Chapter 4

Laplace Transform

Introduction

Pierre-Simon Laplace: French Scholar (1749-1827)
Fourier transforms involve purely imaginary complex exponentials:
Laplace transforms involve complex exponentials:

$$
e^{s t}, s=\sigma+j \omega \quad x(t) \stackrel{L}{\leftrightarrow} X(s)
$$

Eigen-function property applies to any complex number S

$$
\text { Laplace Transform: } X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t \quad \Rightarrow x(t) \xrightarrow{\mathcal{L}} X(s)
$$

$$
\left.X(s)\right|_{s=j \omega}=F\{x(t)\} \longrightarrow \text { Fourier Transform }
$$

Laplace Transform and Fourier Transform

$$
X(\sigma+j \omega)=\int_{-\infty}^{\infty} x(t) e^{-(\sigma+j \omega) t} d t=\int_{-\infty}^{\infty} x(t) e^{-\sigma t} e^{-j \omega t} d t=\int_{-\infty}^{\infty} x^{\prime}(t) e^{-j \omega t} d t
$$

The Laplace transform is the Fourier transform of the transformed signal $x^{\prime}(t)=x(t) e^{-\sigma t}$

Example 1

Consider the signal $\quad x(t)=e^{-a t} u(t)$
The Fourier transform: $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t=\frac{1}{a+j \omega} \quad, a>0$
The Laplace transform: $X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t=\int_{0}^{\infty} e^{-a t} e^{-(\sigma+j \omega) t} d t=\int_{0}^{\infty} e^{-(a+\sigma) t} e^{-j \omega t} d t$ which is the Fourier Transform of $e^{-(a+\sigma) t} u(t)$

$$
X(\sigma+j \omega)=\frac{1}{(\sigma+a)+j \omega}, \sigma+a>0 \quad \text { Or } \quad e^{-a t} u(t) \xrightarrow{\mathcal{L}} \frac{1}{s+a}, R_{e}\{s\}>-a
$$

If a is negative or zero, the Laplace Transform still exists

Example 2

Consider the signal $x(t)=-e^{-a t} u(-t)$
The Laplace transform is: $X(s)=-\int_{-\infty}^{\infty} e^{-a t} e^{-s t} u(-t) d t=-\int_{-\infty}^{0} e^{-(s+a) t} d t=\frac{1}{s+a}$

$$
-e^{-a t} u(-t) \stackrel{\mathcal{L}}{\rightarrow} \frac{1}{s+a} \quad, R_{e}\{s\}<-a
$$

Convergence $\operatorname{Re}\{s+a\}<0$ for $t<0$

- Convergence requires that $\operatorname{Re}\{s+a\}<0$ or $\operatorname{Re}\{s\}<-a$
- In example 1: $\quad e^{-a t} u(t) \stackrel{\mathcal{L}}{\rightarrow} \frac{1}{s+a}, R_{e}\{s\}>-a$
- The Laplace transform is identical for two different signals. However the regions of convergence of s are mutually exclusive (non-intersecting).
- For a Laplace transform, we need both the expression and the Region Of Convergence (ROC)

Region of Convergence For Laplace Transform

- The Fourier transform exists for most signals with finite energy (Dirichlet convergence conditions)
- The Region Of Convergence (ROC) of the Laplace Transform is the region of values for $s=\sigma+j \omega$ for which the Fourier transform of $x(t) e^{-\sigma t}$ converges.).

- The ROC of $X(s)$ consists of strips (bands) parallel to the $j \omega$-axis in the s-plane. The shaded regions denote the ROC for the Laplace transform
- A complete specification of the Laplace transform requires the algebraic expression for X(s) and the associated ROC

Example 3

- Consider a signal that is the sum of two real exponentials:

$$
x(t)=3 e^{-2 t} u(t)-2 e^{-t} u(t)
$$

- The Laplace transform is then: $X(s)=\int_{-\infty}^{\infty}\left[3 e^{-2 t} u(t)-2 e^{-t} u(t)\right] e^{-s t} d t$

$$
=3 \int_{-\infty}^{\infty} e^{-2 t} u(t) e^{-s t} d t-2 \int_{-\infty}^{\infty} e^{-t} u(t) e^{-s t} d t
$$

- Using Example 1, each expression can be evaluated as:

$$
X(s)=\frac{3}{s+2}-\frac{2}{s+1}
$$

- The ROC associated with these terms are $\operatorname{Re}\{s\}>-1$ and $\operatorname{Re}\{s\}>-2$. Therefore, both will converge for Re\{s\}>-1, and the Laplace transform:

$$
X(s)=\frac{s-1}{s^{2}+3 s+2}
$$

Poles and Zeros

The Laplace transform

$$
X(s)=\frac{N(s)}{D(s)}
$$

Zeros: roots of $\mathrm{N}(\mathrm{s})$ \qquad Poles: roots of $D(s)$ \qquad \rightarrow Makes X(s) infinite
For the Laplace transform: $X(s)=\frac{s-1}{(s+2)(s+1)}$
O-Zero

Zero calculation:
x - Pole

$$
s-1=0 \rightarrow s=1
$$

Pole calculation:

Laplace transform $\mathrm{X}(\mathrm{s})$ is rational if it is a ratio of polynomials in the complex variable s.

$$
X(s)=\frac{s}{s^{2}-2 s+1} \quad \text { Rational }
$$

$$
X(s)=\frac{e^{t}}{s^{2}-2 s+1}
$$

Not Rational

Poles and Zeros at Infinity

- If the denominator polynomial order is greater than the numerator polynomial order, there are zeros at infinity. (their number is the difference in order).
- If the numerator polynomial order is greater than the denominator polynomial order, there are poles at infinity. (their number is the difference in order).

$$
X(s)=\frac{(s-1)^{2}}{(s+1)(s-2)} \quad \begin{aligned}
& \text { Neither poles or } \\
& \text { zeros are at infinity }
\end{aligned}
$$

$$
X(s)=\frac{s-1}{s^{2}+3 s+2} \text { One zero at infinity }
$$

- For rational Laplace transforms, the ROC is bounded by the poles (rightmost pole or leftmost pole but does not contain any poles, $X(s)$ is infinite at a pole).
- If the ROC includes the $j \omega$ - axis then the Fourier transform exists.
The Fourier transform is the evaluation of the Laplace transform along the $j \omega-$ axis.

Example 4

$$
x(t)=e^{-2 t} u(t)+e^{-t}(\cos 3 t) u(t)
$$

From Exercise 1

$$
\begin{aligned}
& x(t)=\left[e^{-2 t}+e^{-t} \frac{e^{3 j t}+e^{-3 j t}}{2}\right] u(t)=\left[e^{-2 t}+\frac{e^{-(1-3 j) t}+e^{-(1+3 j) t}}{2}\right] u(t)
\end{aligned} x_{x(t)=e^{-a t} u(t) \stackrel{\mathcal{L}}{\Leftrightarrow} \frac{1}{s+a}}^{t>0 \rightarrow \Re e\{s\}>-a} \begin{aligned}
& x(s)=\frac{1}{s+2}+\frac{1}{2} \frac{1}{s+(1-3 j)}+\frac{1}{2} \frac{1}{s+(1+3 j)}
\end{aligned}
$$

$$
\operatorname{Re}\{s\}>-2 \quad \operatorname{Re}\{s\}>-1 \quad \operatorname{Re}\{s\}>-1
$$

After combining

$$
\operatorname{Re}\{s\}>-1
$$

$$
X(s)=\frac{1}{s+2}+\frac{1}{2} \frac{1}{s+(1-3 j)}+\frac{1}{2} \frac{1}{s+(1+3 j)}
$$

Example 5

$$
x(t)=\delta(t)-\frac{4}{3} e^{-t} u(t)+\frac{1}{3} e^{2 t} u(t)
$$

If $x(t)$ is of finite duration and is absolutely integrable \Rightarrow ROC is the entire s-plane. $\mathcal{L}\{\delta(t)\}=1, \quad$ ROC $=$ Entire s-plane

$$
X(s)=1-\frac{4}{3} \frac{1}{s+1}+\frac{1}{3} \frac{1}{s-2}=\frac{(s-1)^{2}}{(s+1)(s-2)} \quad \text { ROC: } \operatorname{Re}\{s\}>2
$$

If $x(t)$ is right-sided, and if the line $\mathfrak{R e}\{s\}=\sigma_{0}$ is in the ROC

\Rightarrow
 will also be in the ROC.

If $x(t)$ is left-sided, and if the line $\mathfrak{R e}\{s\}=\sigma_{0}$ is in the ROC

The area of s for which $\mathfrak{R e}\{s\}<\sigma_{0}$ will also be in the ROC.

Example 6
$x(t)=e^{-b|t|}=e^{b t} u(-t)+e^{-b t} u(t) \quad$ divided it into the sum of a right-sided and left-sided signal;

- Hence, the ROC plays an integral role in the Laplace transform.

Example 7

Let

$$
X(s)=\frac{1}{(s+1)(s+1)}
$$

There are three possible ROCs associated with this expression corresponding to three distinct signals.

ROC corresponding to a right-sided sequence

ROC corresponding to a left-sided sequence

ROC corresponding to a two-sided sequence

Inverse Laplace transform

- we can recover $\mathrm{x}(\mathrm{t})$ from its Laplace transform evaluated for a set of values of $s=\sigma-j \omega$ in the ROC by varying ω from $-\infty$ to $+\infty$

$$
x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s
$$

- The inverse Laplace transform can be determined using the technique of partial fraction expansion (easier method)

Example 8

- Consider the Laplace transform: $\quad X(s)=\frac{(s+3)}{(s+1)(s-2)}$
- Can we uniquely determine the original signal, $\mathrm{x}(\mathrm{t})$?
- There are three possible ROCs:
- ROC III: only if $x(t)$ is right-sided. Causal, NOT Stable
- ROC I: only if $x(t)$ is left-sided. NOT causal, NOT stable
- ROC II: only if $x(t)$ has a Fourier transform. STABLE

Find $x(t)$ for different ROCs

To obtain the inverse Laplace transform, we first perform a partial-fraction expansion

$$
X(s)=\frac{(s+3)}{(s+1)(s-2)}
$$

$$
\begin{aligned}
& \frac{s+3}{(s+1)(s-2)}=\frac{A}{s+1}+\frac{B}{s-2} \Rightarrow s+3=A(s-2)+B(s+1) \\
\Rightarrow & s+3=(A+B) s-2 A+B \\
\Rightarrow & A+B=1 ;-2 A+B=3 \\
\Rightarrow & A=-2 / 3, B=5 / 3
\end{aligned}
$$

ROC III \rightarrow Causal, not stable, $\mathrm{x}(\mathrm{t})$ right sided $\quad x(t)=-\frac{2}{3} e^{-t} u(t)+\frac{5}{3} e^{2 t} u(t)$
ROC I \rightarrow Not causal, not stable, $\mathrm{x}(\mathrm{t})$ left sided $\quad x(t)=+\frac{2}{3} e^{-t} u(-t)-\frac{5}{3} e^{2 t} u(-t)$
ROC II \rightarrow Not causal, stable, $\mathrm{x}(\mathrm{t})$ two sided $\quad x(t)=-\frac{2}{3} e^{-t} u(t)-\frac{5}{3} e^{2 t} u(-t)$

Example 9

Find inverse Laplace transform of $\quad X(s)=\frac{1}{(s+1)(s+2)} ; \operatorname{Re}\{\mathrm{s}\}>-1$

$$
\begin{aligned}
& X(s)=\frac{1}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2} \Rightarrow A=1, B=-1 \Rightarrow X(s)=\frac{1}{s+1}-\frac{1}{s+2} \\
& \quad \Rightarrow x(t)=\left[e^{-t}-e^{-2 t}\right] u(t)
\end{aligned}
$$

Find inverse Laplace transform of $\quad X(s)=\frac{1}{(s+1)(s+2)} ; \quad \operatorname{Re}\{\mathrm{s}\}<-2$

$$
X(s)=\frac{1}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2} \quad \Rightarrow A=1, B=-1 \Rightarrow X(s)=\frac{1}{s+1}-\frac{1}{s+2}
$$

$$
\stackrel{\mu T}{\Rightarrow} x(t)=\left[-e^{-t}+e^{-2 t}\right] u(-t)
$$

PROPERTIES OF THE LAPLACE TRANSFORM

1. Linearity

IF $x_{1}(t) \stackrel{\mathcal{L}}{\Leftrightarrow} X_{1}(s) \quad$ ROC $=R_{1} \quad$ AND $x_{2}(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X_{2}(s) \quad R O C=R_{2}$ THEN $a x_{1}(t)+b x_{2}(t) \stackrel{\mathcal{L}}{\Leftrightarrow} a X_{1}(s)+b X_{2}(s) \quad R O C=R_{1} \cap R_{2}$
2. Time Shifting

IF $x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s) \quad$ ROC $=R$

THEN $\quad x\left(t-t_{0}\right) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s t_{0}} X(s) \quad$ ROC $=R$

Example 10 Linearity and Time Shifting

Consider the following signal, which is a linear sum of two time-shifted sinusoids.

$$
\begin{gathered}
x(t)=2 x_{1}(t-2.5)-0.5 x_{1}(t-4) \\
x_{1}(t)=\sin \left(\omega_{0} t\right) u(t)
\end{gathered}
$$

Laplace transform of $x_{1}(t): \quad X_{1}(s)=\frac{\omega_{0}}{s^{2}+\omega_{0}{ }^{2}} ; \quad \operatorname{Re}\{s\}>0$
Using linearity and time-shifting properties of Laplace transform, we get:

$$
\begin{array}{ll}
X(s) \stackrel{\mathcal{L}}{\Longleftrightarrow} 2 e^{-2.5 s} X_{1}(s)-0.5 e^{-4 s} X_{1}(s) & R_{e}\{s\}>0 \\
X(s)=\left(2 e^{-2.5 s}-0.5 e^{-4 s}\right) \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} & \operatorname{Re}\{s\}>0
\end{array}
$$

3. Shifting in the s-Domain

IF $x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s)$ with ROC $=R \quad$ THEN $e^{s_{0} t} x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X\left(s-s_{0}\right)$ with $R O C=R+R_{e}\left\{s_{0}\right\}$
4. Time Scaling

IF $x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s)$ with ROC $=R \quad$ THEN $x(a t) \stackrel{\mathcal{L}}{\Leftrightarrow} \frac{1}{|a|} X\left(\frac{S}{a}\right) \quad$ with ROC $=a R$

5. Conjugation

IF $x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s)$ with ROC $=R$ THEN $x^{*}(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X^{*}\left(s^{*}\right) \quad$ with $R O C=R$
6. Differentiation in the s-Domain

IF $x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s)$ with ROC $=R \quad$ THEN $\quad-t x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} \frac{d X(s)}{d s} \quad$ with ROC $=R$

7. Convolution

- The Laplace transform also has the multiplication property, i.e.

$$
\begin{array}{lll}
\text { IF } \quad x(t) & \stackrel{\mathcal{L}}{\longleftrightarrow} & X(s) \\
\text { AND } h(t) & \stackrel{\mathcal{L}}{\Longleftrightarrow} & H(s)
\end{array} \text { ROC }=R_{1}=R_{2} \text { ROC }
$$

THEN $x(t) * h(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s) H(s) \quad$ ROC $=R_{1} \cap R_{2}$
Convolution in time-domain becomes multiplication in Laplace domain.

- Note that pole-zero cancellation may occur between $\mathrm{H}(\mathrm{s})$ and $\mathrm{X}(\mathrm{s})$ which extends the ROC

$$
\begin{array}{ll}
X(s)=\frac{s+1}{s+2} & \mathfrak{R}\{s\}>-2 \\
H(s)=\frac{s+2}{s+1} & \mathfrak{R}\{s\}>-1
\end{array} \quad \square \quad X(s) H(s)=1 \quad-\infty<\mathfrak{R}\{s\}<\infty
$$

8. Differentiation in Time-Domain

$$
x(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(s) \quad \text { ROC }=R
$$

The Inverse Laplace transform $\quad x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s$
The Derivative $\frac{d x(t)}{d t}=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} s X(s) e^{s t} d s$ $\frac{d x(t)}{d t} \stackrel{\varepsilon}{\Leftrightarrow} S X(s) \quad$ ROC containing R

Problem 1

Determine the Laplace transform and ROC and pole-zero plot:

$$
x(t)=e^{-2 t} u(t)+e^{-3 t} u(t)
$$

$$
X(s)=\frac{1}{s+2}+\frac{1}{s+3}=\frac{2 s+5}{(s+2)(s+3)}
$$

$$
\begin{aligned}
& \text { ROC: } R_{e}\{s\}>-2 \\
& \text { Because of } u(t) \text {, ROC is } \\
& \text { on the right-side of s-plane }
\end{aligned}
$$

CAUSAL: because $X(s)$ is rational and ROC is on the right-side of the right-most pole

STABLE: because ROC contains imaginary axis ($j \omega$)

Problem 2

Determine the Laplace transform and ROC and pole-zero plot:

$$
x(t)=e^{-4 t} u(t)+e^{-5 t}(\sin 5 t) u(t)
$$

$$
\begin{aligned}
& x_{1}(t)=\sin \left(\omega_{0} t\right) u(t) \longrightarrow \quad X_{1}(s)=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} ; \operatorname{Re}\{s\}>0 \\
& e^{s_{0} t} x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X\left(s-s_{0}\right) \quad \text { Shifting in the s-domain }
\end{aligned}
$$

$$
X(s)=\frac{1}{s+4}+\frac{5}{(s+5)^{2}+5^{2}}=\frac{1}{(s+4)}+\frac{5}{s^{2}+10 s+50}=\frac{s^{2}+15 s+70}{(s+4)\left(s^{2}+10 s+50\right)}
$$

Poles: solving $s+4=0 \rightarrow s=-4$;

$$
\text { and } s^{2}+10 s+50=0 \rightarrow s=-5 \pm j 5
$$

Zeros: solving $s^{2}+15 s+70=0$

$$
\rightarrow s=-7.5 \pm j 3.7 \quad \text { ROC }: R_{e}\{s\}>-4
$$

Problem 3

Determine the Laplace transform and ROC and pole-zero plot:

$$
x(t)=e^{2 t} u(-t)+e^{3 t} u(-t)
$$

$e^{+b t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{-1}{s-b}$ Re\{s\}<+b Zero:5/2

$$
X(s)=-\frac{1}{s-2}-\frac{1}{s-3}=\frac{5-2 s}{(s-2)(s-3)}
$$

 on the left-side of s-plane

Problem 4

Find inverse Laplace transform of $X(s)=\frac{1}{s^{2}+9}$
Laplace transform of $\sin \left(\omega_{0} t\right) u(t) \stackrel{\mathcal{L}}{\Longleftrightarrow} \frac{\omega_{0}}{s^{2}+\omega_{0}{ }^{2}} \quad R O C: R_{e}\{s\}>0$
We have $\quad X(s)=\frac{1}{s^{2}+9}=\frac{1}{s^{2}+3^{2}}=\frac{1}{3} \frac{3}{s^{2}+3^{2}}$

$$
\text { For ROC: } \operatorname{Re}\{s\}>0, \quad x(t)=\frac{1}{3} \sin (3 t) u(t)
$$

For ROC: $\operatorname{Re}\{s\}<0, \quad x(t)=-\frac{1}{3} \sin (3 t) u(-t)$

Problem 4

Find inverse Laplace transform of $\quad X(s)=\frac{s}{s^{2}+9}$
Laplace transform of $\cos \left(\omega_{0} t\right) u(t) \stackrel{\mathcal{L}}{\Leftrightarrow} \frac{s}{s^{2}+\omega_{0}{ }^{2}} \quad$ ROC: $R_{e}\{s\}>0$

We have

$$
X(s)=\frac{s}{s^{2}+9}=\frac{s}{s^{2}+3^{2}}
$$

For ROC: $\operatorname{Re}\{s\}>0, \quad x(t)=\cos (3 t) u(t)$

For ROC: $\operatorname{Re}\{s\}<0, \quad x(t)=-\cos (3 t) u(-t)$

Problem 5

Find inverse Laplace transform of $X(s)=\frac{s+2}{s^{2}+7 s+12} \quad$ ROC: $-4<\operatorname{Re}\{s\}<-3$
$X(s)=\frac{s+2}{s^{2}+7 s+12}=\frac{s+2}{(s+4)(s+3)}=\frac{A}{s+4}+\frac{B}{s+3}=\frac{2}{s+4}-\frac{1}{s+3}$

$$
\Rightarrow x(t)=2 e^{-4 t} u(t)-(-) e^{-3 t} u(-t)=2 e^{-4 t} u(t)+e^{-3 t} u(-t)
$$

$$
\begin{aligned}
& e^{-4 t} u(t) \\
& \frac{-1}{s+3} \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-3 t} u(-t)
\end{aligned}
$$ Left side: $u(-t)$

Problem 6
Determine $Y(s)$, when

$$
\begin{aligned}
& y(t)=x_{1}(t-2) * x_{2}(-t+3) \\
& x_{1}(t)=e^{-2 t} u(t) \\
& x_{2}(t)=e^{-3 t} u(t)
\end{aligned}
$$

$$
X_{1}(s)=\frac{1}{s+2} ; \quad \text { ROC }>-2
$$

$$
e^{-a t} u(t) \stackrel{\mathcal{L}}{\Leftrightarrow} \frac{1}{s+a} \quad \text { ROC: } R e\{s\}>-a
$$

$$
x\left(t-t_{0}\right) \stackrel{\mathcal{L}}{\Longleftrightarrow} e^{-s t_{0}} X(s)
$$

$$
X_{2}(s)=\frac{1}{s+3} ; \quad R O C>-3
$$

$$
x(-t) \stackrel{\mathcal{L}}{\Longleftrightarrow} X(-s)
$$

$$
x_{1}(t-2) \stackrel{\mathcal{L}}{\Leftrightarrow} e^{-2 s} X_{1}(s)=e^{-2 s}\left[\frac{1}{s+2}\right]=\frac{e^{-2 s}}{s+2} ; \quad \text { ROC }>-2
$$

$$
x_{2}(-t+3)=x_{2}(-(t-3)) \stackrel{\mathcal{L}}{\Leftrightarrow} e^{-3 s} X_{2}(-s)=e^{-3 s}\left[\frac{1}{-s+3}\right]=\frac{e^{-3 s}}{-s+3} ; \quad \text { ROC }<3
$$

$$
Y(s)=\left[\frac{e^{-2 s}}{s+2}\right]\left[\frac{e^{-3 s}}{-s+3}\right]=\frac{e^{-5 s}}{(s+2)(-s+3)}
$$

Problem 7
An LTI system $H(s)$ has pole-zero plot:

(a) Indicate all possible ROCs
(b) Specify whether the system: Stable and/or Causal from part (a)

R_{1} : NOT Causal and NOT Stable ROC: $\operatorname{Re}\{\mathrm{s}\}<-2$ R_{2} : NOT Causal and NOT Stable ROC: $-2<\operatorname{Re}\{s\}<-1$
R_{3} : NOT Causal and Stable ROC: $-1<\operatorname{Re}\{s\}<1$
R_{4} : Causal and NOT Stable ROC: $\operatorname{Re}\{s\}>1$

Problem 8

LTI system has differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}-2 y(t)=x(t)
$$

(a) Determine $H(s)$ as a ratio of two polynomials in s, and sketch the pole-zero plot.

$$
\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}-2 y(t)=x(t)
$$

$$
\frac{d}{d t} x(t) \stackrel{\mathcal{L}}{\rightleftarrows} s X(s)
$$

$\stackrel{\mathcal{L}}{\Longrightarrow} s^{2} Y(s)-s Y(s)-2 Y(s)=X(s)$
$\Longrightarrow \quad Y(s)\left[s^{2}-s-2\right]=X(s)$

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}-s-2}=\frac{1}{(s-2)(s+1)}
$$

$$
\Longrightarrow \quad H(s)=\frac{Y(s)}{X(s)}=\frac{A}{(s-2)}+\frac{B}{(s+1)}
$$

$\Longrightarrow \frac{1}{s^{2}-s-2}=\frac{A s-2 A+B s-2 B}{s^{2}-s-2}$

$$
\rightleftarrows\left\{\begin{array} { c }
{ A + B = 0 } \\
{ - 2 A - 2 B = 1 }
\end{array} \Rightarrow \left\{\begin{array}{c}
A=\frac{1}{3} \\
B=-\frac{1}{3}
\end{array}\right.\right.
$$

$$
\frac{1}{s^{2}-s-2}=\frac{(A+B) s-2 A-2 B}{s^{2}-s-2}
$$

$$
H(s)=\frac{\frac{1}{3}}{(s-2)}-\frac{\frac{1}{3}}{(s+1)}
$$

(b) Determine $h(t)$ for the following cases:

1: The system is Stable
2: The system is Causal
3: The system is neither Stable nor Causal

$$
H(s)=\frac{\frac{1}{3}}{(s-2)}-\frac{\frac{1}{3}}{(s+1)} \quad \text { Poles at }-1,2
$$

- Stable: $-1<R O C<2$

$$
\Rightarrow h_{1}(t)=-\frac{1}{3} e^{2 t} u(-t)-\frac{1}{3} e^{-t} u(t)
$$

- Causal: ROC >2
$\Rightarrow h_{1}(t)=\frac{1}{3} e^{2 t} u(t)-\frac{1}{3} e^{-t} u(t)$

- Not Stable and Not Causal: $R O C<-1$
$\Rightarrow h_{1}(t)=-\frac{1}{3} e^{2 t} u(-t)+\frac{1}{3} e^{-t} u(-t)$

