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The current study was carried out to evaluate the ameliorative effect of fucoidan against aflatoxicosis-induced hepatorenal
toxicity in streptozotocin-induced diabetic rats. Sixty-four Wister albino male rats were randomly assigned into eight
groups (8 rats each) that received normal saline, fucoidan (FUC) at 100mg/kg/day orally for 4 weeks, streptozotocin (STZ)
at 50mg/kg/i.p. single dose, STZ plus FUC, aflatoxin B1 (AFB1) at 50 μg/kg/i.p. after one month of the beginning of the
experiment for 2 weeks, AFB1 plus FUC, STZ plus AFB1, or STZ plus AFB1 and FUC. Injection of rats with STZ induced
hyperglycemia. Rats with STZ-induced diabetes, with or without AFB1 intoxication, had significantly elevated activities of
serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, and levels of serum urea, creatinine,
cholesterol, 8-oxo-2′-deoxyguanosine, interleukin-1β, interleukin-6, and tumor necrosis factor-α. In addition, these rats
exhibited increased lipid peroxidation and reduced glutathione concentration and activities of superoxide dismutase,
catalase, and glutathione peroxidase enzymes in the hepatic and renal tissues. In contrast, administration of FUC to
diabetic rats, with or without AFB1 intoxication, ameliorated the altered serum parameters, reduced oxidative stress, DNA
damage, and inflammatory biomarkers, and enhanced the antioxidant defense system in the hepatic and renal tissues.
These results indicated that FUC ameliorated diabetes and AFB1-induced hepatorenal injuries through alleviating oxidative
stress, DNA damage, and inflammation.

1. Introduction

Diabetes mellitus (DM) is a leading cause of morbidity and
mortality worldwide. In developing countries, DM ranks as
the 5th most common cause of death [1]. Diabetes mellitus
is classified into two types: insulin-dependent (that results

from destruction of pancreatic β cells of Langerhans) and
noninsulin-dependent (that results from defects in insulin
action and/or secretion) [2]. Extensive research has shown
that inflammation and oxidative stress are implicated in the
development and complications of DM [3]. Streptozotocin
(STZ) is used experimentally to induce DM in animals
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because it targets the β cells of Langerhans and induces per-
manent hyperglycemia in experimental animals [4].

Aflatoxins are produced by Aspergillus flavus, Aspergillus
parasiticus, and Aspergillus nominus as secondary metabo-
lites. Humans are exposed to aflatoxins through ingestion
of contaminated food [5]. Storage of crops, such as corn
and peanuts at excessive heat and humidity for long times,
leads to proliferation of fungal spores and production of afla-
toxins. The most prevalent and toxic aflatoxin is aflatoxin B1
(AFB1) [6]. Its toxic and carcinogenic activities are due to its
bioactivation into AFB1 8,9-epoxide by microsomal cyto-
chrome P450. The resulting metabolite binds to DNA,
RNA, and proteins, resulting in hepatic and renal damage
[7]. Exposure of rats and pigs to AFB1 stimulates mRNA
expression of tumor necrosis factor-α (TNF-α), interferon-γ
(IFN-γ), and interleukin-6 (IL-6) [8]. The effects of AFB1
exposure depend on the dose and duration of treatment [6].
To the best of our knowledge, studies concerning the effects
of mycotoxins on DM subjects are still rare. Although the
liver plays vital roles in carbohydrate metabolism and regula-
tion of blood glucose level, it is the target organ for AFB1 [9].
Intoxication of T1DM mice with AFB1-disordered T1DM
elevated energy-producing mechanisms, gluconeogenesis,
lipid, and oxidative phosphorylation, reduced major urinary
protein 1, insulin sensitivity indicator, and subsequently ele-
vated blood glucose level [10]. There is a positive interaction
between AFB1 and diabetes in human subjects [11]. In addi-
tion, ochratoxin A induces toxic effects on the pancreatic tis-
sue in a rat [12].

Fucoidans (FUCs) are highly sulfated polysaccharides,
isolated from the cell walls of various species of brown sea-
weeds, such as Saccharina japonica, Undaria pinnatifida,
and Sargassum hemiphyllum, and some animal species as
sea cucumber [13]. In vitro and in vivo studies showed that
FUCs have various biological activities such as hypoglycemic,
nephroprotective, antioxidant, anti-inflammatory, anticoag-
ulant, and antiviral effects [14, 15]. Many strategies are used
to inhibit the development and progression of DMwhich rely
on alleviating oxidative stress and inflammation [16]. The
current study was aimed to evaluate the ameliorative poten-
tial of FUC against aflatoxicosis-induced hepatorenal toxicity
in streptozotocin-induced DM in rats.

2. Materials and Methods

2.1. Chemicals. Streptozotocin and aflatoxin B1 were pur-
chased fromSigmaChemicalCo. (St. Louis,MO,USA). Fucoi-
dan (Laminaria Japonica, as 500mg/capsule) was obtained
from Absunutrix Lyfetrition (USA). The kits, used for deter-
mination of blood glucose and serummetabolites levels, were
obtained from BioDiagnostics Co. (Cairo, Egypt). ELISA kits,
used to measure the serum levels of inflammatory cytokines,
were obtained from R&D (Mannheim, Germany), while the
kits for 8-OhdG measurement were purchased from Cayman
Chemical (Co., MI, USA).

2.2. Animals. Sixty-four Wister albino male rats of 180 to
200 g weights were bought from the Egyptian Organization
for Biological Products and Vaccines. Rats were kept at

25 ± 2°C and 12h light/dark cycle in a well-ventilated
room. Rats were given an access to food and water ad libitum.
Rats were maintained under these environmental conditions
for one week for adaption before the beginning of the exper-
iment. The experimental design was approved by the
Research Ethical Committee of the Faculty of Veterinary
Medicine, Suez Canal University, Ismailia, Egypt (Approval
No. 201616).

2.3. Experimental Design. Rats were randomly assigned into
eight different experimental groups (8 rats each).

The control rats were given normal physiological saline.
The second group rats were given FUC at 100mg/kg/day

orally [17] between weeks 5 and 8 of the experiment.
The third group rats were administered STZ at

50mg/kg/i.p. (dissolved in 0.1mmol/l citrate buffer, pH 4.5)
after 12 h fasting at the beginning of the experiment [18].

The fourth group rats were administered STZ as the third
group and FUC as the second group.

The fifth group rats were given AFB1 at 50μg/kg/i.p. dur-
ing the fifth and sixth weeks [19].

The sixth group rats were administered AFB1 as the fifth
group and FUC as the second group.

The seventh group rats were administered STZ as the
third group and AFB1 as the fifth group.

The eighth group rats were administered STZ as the third
group, AFB1 as the fifth group, and FUC as the second group.

The experiment design is illustrated in Figure 1.

2.4. Blood and Tissue Sampling. Blood samples were collected
at the end of the experiment. Blood samples were left to clot
at room temperature for 30min and then centrifuged at
2500 rpm for 15min, and sera samples were separated and
stored at -20°C till biochemical assessment. The rats were
later sacrificed by decapitation and the liver and kidney tis-
sues were collected and washed with normal physiological
saline solution. Then, tissue samples were homogenized in
ice-cold buffer containing 50mM sodium phosphate-
buffered saline (100mM Na2HPO4/NaH2PO4) (pH 7.4),

Group I

Group II

Group III

Group IV

Group V

Group VI

Group VII

Group VIII

Figure 1: Design and animal allocation into different experimental
treatments. White arrow indicates the start of FUC treatment. Black
arrow indicates the administration of streptozotocin dose, and the
grey arrow indicates the start of aflatoxin B1 treatment.
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containing 0.1mM EDTA then centrifuged for 30 minutes at
5000 rpm. The supernatant was collected and maintained at
-80°C for subsequent analysis.

2.5. Biochemical Assays. The initial and fasting blood glucose
levels were colorimetrically assayed according to Trinder
[20] The activities of serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) were analyzed accord-
ing toReitman andFrankel [21]. The activity of serumalkaline
phosphatase (ALP)was evaluated according toTietz et al. [22].

The levels of serum total cholesterol according to
(Richmond, 1973; Allain et al. 1974), urea, and creatinine
were evaluated spectrophotometrically (Coulombe and Fav-
reau [23] and Larsen [24]), respectively.

The tissue homogenates were used to determine the con-
centrations of malondialdehyde (MDA) [25], nitric oxide
(NO) [26], reduced glutathione (GSH) [27], superoxide dis-
mutase (SOD) [28], glutathione peroxidase (GSH-Px) [29],
and catalase (CAT) [30] activities in both hepatic and renal
tissues according to the referenced methods.

2.6. Evaluation of DNA Oxidation Biomarker. The concen-
tration of serum 8-oxo-2′-deoxyguanosine (8-OhdG) was
determined by using 8-OhdG competitive assay kit (Cayman
Chemical Co., MI, USA) that detects free 8-OHdG and
DNA-pound 8-OhdG.

2.7. Determination of Inflammatory Biomarkers. The serum
levels of IL-1β, IL-6, and TNF-α were determined, by here
using commercially available ELISA kits obtained from
R&D (Mannheim, Germany) according to the manufac-
turers’ instructions.

2.8. Statistical Analysis. All data were expressed as the
means ± SEM, using SPSS software (version 20 for Win-
dows, Armonk, NY). Data were analyzed by here using
one-way ANOVA followed by Duncan’s post hoc test to
test the significant differences between experimental
groups. The differences among groups were considered
statistically significant at P ≤ 0:05.

3. Results

3.1. Fucoidan Reduced STZ-Induced Hyperglycemia in Rats.
Intraperitoneal STZ administration was associated with
significant increases in initial and fasting blood glucose
levels compared with control rats. However, treatments of
diabetic rats (with or without AFB1 intoxication) with FUC
(4th and 8th groups) significantly decreased blood glucose
levels compared to diabetic, nontreated rats (3th and 7th

groups). On the other hand, both AFB1 and FUC (2nd, 5th,
and 6th groups) had no significant effects on fasting blood
glucose levels (Table 1).

3.2. Fucoidan Normalized AFB1-Induced Alterations in
Serum Liver Function Biomarkers in Diabetic Rats. Treat-
ment of rats with STZ and/or AFB1 (3

rd, 5th, and 7th groups)
was associated with significant increases in serum activities of
ALT, AST, and ALP (that was most prominent in the combi-
nation group). In contrast, treatment of diabetic rats with or

without AFB1 intoxication with FUC (4th, 6th, and 8th

groups) normalized the activities of serum AST, ALT, and
ALP. FUC alone had no significant effect on the activities of
serum AST, ALT, and ALP compared to control rats
(Table 1).

3.3. Fucoidan Ameliorated AFB-1-Induced Alteration in
Serum Kidney Function Biomarkers in Diabetic Rats. Treat-
ment of rats with STZ and/or AFB1 (3

rd, 5th, and 7th groups)
was associated with significant increases in serum urea and
creatinine levels (that was most prominent in the combina-
tion group). However, treatment of diabetic rats with or
without AFB1 intoxication with FUC (4th, 6th, and 8th

groups) significantly reduced serum urea and creatinine
levels, compared with the 5th and 7th groups. Treatment with
FUC alone was not associated with significant changes in
serum urea and creatinine levels compared with the control
rats (Table 1).

3.4. Fucoidan Normalized AFB-1-Induced Alteration in
Serum Cholesterol Levels in Diabetic Rats. Administration of
STZ and/or AFB1 (3rd, 5th, and 7th groups) was associated
with significantly increased serum cholesterol levels in com-
parison to control rats. However, treatment of diabetic or
nondiabetic rats intoxicated with AFB1, with FUC (4th, 6th,
and 8th groups), normalized serum cholesterol levels, com-
pared with the 3rd, 5th, and 7th groups. Treatment with
FUC alone did not cause significant changes in serum choles-
terol levels compared with the control rats (Table 1).

3.5. Fucoidan Normalized AFB-1-Induced Oxidative Stress in
Rat Hepatic and Renal Tissues. Administration of rats with
streptozotocin and/or AFB1 (3rd, 5th, and 7th groups) was
associated with significant increases in hepatic and renal tis-
sue concentrations of MDA and NO in comparison to con-
trol rats. However, treatment of diabetic and nondiabetic
rats intoxicated with AFB1 with FUC (4th, 6th, and 8th groups)
normalized MDA and NO concentrations in both hepatic
and renal tissues (Tables 2 and 3).

In contrast, induction of diabetes and/or aflatoxin intox-
ication significantly reduced GSH concentrations and GSH-
Px, SOD, and CAT activities in both hepatic and renal tissues
in the 3rd, 5th, and 7th groups in comparison to the control
rats. Treatment of diabetic and nondiabetic rats intoxicated
with AFB1 with FUC (4th, 6th, and 8th groups) reversed the
effects of both diabetes and AFB1 intoxication on the afore-
mentioned parameters. Treatment with FUC alone signifi-
cantly elevated GSH concentration and GSH-Px, SOD, and
CAT activities in the hepatic and renal tissues compared with
the control group (Tables 2 and 3).

3.6. Fucoidan Normalized AFB-1-Induced Elevation of Serum
Levels of DNA Oxidation Biomarker and Inflammatory
Cytokines. Induction of diabetes and/or AFB1 intoxication
in the 3rd, 5th, and 7th groups was associated with signifi-
cantly elevated serum 8-OhdG, IL-1β, IL6, and TNF-α
levels, compared to the control group. However, treatment
of diabetic and nondiabetic rats intoxicated with AFB1 with
FUC (4th, 6th, and 8th group) reduced serum 8-OhdG, IL-1β,
IL6, and TNF-α levels compared to nontreated rats (3rd, 5th,
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and 7th groups). FUC itself had no significant effects on the
serum 8-OhdG, IL-1β, IL6, and TNF-α levels in comparison
to control rats (Figure 2).

4. Discussion

Great numbers of animals and people suffering from diabetes
mellitus worldwide and its incidence increase in steady state
and the number of diabetic patients has been expected to
reach about 300 million in 2025 [31–33]. Numerous human
and animals all over the world are subjected to mycotoxins
because they frequently occur in food and feed stuffs [34].
The most prevalent and toxic aflatoxin worldwide is AFB1
[35–37]. Aflatoxin B1 induces several cellular damages
through generation of free radicals and induction of lipid
peroxidation resulting in oxidative stress in animals or
humans. Oxidative stress plays indispensable role in AFB1-
induced toxicity [38, 39] through activation of inflammatory
cytokines such as TNF-α, IL-1β, and IL-6 [40]. Thus, expo-
sure of diabetic patients to mycotoxicosis is unavoidable that

is adversely affecting their health through induction of oxida-
tive stress and subsequent inflammation.

The current study showed that injection of rats with STZ
induced hyperglycemia, probably due to the irreversible cyto-
toxic effects of STZ on the β cells of the pancreas resulting in
insulin deficiency [41]. Oxidative stress is implicated in this
cytotoxic effect. In addition, induction of both diabetes
and/or aflatoxicosis in rats resulted in elevated activities of
liver function biomarkers, which can be explained by ROS
generation, lipid peroxidation, and depleted antioxidant
defense system in the hepatic tissue. These effects result in
hepatocyte necrosis and release of hepatic enzymes into the
circulation [42, 43]. Similarly, injection of rats with STZ
and/or AFB1 significantly increased serum levels of urea
and creatinine. These findings were in line with those of Era-
slan et al. [44] and Zabad et al. [45]. This may be attributed to
hyperglycemia and/or AFB1-induced ROS leading to necrosis
of proximal tubular epithelial cells [44, 45]. To confirm the
role of MD and AFB1-induced oxidative stress in disturbance
of hepatorenal function, our study revealed that DM and/or
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Figure 2: The ameliorative effect of FUC against AFB1-induced alteration in serum levels of 8-OHdG (a), IL-1β (b), IL-6 (c), and TNF-α (d)
in streptozotocin-induced diabetic rats. Data are presented as the mean ± SEM. Columns having different letters are significantly different
(P ≤ 0:05).
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AFB1 intoxication in rats induced oxidative stress in both
hepatic and renal tissues as evidenced by the increased levels
of MDA and NO and reduced concentration of GSH and
activities of GSH-Px, SOD, and CAT (Tables 2 and 3). These
results are in accordance with prior studies [46, 47]. In the
presence of nitric oxide synthase, superoxide and NO react
to generate peroxynitrite that injures the cell membrane
and cellular biomolecules [48]. Further, these radicals attack
the cellular DNA, as evidenced by the increased levels of
serum 8-OHDG (Figure 1). In addition, AFB1 metabolites
formAFB1–DNA adducts that induce DNA and cell damages
and inhibit enzyme and protein synthesis through binding to
nucleoproteins and nucleic acids [49]. Diabetes mellitus and
AFB1 intoxication-induced oxidative stress in this study were
associated with increased production of proinflammatory
cytokines, IL-1β, IL-6, and TNF-α (Figure 1) leading to hepa-
torenal injuries and the elevation of activities and levels of
their function biomarkers. There is extensive documentation
in the literature of the association between oxidative stress
and expression of proinflammatory cytokines such as IL-
1β, IL-6, and TNF-α. In DM, glucose interacts with the
amino groups of proteins producing advanced glycation
end products that enhance the expression of some inflamma-
tory and angiogenic cytokines [50]. A former study in pigs
revealed that exposure to AFB1 enhances TNF-α, IFN-γ,
and IL-6 expression [51]. In addition, AFB1 activates the
expression of nuclear factor kappa B (NFκB) and hence the
production of inflammatory cytokines [52].

On the contrary, treatment of diabetic rats with FUC
ameliorated the hepatorenal toxic effects of DM and/or
AFB1 as evidenced by reduced blood glucose levels, activities
of serum AST, ALT, and ALP, and serum levels of urea, cre-
atinine, 8-OHDG, IL-1B, IL-6, and TNF-α. These findings
were parallel with those of Wang et al. who concluded that
FUC reduces STZ-induced hyperglycemia and kidney dam-
age in rats [53]. The glucose-lowering effect of FUC might
be due to enhancement of insulin secretion by pancreatic
cells, increasing glucose uptake, or reduction of basal lipolysis
[54]. Similarly, FUC improved the liver functions in carbon
tetrachloride, microcystin, and diazinon-induced hepatore-
nal injuries in murine models [55–57] and lowered serum
AST and ALT activities in hepatitis C virus-infected subjects
[58]. These effects may be explained by FUC antioxidant
activity as evidenced by alleviated lipid oxidation and
enhancement of the antioxidant defense system in the liver
and kidneys (Tables 2 and 3) and [14, 55]. These results were
in accordance with previous published investigations. Fucoi-
dans exert its antioxidant activity through scavenging ROS
such as hydroxyl, peroxyl, and superoxide radicals [59, 60],
and stimulating the activities of cellular SOD, CAT, GSH-
Px, GST, and glucose-6-phosphate dehydrogenase [61]. In
addition, our study showed that FUC reduces the production
of proinflammatory cytokines (Figure 1). FUC has been
shown to suppress the expression of NFκB, protein kinase
B, extracellular signal-regulated kinase, c-Jun N-terminal
kinase, and p38mitogen-activated protein kinase [62]. More-
over, it reduced LPS-induced elevation of serum levels of
TNF-α, IL-1β, and IL-6 in mice [63]. Further, it alleviated
aspirin-induced elevation of PGE2 and IL-6 plasma levels

and increased the expression of IL-10 (anti-inflammatory
cytokine) in rats [64]. Therefore, FUC ameliorated DM and
AFB1-induced hepatorenal damages through suppressing
oxidative stress-induced DNA damage and proinflammatory
cytokine production.

In conclusion, DM and AFB1-induced hepatorenal inju-
ries are probably mediated by oxidative stress, DNA damage,
and inflammation. However, treatment with FUC amelio-
rated DM and AFB1-induced hepatorenal injuries, mostly
due to its antioxidant and anti-inflammatory effects.
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