KING SAUD UNIVERSITY
 DEPARTMENT OF MATHEMATICS
 FINAL EXAMINATION, SEM. I, 1427-1428
 MATH 570: TOPOLOGY and CALCULUS in \Re^{n}
 TIME: $3 H$ FULL MARKS: 40

Question \#1
(a) Let $X=I \times I(=[0,1] \times[0,1])$ be the unit square in the plane. Define
\sim to be the equivalence relation that identifies two pints on the vertical edges of X haveing same height. Thus for $(x, y),(u, v) \in X$:

$$
(x, y) \sim(u, v) \Leftrightarrow(x, y)=(u, v) \operatorname{or}(x=0, u=1, y=v) \operatorname{or}(x=1, u=o, y=v)
$$

verify that the quotient space X / \sim is homeomorphic to $S_{1} \times I$.
(b) Define $f: \Re^{n} \longrightarrow \Re$ by the equation $f(x, y)=x+y^{2}$. Show that
f is a quotient map.
(c) Prove or disprove that a quotient of a Hausdorff space is Hausdorff.
(d) Show that $p: X\left(=\Re^{n+1} \backslash\{0\}\right) \longrightarrow X / \sim\left(=\Re P_{n}\right)$ is an oppen mapping, where $\Re P_{n}$ denotes the real projective space.

Question \#2

(a) Show that a subspace Y of the real line \Re with usual topology is connected if and only if Y is an interval.
(b) If X is a topological space then prove or disprove that the component C_{x} of X is connected.
(c) In a topological space X, define $x \sim y$ if there is no separation $X=A \cup B$ of X into disjoint open sets such that $x \in A$ and $y \in B$. Show that this is an equivalent relation. Show that each component of X lies in a quasicomponent of X.
(d) Give an example of locally connected space which is not path-connected.

Question \#3
(a) If $f: \Re^{n} \longrightarrow \Re^{m}$, then prove that f is differentiable at $a \in \Re^{n}$
if and only if each f^{i} is.
(b) Let $f: \Re^{n} \longrightarrow \Re$ be a function defined by $f(x, y)=\sqrt{|x y|}$.

Check whether f is deifferentiable at $(0,0)$.
(c) State the Inverse Function Theorem. If the function $g: \Re^{2} \longrightarrow \Re^{2}$ is given by $g(x, y)=\left(2 y e^{2 x}, x e^{y}\right)$ and $f: \Re^{2} \longrightarrow \Re^{3}$ is given by $f(x, y)=\left(2 x-y^{2}, 2 x+y, x y+y^{3}\right)$, then decide whether there is a neighborhood U of $(0,1)$ that g carries in a one-to-one fashion onto a neighborhood V of $(2,0)$. Calculate $D(f \circ g)$.
Question \#4
(a) Define the notion of n-dimensional topological manifold and and smooth manifold and give at least two examples.
(b) Prove that S^{n} is an n-dimensional smooth manifold.
(c) If M is a smooth manifold of dimension n and $p \in M$. Show that the tangent space $\mathcal{T}_{p}(M)$ is also of dimension n.

