

Motion Study and Work Design

Sections:

- Basic Motion Elements and Work Analysis – part 1
- 2. Micromotion Analysis part 1
- Principles of Motion Economy and Work Design – part 2

Definitions

- Motion study analysis of the basic hand, arm, and body movements of workers as they perform work
- Work design design of the methods and motions used to perform a task
- Includes:
 - Workplace layout and environment
 - Tooling and equipment used in the task

Motion Study and Work Design

3. Principles of Motion Economy and Work Design

Principles of Motion Economy

- Developed over many years of practical experience in work design
- Guidelines to help determine
 - Work method
 - Workplace layout
 - Tools, and equipment
- Objectives:
 - maximize efficiency and
 - minimize worker fatigue

Three Categories of Principles

- 1. Principles that apply to the **use of the human body**
- 2. Principles that apply to the workplace arrangement
- Principles that apply to the design of tooling and equipment

1. Design work to fully utilize both hands

- Natural tendency of most people: use their preferred hand* to accomplish most of work
- Other hand: minor role, e.g. holding object, while preferred hand works on it
- first principle:
 both hands should be used as equally as possible
- 2. The two hands should **begin** and **end** their motions **at the same time**
 - follows from 1
 - Sometimes must design method so work is evenly divided between right-hand & left-hand side of workplace
 - In this case, division of work should be organized according to following principle (3)

3. Hand and arm motions should be symmetrical and simultaneous

- i.e. minimize amount of hand-eye coordination required by worker
- since both hands: doing same movements at same time ⇒ less concentration required than if 2 hands had to perform different & independent motions

4. Design work to favor preferred hand

- Preferred hand: faster, stronger, more practical
 - If the work to be done cannot be divided evenly between 2 hands \Rightarrow take advantage of worker's best hand
 - e.g. work units should:
 - enter workplace on side of worker's preferred hand
 - & exit workplace on the opposite side**

- Worker's two hands should not be idle at the same time
 - Avoid periods when neither hand is working
 - It may not be possible to completely balance workload between the right & left hands
 - but it should be possible to avoid having both hands idle at the same time
 - The exception to this principle: during rest breaks
 - Work cycle of worker-machine system also exception
 - if worker is responsible for monitoring machine during its automatic cycle,
 - and monitoring involves using worker's cognitive senses rather than hands*

Next 5 principles of motion economy attempt to utilize **laws of physics** to assist **use of hands and arms** while working

- 6. Method should consist of:
- smooth continuous curved motions
- rather than straight motions with abrupt changes in direction*
 - Reason behind this principle:
 - straight-line path sequence includes start and stop actions (accelerations, decelerations) ⇒ consume worker's time & energy
 - Motions consisting of smooth continuous curves: minimize lost time in starts & stops

1. Use of Human Body

7. Use momentum to facilitate task

- When carpenters strike nail with hammer \Rightarrow they're using momentum (mass * velocity)
 - Imagine applying static force to do this!
 - When work situations provide opportunity to use momentum (like above): use it
 - Previous principle (**smooth continuous curved motions**) shows **beneficial use of momentum** to make a task easier

8. Take advantage of **gravity** – Don't oppose it

- Less time & energy required to move heavy object from higher to lower elevation than to move object upward
- Principle usually implemented by proper layout and arrangement of the workplace

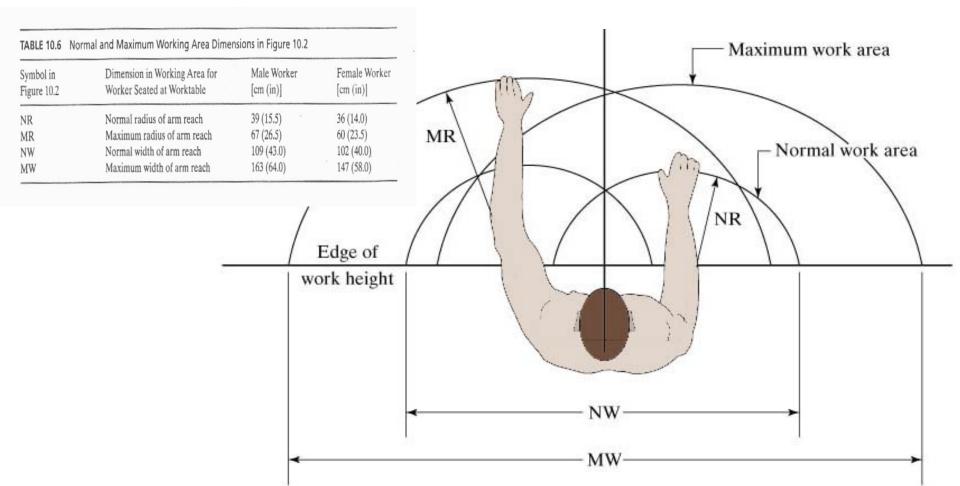
- 9. Method should achieve a **natural rhythm** of the **motions** involved
 - Rhythm: motions that have regular recurrence and flow from one to the next
 - Basically, the worker learns rhythm & performs motions without thinking
 - Like natural & instinctive motion pattern in walking

- 10. Use **lowest** classification of **hand and arm motion** (five classifications)
 - 1) Finger only
 - 2) Finger and wrist
 - 3) Finger, wrist, and forearm
 - 4) Finger, wrist, forearm, and **upper arm**
 - 5) Finger, wrist, forearm, upper arm, and **shoulder**
 - For lower classification, worker perform hand and arm motion: more quickly & with less effort
 - ⇒ work method: should be composed of motions at lowest classification level possible
 - Accomplished by: locating parts & tools as close together as possible in workplace

Two remaining human body principles of motion economy (11 and 12): recommendations for using **body members other than hands and arms**

1. Use of Human Body

11. Minimize eye focus and travel


- Eye focus occurs when eye must adjust to change in viewing distance
 - e.g. from 25 in. to 10 in., with little or no change in line of sight
- Eye travel occurs when eye must adjust to a lineof-sight change
 - e.g. from one location in the workplace to another, but the distances from eyes are same
- Since eye focus and eye travel each take time,
 - desirable to minimize need for worker to make these adjustments as much as possible
 - Accomplished by minimizing distances
 between objects (e.g. parts and tools) used in workplace

- 12. Design method to utilize **feet and legs** where appropriate
 - Legs: stronger than arms, although feet are not as practical as hands
 - Work method can sometimes be designed to take advantage of greater strength of legs
 - e.g.: in **lifting** tasks

Normal and maximum working areas in the workplace

- First 3 principles:
 - Deal with immediate work area
 - Lead to natural rhythm in workplace
- Remaining principles (4 7):
 - Deal with use of gravity, and
 - General conditions of the workplace

- Locate tools and materials in fixed positions within the work area
 - "a place for everything & everything in its place"
 - Worker eventually learns fixed locations,
 - \Rightarrow allowing him to **reach for object**,
 - without wasting time looking & searching

- 2. Locate tools and materials close to where they are used
 - Helps minimize distances worker must move (TE and TL) in workplace
 - Any equipment controls should also be located in close proximity:
 - Refers to normal & maximum working area (Fig. 10.2)
 - Desirable to keep parts & tools used in within normal working area (for each hand & both hands working together
 - If method requires worker to move beyond maximum working area:
 - \Rightarrow worker must move > than just arms & hands
 - \Rightarrow more **energy**, more **time**, more worker **fatigue**

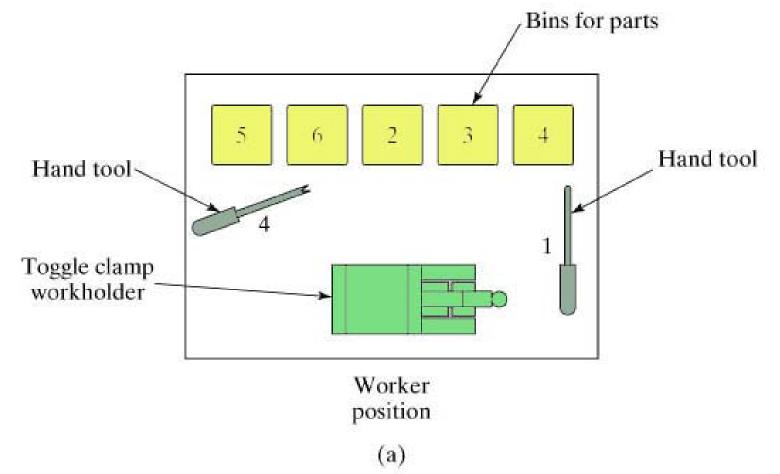
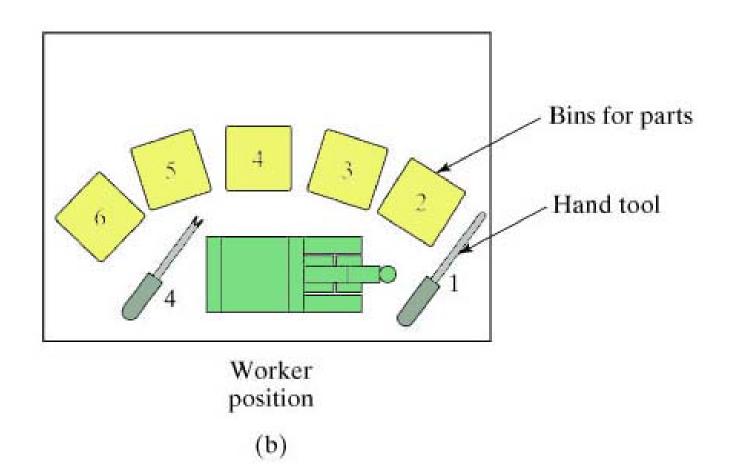

- 3. Locate tools and materials to be **consistent** with sequence of work elements
 - Items should be arranged in **logical pattern** that matches sequence of work elements
 - Those items that are used first in cycle should be on 1 side of work area
 - Items used next should be next to first, and so on
 - Alternative: **locate** items **randomly** in the work area
 - \Rightarrow increases amount of searching required
 - & detracts from rhythm of work cycle
 - Fig. 10.3: shows top view of workplace layout that illustrates 1st 3 principles
 - Note, layout in (b)
 - Iocates bins in more accessible pattern
 - consistent with sequence of work elements

Illustration of First Three Principles

Figure 10.3: Two workplace layouts.


(a) Poor arrangement of parts and tools in workplace

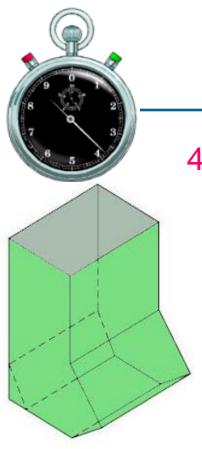


Illustration of First Three Principles

(b) Good arrangement of parts and tools in workplace

(a)

(b)

2. Workplace Arrangement

- 4. Use gravity feed bins to deliver small parts and fasteners
 - **Two types of bins** used for small parts and fasteners in the workplace:

a) gravity feed bin

This's a container that uses gravity to move items in it to a convenient access point for the worker

b) conventional rectangular bin

slower acquisition of items than gravity feed bin

- 5. Use gravity drop chutes for completed work units where appropriate
 - Drop chutes should lead to container adjacent to worktable
 - Entrance to gravity chute should be located near normal work area
 - \Rightarrow allows worker to dispose finished work unit quickly & conveniently
 - Most **appropriate for lightweight work units** that are not fragile

6. Provide adequate illumination

- Issue of illumination is normally associated with ergonomics
- Also long known to be important factor in work design
- Illumination: especially important in visual inspection tasks

- 7. A proper chair should be provided for the worker:
 - Adjustable to the size of the worker
 - Seat height and back adjustments
 - Padded seat and back
 - Means of increasing & decreasing amount of back support
 - Chair height should be in proper relationship with work height
 - Adjustable chair for workplace: next slide

Adjustable Chair for Workplace Cushioned seat back Cushioned seat Turnscrew for seat back height adjustment 0 Lever for seat Lever for height adjustment seat back firmness Telescoping seat height adjustment Five-prong base with castors

- Workholding devices should be designed for the task
 - Mechanical workholder with fast-acting clamp
 - permits work unit to be **loaded quickly**, and
 - frees both hands to work on the task productively
 - Typical workholder: must be custom-designed for work part processed in task

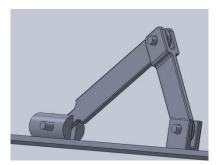
- Hands should be relieved of work elements that can be performed by the feet using foot pedals
 - Foot pedal controls instead of hand controls
 - to operate certain types of equipment
 - e.g. Sewing machines, foot pedals used as integral components in operation of equipment
 - Training: often required for operator to become proficient in use of foot pedals

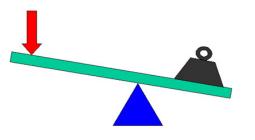
- 3. Combine **multiple functions into one tool** where possible
 - Many common hand tools implement this principle
 - e.g. claw hammer: designed for both striking and pulling nails
 - e.g. nearly all pencils are designed for both writing and erasing*
 - Less time usually required to reposition such a double-function tool than to put one tool down and pick another one up

4. Perform multiple operations simultaneously rather than sequentially

- Work cycle: usu. conceptualized as sequence of work elements or steps
- Steps are performed one after the other by worker and machine
- In some cases: work method can be designed so steps are accomplished at same time rather than sequentially*
- Special tooling and processes can often be designed to simultaneously accomplish multiple operations

- Where feasible, perform operation on multiple parts simultaneously
 - Usu. applies to cases involving use of powered/ machine tool, e.g.:
 - **drilling of holes** in a printed circuit board (PCB)
 - PCBs are stacked 3 or 4 thick
 - NC drill press drills each hole through entire stack in **one feed motion**




 Design equipment controls for operator convenience and error avoidance

- Equipment controls include devices that regulate operation of the equipment
 - Dials
 - Cranks
 - Levers
 - Switches
 - Push buttons, etc.
 - All controls needed by operator should be **located** within easy reach
 - \Rightarrow minimize body motions required to access & activate them

- 7. Hand tools and portable power tools should be designed for operator comfort and convenience
 - e.g. tools should have handles/grips: slightly compressible
 - ⇒ can be held & used comfortably for duration of shift

- Location of handle/grip relative to working end of tool:
 - should be designed for **max. operator safety**, **convenience, and effectiveness** of tool
 - If possible, tool should accommodate both righthanded & left handed workers

8.

- Mechanize or automate manual operations if economically and technically feasible
 - \Rightarrow this will almost always **outperform worker** in terms of **speed**, **repeatability**, and **accuracy**
 - ➡ results in higher production rates & better quality products
 - Economic feasibility depends on quantities produced:
 - Higher quantities: likely to justify investment in mechanization & automation