
 

 

PHYSICS 507 – Spring 2021 
4th   HOMEWORK-Solutions 
Prof. V. Lempesis 
Hand in: Wednesday 10th  of March 2021 

 
1. Two point charges, q1 = 3q and q2 = –q are located at points (0, 0, 2a) and 
(0, 0, -a) respectively. Find (i) the monopole moment, (ii) the dipole moment, 
and (iii) the approximate potential (in spherical coordinates) at large r (include 
both monopole and dipole contributions). (Hint: read carefully pages 149 and 
150 of our textbook) 
 

 
 

(5 marks) 
Solution: 
 

(i) the monopole term is the total charge so Q = 2q.  
 

(ii) The dipole moment is given by:  

   

(iii) The approximate potential at large distances is given by the 
potential of the monopole term and the potential due to the dipole 
term:  
 

 

 
 

2. Find the surface charge density on the conducting plane, which is at the 
plane xy. 

 

 
 
Solution: 
If we follow the image method the problem is solved by placing a charge  
at  and a charge  at . In this case the total electric potential 
is given by: 
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The surface charge density is given by: 
 

 

 

 

 
 

 

 
 
 

3. A colloid consists of a suspension in water of small charged particles which, 
though microscopic, from an atomic point of view are still very large. If the colloidal 
particles were not charged, they would tend to coagulate into large lumps; but 
because of their charge, they repel each other and remain in suspension. Now if there 
is also some salt dissolved in the water, it will be dissociated into positive and 
negative ions. (Such a solution of ions is called an electrolyte.) The negative ions are 
attracted to the colloid particles (assuming their charge is positive) and the positive 
ions are repelled. The potential V in a colloid arises in part from the same charges. 
The resulting effects influence in an important way the behavior of colloids. 

Assume that the colloid extends in one dimension (say along x) and it has a 
temperature T. The charge density in the colloidal is given by 

 , where  is the charge of electron, k is the Boltzmann 

constant and n0 is the initial of the colloidal in the absence of the electric field.  (i) 
Find the potential as a function of the position x in the colloidal in the limit where it is 
small compared to kT. (ii) plot a qualitative graph of the potential as a function of x. 

 

Solution:   

Since the problem is one dimensional we know that: 
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but if the potential is small compared to kT then 

 

thus we get 

 

The solution of this differential equation is: 

 

But since at infinity the potential must be zero then B should be zero. Thus the 
solution is: 

. 

The plot for potential is the following: 

 

4. Find the general solution of the Laplace equation in spherical coordinates when the 
potential has the form  on the sphere. Study the special case where 

. We are interested in the potential outside the sphere. 

Solution: 
The solution of such a problem has the following form: 
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The two solutions must agree at r = R. Thus 
 

 

 
The discontinuity of the electric field implies that: 
 

 

 
From this expression we get: 
 
 

 

 
Now for  we have that 
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Thus  
 

 

 
Thus for the solution outside the sphere we have: 
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