KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS FINAL EXAMINATION, SEM. I, 1427-1428 MATH 570: TOPOLOGY and CALCULUS in \Re^n TIME: 3H FULL MARKS: 40

Question #1

(a) Let $X = I \times I(=[0,1] \times [0,1])$ be the unit square in the plane. Define \sim to be the equivalence relation that identifies two pints on the vertical edges of X having same height. Thus for $(x, y), (u, v) \in X$:

$$(x,y) \sim (u,v) \Leftrightarrow (x,y) = (u,v) or(x=0, u=1, y=v) or(x=1, u=o, y=v)$$

verify that the quotient space X/\sim is homeomorphic to $S_1 \times I$. (b) Define $f: \Re^n \longrightarrow \Re$ by the equation $f(x, y) = x + y^2$. Show that f is a quotient map.

(c) Prove or disprove that a quotient of a Hausdorff space is Hausdorff.

(d) Show that $p: X(= \Re^{n+1} \setminus \{0\}) \longrightarrow X/ \sim (= \Re P_n)$ is an oppen mapping, where $\Re P_n$ denotes the real projective space.

Question #2

(a) Show that a subspace Y of the real line \Re with usual topology is connected if and only if Y is an interval.

(b) If X is a topological space then prove or disprove that the component C_x of X is connected.

(c) In a topological space X, define $x \sim y$ if there is no separation $X = A \cup B$ of X into disjoint open sets such that $x \in A$ and $y \in B$. Show that this is an

equivalent relation. Show that each component of X lies in a quasicomponent of X. (d) Give an example of locally connected space which is not path-connected.

Question #3

(a) If $f: \Re^n \longrightarrow \Re^m$, then prove that f is differentiable at $a \in \Re^n$ if and only if each f^i is.

(b) Let $f: \Re^n \longrightarrow \Re$ be a function defined by $f(x, y) = \sqrt{|xy|}$.

Check whether f is deifferentiable at (0, 0).

(c) State the Inverse Function Theorem. If the function $g: \Re^2 \longrightarrow \Re^2$ is given by $g(x,y) = (2ye^{2x}, xe^y)$ and $f: \Re^2 \longrightarrow \Re^3$ is given by $f(x,y) = (2x-y^2, 2x+y, xy+y^3)$, then decide whether there is a neighborhood U of (0,1) that g carries in a one-to-one fashion onto a neighborhood V of (2,0). Calculate $D(f \circ g)$.

Question #4

(a) Define the notion of n-dimensional topological manifold and and smooth manifold and give at least two examples.

(b) Prove that S^n is an *n*-dimensional smooth manifold.

(c) If M is a smooth manifold of dimension n and $p \in M$. Show that the tangent space $\mathcal{T}_p(M)$ is also of dimension n.