array}\right.$
$x_{2}(t)=\frac{1}{2 \pi}\left[\int_{0}^{2} 2 e^{j \omega t} d \omega+\int_{-2}^{0}-2 e^{j \omega t} d \omega\right]$
$=\frac{1}{\pi}\left[\left.\frac{e^{j \omega t}}{j t}\right|_{0} ^{2}-\left.\frac{e^{j \omega t}}{j t}\right|_{-2} ^{0}\right]=\frac{1}{\pi j t}\left[\left(e^{j 2 t}-1\right)-\left(1-e^{-j 2 t}\right)\right]$
$=\frac{1}{\pi j t}\left[\left(e^{j t}\right)^{2}+\left(e^{-j t}\right)^{2}-2 e^{j t} e^{-j t}\right]=\frac{1}{\pi j t}\left(e^{j t}-e^{-j t}\right)^{2}$

$$
=\frac{-4}{\pi j t}\left(\frac{e^{j t}-e^{-j t}}{2 j}\right)=\frac{-4}{j \pi t} \sin ^{2}(t)
$$

Properties of CT Fourier Transform

- Give insight of the relationship between the time-domain and frequency-domain descriptions of a signal.
- Are useful in reducing the complexity of the evaluation of Fourier transforms or inverse transforms.

1. Linearity

$x(t) \stackrel{\mathcal{F}}{\Leftrightarrow} X(j \omega)$
$\text { If } y(t) \stackrel{\mathcal{F}}{\Leftrightarrow} Y(j \omega)$

Than
$a x(t)+b y(t) \stackrel{\mathcal{F}}{\Leftrightarrow} a X(j \omega)+b Y(j \omega)$
2. Time shifting

$$
x\left(t-t_{0}\right) \stackrel{\mathcal{F}}{\Leftrightarrow} e^{-j \omega t_{0}} X(j \omega) \quad \stackrel{\text { Proof }}{\Longrightarrow}
$$

If a signal is time-shifted, the magnitude of the Fourier transform does not change; only there is a phase-shift in the Fourier transform.

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
& \Rightarrow x\left(t-t_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega\left(t-t_{0}\right)} d \omega \\
& \Rightarrow x\left(t-t_{0}\right)=e^{-j \omega t_{0}} \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
& \Rightarrow \mathfrak{J}\left(x\left(t-t_{0}\right)\right)=e^{-j \omega t_{0}} X(j \omega)
\end{aligned}
$$

Evaluate the Fourier transform of $x(t)$
Solution:

Example 6-contd.

From Example 3 and the signals of the previous slide, we get:

$$
X_{1}(j \omega)=\frac{2 \sin (\omega / 2)}{\omega} \quad \text { and } \quad X_{2}(j \omega)=\frac{2 \sin (3 \omega / 2)}{\omega}
$$

By linearity and time shifting properties:

$$
\begin{aligned}
X(j \omega) & =\frac{1}{2} \mathcal{F}\left\{x_{1}(t-2.5)\right\}+\mathcal{F}\left\{x_{2}(t-2.5)\right\} \\
& =\frac{1}{2} e^{-2.5 j \omega} \mathcal{F}\left\{x_{1}(t)\right\}+e^{-2.5 j \omega} \mathcal{F}\left\{x_{2}(t)\right\} \\
& =\frac{1}{2} e^{-2.5 j \omega} \frac{2 \sin (\omega / 2)}{\omega}+e^{-2.5 j \omega} \frac{2 \sin (3 \omega / 2)}{\omega} \\
& =e^{-2.5 j \omega}\left(\frac{\sin (\omega / 2)+2 \sin (3 \omega / 2)}{\omega}\right)
\end{aligned}
$$

Properties of CT Fourier Transform
 \section*{Proof}

3. Conjugation and Conjugate Symmetry

If $x(t) \stackrel{\mathcal{F}}{\nLeftarrow} X(j \omega)$ Than $x^{*}(t) \stackrel{\mathcal{F}}{\Leftrightarrow} X^{*}(-j \omega)$

$$
\begin{aligned}
X^{*}(j \omega) & =\left[\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right]^{*} \\
& =\int_{-\infty}^{\infty} x^{*}(t) e^{j \omega t} d t
\end{aligned}
$$

$$
X^{*}(-j \omega)=\int_{-\infty}^{\infty} x^{*}(t) e^{-j \omega t} d t
$$

If $x(t)$ is real, $x(t)=x^{*}(t)$, then $X(j \omega)$ has conjugate symmetry: $X(-j \omega)=X^{*}(j \omega)$

For real $x(t)$:

Real part of $X(j \omega)$ Rectangular form of $X(j \omega)$	Polar form of $X(j \omega)$
$\underset{\text { Imaginary part of } X(j \omega)}{\operatorname{Re}\{X(j \omega)\}}=\operatorname{Re}\{X(-j \omega)\} \Longrightarrow$	Even function of $\omega \hookleftarrow\|X(j \omega)\|=\|X(-j \omega)\|$
$\operatorname{Im}\{X(j \omega)\}=-\operatorname{Im}\{X(-j \omega)\}$	Odd function of $\omega \longmapsto \angle X(j \omega)=-\angle X(-j \omega)$

From positive frequencies we can determine magnitude and phase of $X(j \omega)$ for negative frequencies
For real and even $x(t)$:

$$
\begin{gathered}
X^{*}(j \omega)=X(j \omega) \\
\text { real }
\end{gathered}
$$

$$
X(-j \omega)=X(j \omega)^{x}
$$

For $x(t)$ real and odd

$$
x(t) \stackrel{\mathcal{F}}{\Leftrightarrow} X(j \omega) \quad \text { For } x(t)=x_{e}(t)+x_{o}(t)
$$

even

$$
\text { Even }\{x(t)\} \underset{\mathcal{T}}{\stackrel{\mathcal{F}}{\Longleftrightarrow}} \operatorname{Re}\{X(j \omega)\}
$$

$X(j \omega)$ is purely imaginary and odd

$$
\operatorname{Odd}\{x(t)\} \stackrel{\mathcal{F}}{\Leftrightarrow} \mathrm{j} \operatorname{Im}\{X(j \omega)\}
$$

Evaluate the Fourier transform of $x(t)=e^{-a|t|}$ for $a>0$
From Example 6: $x(t)=e^{-a|t|}$ for $a>0 \stackrel{\text { we have }}{\Longleftrightarrow} x_{1}(t)=e^{-a t} u(t) \stackrel{\mathcal{F}}{\Leftrightarrow} \frac{1}{a+j \omega}$

$$
\operatorname{Even}\left\{x_{1}(t)\right\}=\frac{\widehat{x_{1}(t)+x_{1}(-t)}}{2}
$$

$e^{-a t} u(t)$ is real; from symmetric property,
$2 \operatorname{Even}\left\{e^{-a t} u(t)\right\} \stackrel{\mathcal{F}}{\Leftrightarrow} 2 \operatorname{Re}\left\{\frac{1}{a+j \omega}\right\}=2 \operatorname{Re}\left\{\frac{a-j \omega}{a^{2}+\omega^{2}}\right\}$

$$
X(j \omega)=\frac{2 a}{a^{2}+\omega^{2}}
$$

Properties of CT Fourier Transform

4. Differentiation and Integration

$$
\begin{aligned}
& \text { Proof } \\
& \begin{array}{l}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \\
\frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) \frac{d}{d t}\left(e^{j \omega t}\right) d \omega \\
\frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) j \omega e^{j \omega t} d \omega \\
\frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}[j \omega X(j \omega)] e^{j \omega t} d \omega
\end{array}
\end{aligned}
$$

Similarly,

$$
\frac{d x(t)}{d t} \stackrel{\mathcal{F}}{\Longleftrightarrow} j \omega X(j \omega)
$$

$$
\int_{-\infty}^{\infty} x(\tau) d \tau \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega)
$$

Determine the Fourier transform of the unit step function.

$$
x(t)=u(t) \Rightarrow X(j \omega)=?
$$

$\frac{d u}{d t}=\delta(t) ;$ For unit impulse,$g(t)=\delta(t) \stackrel{\mathcal{F}}{\Longleftrightarrow} G(j \omega)=1$
Now, $x(t)=\int_{-\infty}^{\infty} \delta(\tau) d \tau \stackrel{\mathcal{F}}{\Longleftrightarrow} \frac{G(j \omega)}{j \omega}+\pi G(0) \delta(\omega)$

$$
\Rightarrow \quad X(j \omega)=\frac{1}{j \omega}+\pi \delta(\omega)-G(j \omega)=1 \rightarrow G(0)=1
$$

Also, we observe that

$$
\delta(t)=\frac{d u(t)}{d t} \stackrel{\mathcal{F}}{\Longleftrightarrow} j \omega\left\{\frac{1}{j \omega}+\pi \delta(\omega)\right\}=1+\pi j \omega \delta(\omega)=1
$$

$$
\omega \delta(\omega)=0=\left\{\begin{array}{l}
0 \cdot 1 \\
\omega \cdot 0
\end{array}\right.
$$

$$
\begin{aligned}
& \omega=0 \\
& \omega \neq 0
\end{aligned}
$$

Properties of CT Fourier Transform

5. Time and Frequency Scaling

If $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j \omega)$ Than $x(a t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{j \omega}{a}\right)$
Proof

$$
\begin{aligned}
& \tau=a t \Rightarrow d \tau=a d t \Rightarrow d t=\frac{1}{a} d \tau \\
& \mathcal{F}\{x(a t)\}=\int_{-\infty}^{\infty} x(a t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \frac{1}{a} \tau} \frac{1}{a} d \tau=\frac{1}{a} \int_{-\infty}^{\infty} x(\tau) e^{-j \frac{\omega}{a} \tau} d \tau \\
& \text { for } a>0, \frac{1}{a} \int_{-\infty}^{\infty} x(\tau) e^{-j \frac{\omega}{a} \tau} d \tau \\
& \text { fora }<0, \quad \frac{1}{a} \int_{\infty}^{-\infty} x(\tau) e^{-j \frac{\omega}{a} \tau} d \tau=-\frac{1}{a} \int_{-\infty}^{\infty} x(\tau) e^{-j \frac{\omega}{a} \tau} d \tau, \leftarrow \text { For } a<0: t=-\infty \Rightarrow \tau=\infty ; \text { at } t=\infty \Rightarrow \tau=-\infty
\end{aligned}
$$

In particular,

$$
x(-t) \stackrel{\mathcal{F}}{\Longleftrightarrow} X(-j \omega)
$$

Reversing a signal in time reverses its Fourier transform also.

Properties of CT Fourier Transform

6. Duality

- The FT and IFT relations are similar
- This symmetry leads to
 duality property of the Fourier transform.

Example 8

Use the duality property to determine $G(j \omega)$, the Fourier transform of $g(t)=2 /\left(1+t^{2}\right)$.
From example 2:

$$
x(t)=e^{-a|t|}, a>0 \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(j \omega)=\frac{2 a}{a^{2}+\omega^{2}}
$$

For $\mathrm{a}=1, \quad x(t)=e^{-|t|}$
 $X(j \omega)=\frac{2}{1+\omega^{2}}$
The synthesis equation for this FT pair is:

$$
e^{-|t|}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2}{1+\omega^{2}}\right) e^{j \omega t} d \omega \stackrel{\begin{array}{c}
\text { Multiplying by } 2 \pi \\
\text { and replacing tby t } \mathrm{t}
\end{array}}{ } 2 \pi e^{-|t|}=\int_{-\infty}^{\infty}\left(\frac{2}{1+\omega^{2}}\right) e^{-j \omega t} d \omega
$$

interchanging
t and ω
t and ω

Convolution Property

For an LTI system: $y(t)=h(t) * x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(j \omega)=X(j \omega) H(j \omega)$
A convolution in time domain implies a multiplication in Fourier domain.

Example 9

An impulse response of an LTI system: $h(t)=\delta\left(t-t_{0}\right)$
The frequency response of the system: $H(j \omega)=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-j \omega t} d t=e^{-j \omega t_{0}}$
The Fourier transform of the output: $Y(j \omega)=H(j \omega) X(j \omega)=e^{-j \omega t_{0}} X(j \omega)$

$$
\square y(t)=x\left(t-t_{0}\right) \quad \text { time shifting property. }
$$

time shifting property Slide 15.

$$
Y(j \omega)=\int_{-\infty}^{\infty} y(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t=e^{-j \omega t_{0}} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega t} d \tau=e^{-j \omega t_{0}} X(j \omega)
$$

Example 10: Differentiator

$$
y(t)=\frac{d x(t)}{d t} \quad \text { From differential property, } \quad Y(j \omega)=j \omega X(j \omega)
$$

This implies that $H(j \omega)=j \omega \longleftarrow$ Frequency response of a differentiator.
Example 11: Integrator

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau
$$

The impulse response of this system is a unit step, $u(t)$.

$$
\begin{aligned}
Y & (j \omega)=H(j \omega) X(j \omega) \\
& =\left(\frac{1}{j \omega}+\pi \delta(\omega)\right) X(j \omega) \\
& =\frac{1}{j \omega} X(j \omega)+\pi \delta(\omega) X(j \omega) \\
& =\frac{1}{j \omega} X(j \omega)+\pi \delta(\omega) X(0)
\end{aligned}
$$

Example 12

Find the response, $y(t)$ of an LTI system, if $x(t)=e^{-b t} u(t), \quad h(t)=e^{-a t} u(t) ; a>0, b>0$

$$
\begin{aligned}
& H(j \omega)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t=\int_{0}^{\infty} e^{-(a+j \omega) t} d t=\frac{1}{a+j \omega} \\
& X(j \omega)=\int_{-\infty}^{\infty} e^{-b t} u(t) e^{-j \omega t} d t=\frac{1}{b+j \omega} \\
& Y(j \omega)=H(j \omega) X(j \omega)=\left(\frac{1}{a+j \omega}\right)\left(\frac{1}{b+j \omega}\right)=\frac{A}{a+j \omega}+\frac{B}{b+j \omega} \\
& \Rightarrow 1=A(b+j \omega)+B(a+j \omega) \quad \Rightarrow A=\frac{1}{b-a}=-B \\
& \Rightarrow 1=A b+B a+j \omega(A+B) \quad \Rightarrow Y(j \omega)=\frac{1}{b-a}\left(\frac{1}{a+j \omega}-\frac{1}{b+j \omega}\right) \\
& \Rightarrow A b+B a=1 ; A+B=0
\end{aligned}
$$

Example 12 - contd

$e^{-a t} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+j \omega} \quad$ and $\quad e^{-b t} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{b+j \omega}$
$\Delta Y(j \omega)=\frac{1}{b-a}\left(\frac{1}{a+j \omega}-\frac{1}{b+j \omega}\right) \stackrel{\mathcal{F}}{\Longleftrightarrow} y(t)=\frac{1}{b-a}\left(e^{-a t}-e^{-b t}\right) u(t), \quad b \neq a$
If $\mathrm{b}=\mathrm{a}, \quad$ the partial fraction expansion is not valid $\Rightarrow Y(j \omega)=\left(\frac{1}{a+j \omega}\right)\left(\frac{1}{b+j \omega}\right)=\frac{1}{(a+j \omega)^{2}}$
We know: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right)}{v^{2}} \Rightarrow \frac{d}{d \omega}\left(\frac{1}{a+j \omega}\right)=\frac{((a+j \omega)(0)-(1)(j))}{(a+j \omega)^{2}}$
$\Rightarrow j \frac{d}{d \omega}\left(\frac{1}{a+j \omega}\right)=\frac{1}{(a+j \omega)^{2}}=Y(j \omega) \quad \| t\left(e^{-a t} u(t)\right) \stackrel{\mathcal{F}}{\left.\Longleftrightarrow j \frac{d}{d \omega}\left(\frac{1}{a+j \omega}\right)\right)}$
From Table 1: $\quad t x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{d}{d \omega} X(j \omega) \Rightarrow \Rightarrow y(t)=t e^{-a t} u(t), \quad a=b$

Some Important CT Relationship

Unit Impulse: $\delta(t)$	
Input: $x(t) \longrightarrow$Continuous Time LTI System	Unit Impulse Response: $h(t)$ Output: $y(t)$
Time Domain	

Differential Equation and Frequency Response of a System

The system frequency response $H(j \omega)$

$$
y(t)=h(t) * x(t) \stackrel{\begin{array}{c}
\text { Convolution } \\
\text { property, }
\end{array}}{\square} Y(j \omega)=H(j \omega) X(j \omega) \quad \begin{aligned}
& \text { frequency response }
\end{aligned}
$$

Example 13

$\begin{aligned} & \text { Consider the system characterized } \\ & \text { by the differential equation }\end{aligned} \quad \frac{d y(t)}{d t}+a y(t)=x(t)$, the frequency response : $\frac{d y(t)}{d t}+a y(t)=x(t), \stackrel{\mathcal{F}}{\Longleftrightarrow} j \omega Y(j \omega)+a Y(j \omega)=X(j \omega)$
$(j \omega+a) Y(j \omega)=X(j \omega) \longmapsto H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{1}{j \omega+a} \underset{\text { Example 1 }}{\text { impulse response }} h(t)=e^{-a t} u(t)$

Table 1:

Property
Aperiodic Signal
Fourier Transform

	$\begin{aligned} & x(t) \\ & y(t) \end{aligned}$	$\begin{aligned} & X(j \omega) \\ & Y(j \omega) \end{aligned}$
Linearity	$a x(t)+b y(t)$	$a X(j \omega)+b Y(j \omega)$
Time Shiftins	$x\left(t-t_{0}\right)$	$e^{-j \omega t_{0}} X(j \omega)$
Frequency Shifting	$e^{j \omega_{0} t} x(t)$	$X\left(j\left(\omega-\omega_{0}\right)\right)$
Conjugation	$x^{*}(t)$	$X^{*}(-j \omega)$
Time Reversal	$x(-t)$	$X(-j \omega)$
Time and Frequency Scaling	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{j \omega}{a}\right)$
Convolution	$x(t) * y(t)$	$X(j \omega) Y(j \omega)$
Multiplication	$x(t) y(t)$	$\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \theta) Y(j(\omega-\theta)) d \theta$
Differentiation	$\frac{d x(t)}{d t}$	$j \omega X(j \omega)$
Integration	$\int_{-\infty}^{t} x(t) d t$	$\frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega)$
Differentiation in Frequency	$t x(t)$	$j \frac{d}{d \omega} X(j \omega)$
Conjugate Symmetry for Real Signals	$x(t)$ real	$\begin{gathered} X(j \omega)=X^{*}(-j \omega) \\ \mathcal{R e}\{X(j \omega)\}=\operatorname{Re}\{X(-j \omega)\} \\ \operatorname{Im}\{X(j \omega)\}=-\mathcal{I} m\{X(-j \omega)\} \\ \|X(j \omega)\|=\|X(-j \omega)\| \\ \Varangle X(j \omega)=-\Varangle X(-j \omega) \end{gathered}$
Real and Even Signals	$x(t)$ real and even	$X(j \omega)$ real and even
Real and Odd Signals	$x(t)$ real and odd	$X(j \omega)$ purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases}x_{e}(t)=\mathcal{E} v\{x(t)\}, & x(t) \text { real } \\ x_{o}(t)=\mathcal{O d}\{x(t)\}, & x(t) \text { real }\end{cases}$	$\begin{gathered} \mathcal{R e}\{X(j \omega)\} \\ j \mathcal{I} m\{X(j \omega)\} \end{gathered}$

Table 2 BASIC FOURIER TRANSFORM PAIRS (Selected)
Signal
Fourier Transform

$x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \left(\omega T_{1}\right)}{\omega}$
$\delta(t)$	1
$\boldsymbol{u}(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$
$e^{-a t} u(t), \quad \mathcal{R e}\{a\}>0$	$\frac{1}{a+j \omega}$
$t e^{-a t} u(t), \quad \mathcal{R e}\{(a\}>0$	$\frac{1}{(a+j \omega)^{2}}$
$\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{n}}$

