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Abstract: Previous studies have linked elevated plasma trimethylamine N-oxide (TMAO) levels to
poor renal function. The relationship between TMAO and chronic kidney disease (CKD) in type 2
diabetes (T2D) is still unclear. We investigated the association between plasma TMAO levels and
CKD in patients with T2D. A cross-sectional study of 133 patients with T2D with or without CKD has
been conducted. Blood biomarkers of kidney function, diabetes, and inflammation were assessed in
the study participants. Plasma TMAO levels were quantified using UPLC-MS/MS. People with T2D
and CKD exhibited significantly higher plasma TMAO levels [10.16 (5.86–17.45) µmol/L] than those
without CKD [4.69 (2.62–7.76) µmol/L] (p = 0.002). Participants in the highest quartile of TMAO
levels (>8.38 µmol/L) presented relatively elevated serum creatinine levels and a higher number of
people with CKD than those in the lower quartiles. TMAO levels were significantly correlated with
kidney function biomarkers, including estimated glomerular filtration rate and urinary albumin to
creatinine ratio. The association between TMAO and CKD was evident (p < 0.0001) and remained
significant after adjusting for risk factors of kidney disease, including age, gender, body mass index,
duration of diabetes, and smoking. These findings suggest the association between plasma TMAO
and CKD in patients with T2D.

Keywords: trimethylamine N-oxide; type 2 diabetes; chronic kidney disease; eGFR

1. Introduction

Chronic kidney disease (CKD) has been recognised as a major public health issue, with
a high morbidity and mortality burden worldwide [1]. Diabetes mellitus, hypertension,
aging, and obesity have all been linked to the progression of CKD. Previous studies have
reported that the global prevalence of CKD among patients with type 2 diabetes (T2D)
is 42.3%, primarily identified at early stages [2]. Diabetic nephropathy accounts for the
majority of CKD cases in diabetic patients [3], with albuminuria and a low glomerular
filtration rate (GFR) being the key predictors of diabetic kidney disease [4]. Elevated
cardiovascular risk has been associated with CKD and T2D, leading to microvascular
degradation and disease progression [5–7].

Recently, the gut microbiota has been identified as playing a critical role in a number
of chronic diseases [8]. TMAO is produced in the human body by the gut microbiota
degradation of choline-containing compounds, L-carnitine, and betaine into trimethy-
lamine (TMA), followed by oxidation by the flavin mono-oxygenase (FMO3) enzyme in the
liver [9]. Trimethylamine N-oxide (TMAO) has been identified as a novel risk factor for
cardiovascular diseases [9] and metabolic disorders, including T2D [10–15] and CKD [16].
However, the mechanism by which TMAO promotes its atherogenic effect in these diseases
is not entirely understood. TMAO cannot be metabolised in the human body and is elimi-
nated primarily through the kidneys via urine [17]. Therefore, patients with impaired renal
excretion rate are at a high risk of accumulating TMAO in the circulation [16].
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Cross-sectional, case-control, and longitudinal studies have consistently demonstrated
the significant contribution of high blood TMAO levels to CKD progression [16,18–22]. A
strong inverse correlation has also been observed between TMAO and GFR [14,16,18–20,23–29].
Impaired renal function has drastically affected TMAO levels in circulation and was asso-
ciated with increased mortality risk [16]. Furthermore, TMAO levels have been found to
be elevated in patients with end-stage renal disease and patients on haemodialysis com-
pared to individuals with normal kidney function [19,20,30]. On the other hand, animal
studies have reported that long-term exposure to elevated TMAO levels has contributed to
collagen deposition and progressive tubulointerstitial fibrosis [16]. Systemic inflammation
and inflammatory cytokines such as C-reactive protein (CPR) have also been correlated
with TMAO in CKD patients [20,29]. Whether TMAO could be used as a biomarker for
evaluating renal function remains unknown.

Diabetic patients are more likely to develop microvascular complications such as
nephropathy, which can worsen blood and urinary biomarkers of kidney function [31].
Most studies published to date on the relationship between TMAO and CKD were focused
on individuals with established CKD, either mild to moderate or end-stage, or on dialysis
compared to healthy individuals. However, only limited studies investigated this associ-
ation in patients with T2D [29,32]. This study examined the association between plasma
TMAO levels and CKD in people with T2D.

2. Materials and Methods
2.1. Study Design and Population

People with T2D (n = 133) were recruited in a prospective case-control study as pre-
viously described [33]. The study was approved by the University of Newcastle Human
Research Ethics Committee (H-2018-0138) and the King Saud University Institutional Re-
view Board (E-18-3073). All procedures were performed in accordance with the Declaration
of Helsinki. Patients with acute illnesses or infections, currently on any antimicrobials or
probiotics within three months of enrolment, and on haemodialysis or peritoneal dialysis
were excluded.

Out of n = 133 participants with T2D, n = 12 (9%) had clinically confirmed diagno-
sis of CKD based on the criteria of estimated glomerular filtration rate (eGFR) less than
60 mL/min/1.73 m2 and/or the presence of albuminuria (urinary albumin to creatinine
ratio (UACR) >300 mg/gm). This study was adequately powered to detect a significant
difference in TMAO levels among those with T2D, with or without CKD. After provid-
ing informed consent, blood samples and clinical data were obtained from all patients.
Patient interviews and medical records were used to assess demographic information
and comorbidities.

2.2. Markers of Diabetes, Renal Function, and Systemic Inflammation

Fasting plasma glucose (FPG) and glycosylated haemoglobin (HbA1c) levels were
measured in all patients with T2D. Blood and urinary markers of kidney function were also
measured, including serum creatinine, blood urea nitrogen (BUN), and electrolytes such
as sodium (Na), potassium (K), calcium (Ca), phosphorus, urine creatinine, and UACR.
The eGFR was determined using the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) formula [34,35]. Other markers associated with CKD include haemoglobin,
albumin, alkaline phosphatase (ALP), total bilirubin, gamma-glutamyl transferase (GGT),
and inflammatory markers such as high sensitivity C-reactive protein (hs-CRP) have
also been assessed. All biochemical parameters were analysed according to certified
standard protocols at King Saud University Medical City (KSUMC) central laboratory
using the Dimension Vista® 1500 Intelligent Lab System- version 3.10.2, DV311404 (Siemens
Healthcare Diagnostics Inc., Tarrytown, NY, USA).
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2.3. Quantification of Trimethylamine N-Oxide (TMAO) Levels in Plasma

Plasma TMAO levels were quantified using stable isotope dilution ultra-high-performance
liquid chromatography with electrospray ionisation tandem mass spectrometry (UPLC/MS/MS)
by (Waters Corporation, Milford, MA, USA) with d9-(trimethyl)-labelled as internal stan-
dard, and Acquity UPLC BEH HILIC column [100 mm × 2.1 mm, 1.7 µm particle size]
(Waters Corporation, Milford, MA, USA), as previously described [33,36]. The mobile
gradient phase was composed of acetonitrile and 15 mmol/L ammonium formate (pH
3.5) at a flow rate of 0.4 mL/min. The multiple reaction monitoring (MRM) was at m/z
76.1→58.2 for TMAO and 85.04→66.04 for the internal standard d9- TMAO.

2.4. Statistical Analysis

All data analyses were conducted using SPSS (version 27, SPSS Inc., Chicago, IL, USA)
and graphs were created using GraphPad Prism (version 9). Participants’ characteristics
were summarised according to T2D cases with or without CKD. Laboratory parameters
and biomarker values were described using percentages for categorical variables, mean ±
standard deviation (SD) or medians (IQR), and 25th to 75th quartiles range for continuous
variables. For normally distributed data, the unpaired t-test and one-way ANOVA test
evaluated the differences between study groups. Nonparametric tests were used for the
measurements of non-normally distrusted data. The Mann–Whitney U test was used to
compare data between the two patient groups, while the Kruskal–Wallis test compared
patient data between plasma TMAO quartiles. Comparisons between categorical variables
were analyzed by Pearson’s chi-squared test or Fisher’s exact test. Spearman’s rank cor-
relation coefficient was applied to assess the association between TMAO and biomarkers
of kidney disease. Multiple linear regression analysis was performed to examine the asso-
ciation between TMAO and CKD, adjusting for demographic variables (e.g., age, gender,
BMI, duration of T2D, and smoking) as well as biomarkers of kidney function (e.g., UACR
and eGFR) using a backward stepwise approach. The variables included in Model 2 were
incorporated in the nomogram to predict CKD risk using “rms” package in R software
version 4.2.2. A significance level of 0.05 was used for all analyses.

3. Results
3.1. Subject Characteristics and and Metabolic Parameters

Characteristics and metabolic parameters of study participants (T2D with CKD, n = 12,
and without CKD, n = 121) are displayed in Table 1. Subjects with T2D and CKD were
older compared to those without CKD (63 vs. 55 years, p = 0.02), had T2D for a median
of 20 years, were more likely to be smokers (25% vs. 7.4%, p = 0.043), and were more
likely to have macroalbuminuria (33.3% vs. 4.13%, p = 0.004). No significant differences
were observed between study participants with and without CKD in terms of BMI, gender,
FPG, ALP, calcium, phosphorus, total bilirubin, UACR, urine creatinine, and hs-CRP.
HbA1c, haemoglobin, serum creatinine, BUN, eGFR, albumin, K, Na, and GGT levels were
significantly higher in CKD participants than in those without CKD.

3.2. Plasma TMAO Levels and Markers of Kidney Disease

Patients with CKD exhibited significantly higher plasma TMAO levels [10.16 (5.86–
17.45) µmol/L] than patients without CKD [4.69 (2.62–7.76) µmol/L] (p = 0.002) as presented
in Table 1. The total study population was stratified into quartiles based on plasma TMAO
distribution to assess the changes in characteristics and laboratory markers associated with
TMAO levels, as indicated in Table 2. TMAO levels were less than 2.82 µmol/L in the lowest
quartile (Q1) and greater than 8.38 µmol/L in the highest quartile (Q4). Notably, patients
in the highest quartiles of TMAO levels had a greater proportion of CKD, higher levels of
serum creatinine and BUN, and lower levels of eGFR (Table 2 and Figure 1). Other variables
such as gender, BMI, laboratory markers (e.g., kidney function tests and electrolytes), and
hs-CRP were not statistically significantly different across TMAO quartiles.
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Table 1. Participant characteristics and metabolic parameters of patients with T2D, with or without CKD.

Variables

Type 2 Diabetes

without CKD
(n = 121)

with CKD
(n = 12) p-Value *

Demographics

Age (years) a 55 ± 9 63 ± 8 0.020

Gender, No. (%) 0.262

Male 23 (19) 4 (33)

Female 98 (81) 8 (66.7)

BMI (kg/m2) b 30.96 (28.31–34.81) 31.52 (26.91–36.52) 0.956

Smoking (yes), No. (%) 9 (7.4) 3 (25) 0.043

Medical History

Diabetes duration (years) b 11 (6–20) 20 (15–20) 0.007

Laboratory Parameters

FPG, mmol/L b 7.82 (8.00–10.00) 9.25 (8.16–12.58) 0.051

HbA1C, % b 8.2 (7.2–9.4) 9.3 (8.7–10.1) 0.036

Haemoglobin, gm/L a 132 ± 13 122 ± 17 0.021

Serum creatinine, µmol/L b 60 (51–73) 128 (94–168) <0.0001

BUN, mmol/L b 4.20 (3.30–5.30) 9.75 (6.35–13.65) <0.0001

GFR, mL/min/1.73 m2 b 98.75 (84.83–105.59) 47.49 (30.51–55.22) <0.0001

Albumin, gm/L a 36.86 ± 2.98 34.77 ± 3.45 0.024

Alkaline phosphatase, unit/L b 89 (64–108) 97 (74–143) 0.212

K, mmol/L a 4.49 ± 0.43 4.82 ± 0.50 0.015

Na, mmol/L b 140 (138–141) 137 (135–140) 0.005

Ca+, mmol/L b 2.34 (2.25–2.42) 2.36 (2.30–2.42) 0.574

Phosphorous, mmol/L b 1.24 (1.11–1.36) 1.38 (1.20–1.48) 0.073

GGT, unit/L b 24 (18–35) 52 (36–96) 0.001

Total Bilirubin, µmol b 6.55 (5.48–8.41) 6.61 (5.68–10.82) 0.572

UACR, mg/gm b 12.80 (6.68–32.11) 154.07 (5.10–446) 0.064

Microalbuminuria, No. (%) 23 (19) 3 (25) 0.702

Macroalbuminuria, No. (%) 5 (4.13) 4 (33.3) 0.004

Urine creatinine, µmol/L b 7149 (3885–9509) 3637 (2836–7170) 0.069

Hs-CRP, mg/L b 3.9 (1.3–8.3) 1.6 (1.2–7.7) 0.591

TMAO, µmol/L b 4.69 (2.62–7.76) 10.16 (5.86–17.45) 0.002

CKD, chronic kidney disease; BMI: body mass index; FPG, fasting plasma glucose; HbA1c, glycosylated
haemoglobin; GFR, glomerular filtration rate; GGT, gamma-glutamyl transferase, BUN, blood urea nitrogen;
K, potassium; Na, sodium; Ca, calcium; UACR, urinary albumin to creatinine ratio; Hs-CRP, high sensitivity
C-reactive protein; TMAO, trimethylamine N-oxide. a Data are presented as mean ± standard deviation). The
two-sample t-test was used for the comparison. b Data are presented as median (IQR) (25th–75th percentiles).
Mann–Whitney U test was used in the comparison. * p < 0.05, statistically significant difference; p > 0.05, no
statistically significant difference.
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Table 2. Participant characteristics by quartiles of TMAO levels.

Quartiles of TMAO

n Q1 (n = 32) Q2 (n = 34) Q3 (n = 34) Q4 (n = 33) p-Value c

TMAO, µmol/L < 2.82 2.83–4.94 4.95–8.37 > 8.38
Demographics
Age (years) a 133 54 ± 8 53 ± 10 55 ± 10 60 ± 8 2 0.011
Gender, No. (%)

0.531Male 27 5 (15.6) 9 (26.5) 5 (14.7) 8 (24.2)
Female 106 27 (84.4) 25 (73.5) 29 (85.3) 25 (75.8)

BMI (kg/m2) b 133 30.8 (28.58–33.17) 31.24
(28.21–36.45)

31.80
(29.50–37.53) 30.78 (27.48–34.00) 0.425

Smoking (yes), No. (%) 12 3 (9.4) 4 (11.7) 2 (5.9) 3 (9.1) 0.867
Medical History
Kidney disease (yes), No. % 12 0 2 (5.9) 2 (5.9) 8 (24.2) 1,2,3 0.004
Diabetes duration 133 15 (8–21) 10 (8–15) 11 (5–20) 15 (8–20) 0.437
Laboratory Parameters 133
FPG, mmol/L b 8.25 (7.11–10.86) 7.4 (6.25–10.04) 8.24 (5.50–10.30) 7.2 (5.31–9.35) 0.488
HbA1C, % b 8.5 (7.85–9.45) 8.2 (7.20–9.60) 8.6 (7.20–10) 8.2 (7.20–9.30) 0.770
Haemoglobin, gm/L a 134 ± 12 132 ± 14 130 ± 15 127 ± 14 0.139
Serum creatinine, µmol/L b 54 (50–69) 63 (54–80) 61 (49–82) 71 (60–90) 1 0.016
BUN, mmol/L b 3.6 (3.2–4.4) 4.7 (3.4–5.4) 4.5 (3.7–5.7) 5.6 (3.7–7.2) 1 0.002

GFR, mL/min/1.73 m2 b 99.96
(93.02–108.94)

99.10
(86.15–105.86)

99.48
(73.72–104.06)

84.10
(65.94–94.35) 1,2 0.001

Albumin, gm/L a 36.44 ± 2.61 37.41 ± 3.34 36.45 ± 3.16 36.36 ± 3.13 0.455
Alkaline phosphatase, unit/L b 89.5 (67.50–114) 81.5 (59–108) 93 (67–108) 94 (76–113) 0.424
K, mmol/L a 4.4 ± 0.5 4.5 ± 0.4 4.6 ± 0.4 4.6 ± 0.5 0.196
Na, mmol/L b 139 (138–141) 140 (138–141) 140 (138–142) 140 (138–141) 0.780
Ca+, mmol/L b 2.39 (2.30–2.43) 2.34 (2.25–2.39) 2.35 (2.28–2.42) 2.34 (2.35–2.39) 0.558
Phosphorous, mmol/L b 1.25 (1.10–1.37) 1.23 (1.09–1.35) 1.27 (1.12–1.38) 1.27 (1.16–1.48) 0.443
Total Bilirubin, µmol b 6.87 (6.44–8.70) 6.30 (4.82–8.32) 6.61 (5.26–8.41) 6.55 (5.55–9.67) 0.228
UACR, mg/gm b 9.12 (5.91–32.95) 11.28 (5.90–17.43) 15.47 (8.13–78.25) 22.25 (7.60–159.86) 0.154
Urine creatinine, µmol/L b 7403 (3979–10475) 6832 (3637–8506) 6622 (4569–9843) 4638 (2648–9202) 0.614
Hs-CRP, mg/L b 3.6 (2.4–7.8) 2.2 (0.9–8.8) 4.1 (1.1–6.0) 2.9 (1.2–7.2) 0.399

Trimethylamine N-oxide; BMI: body mass index; FPG, fasting plasma glucose; HbA1c, glycosylated haemoglobin;
GFR, glomerular filtration rate; GGT, gamma-glutamyl transferase, BUN, blood urea nitrogen; K, potassium; Na,
sodium; Ca, calcium; UACR, urinary albumin to creatinine ratio; Hs-CRP, high sensitivity C-reactive protein.
a Data are presented as mean ± standard deviation. One-way ANOVA was used in the comparison. b Data are
presented as median (IQR) (25th–75th percentiles). Kruskal–Wallis test was used in the comparison. c p < 0.05,
Statistically significant difference; p > 0.05, no statistically significant difference. 1 Q4 is significantly different
than Q1 with p < 0.05; 2 Q4 is significantly different than Q2 with p < 0.05; 3 Q4 is significantly different than Q3
with p < 0.05.
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3.2.1. Correlation between Plasma TMAO Levels and Biomarkers of Kidney Disease

Plasma TMAO levels were positively correlated with age (rs = 0.198, p = 0.023), serum
creatinine (rs = 0.266, p = 0.002), BUN (rs = 0.327, p < 0.0001), and UACR (rs = 0.183,
p = 0.046) (Table 3). However, a significant inverse correlation was observed with eGFR
(rs = −0.337, p < 0.0001) as shown in Figure 2.

Table 3. Spearman’s rank correlation coefficient to assess the relationships between TMAO and
markers of kidney function.

Variables rs p-Value *

Age 0.198 0.023
BMI −0.037 0.672
Diabetes duration 0.018 0.841
Serum creatinine 0.266 0.002
BUN 0.324 <0.0001
Albumin −0.043 0.623
Alkaline phosphatase 0.079 0.367
Total Bilirubin −0.048 0.581
K 0.122 0.161
Na 0.081 0.356
Ca −0.007 0.376
Phosphorous 0.113 0.196
GGT −0.107 0.220
UACR 0.183 0.046
Urine creatinine −0.088 0.342
Hs-CRP −0.100 0.404

BMI: body mass index; BUN, blood urea nitrogen; K, potassium; Na, sodium; Ca, calcium; GGT, gamma-glutamyl
transferase, UACR, urinary albumin to creatinine ratio; Hs-CRP, high sensitivity C-reactive protein. * p < 0.05,
statistically significant correlation; p > 0.05, no statistically significant correlation.
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3.2.2. Association between Plasma TMAO Levels and CKD

Plasma TMAO levels were significantly associated with CKD in the non-adjusted
Model 1 (β = 0.015, 95% CI [0.007, 0.024], p < 0.0001) as well as in Model 2 which adjusted
for risk factors of CKD, including age, gender, BMI, duration of diabetes and smoking
(β = 0.014, 95% CI [0.005, 0.022], p = 0.001) (Table 4). However, when the association was
further adjusted for biomarkers of kidney disease including UACR and eGFR in models 3
and 4, respectively, plasma TMAO levels were no longer significantly associated with CKD



Nutrients 2023, 15, 812 7 of 11

as in Model 3 (β = 0.008, 95% CI [0.000, 0.016], p = 0.063) and Model 4 (β = 0.001, 95% CI
[−0.005, 0.008], p = 0.706)].

Table 4. Association between plasma TMAO levels and CKD using multiple linear regression models.

Outcome—CKD
TMAO Levels, µmol/L

β p-Value 95% CI

Model 1 (Unadjusted) 0.015 <0.0001 * 0.007, 0.024
Model 2 0.014 0.001 * 0.005, 0.022
Model 3 0.008 0.063 0.000, 0.016
Model 4 0.001 0.706 −0.005, 0.008

Model 1 is non-adjusted; Model 2 is adjusted for age, gender, BMI, diabetes duration, and smoking; Model 3
is adjusted for model 2 + UACR; Model 4 is adjusted for model 3 + eGFR. * Statistically significant association
(p < 0.05).

3.2.3. CKD Risk Prediction Nomogram

A nomogram was created to optimise the statistical predictive models into a single
numerical probability estimate of CKD in the form of a graph. The nomogram was based
on five parameters that were significant in multivariable analysis (Model 2) to predict the
risk of CKD in T2D patients, including age, gender, BMI, diabetes duration, and smoking.
The total point, which ranges from zero to two hundred and twenty, was computed by
summing the points from each variable to determine CKD probability. The risk of CKD by
total points was shown in the nomogram. The risk of CKD was lower than 10% for those
below 90 points, and higher than 50% for those with over 200 points. The nomogram is
shown in Figure 3.
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Patients with more than 100 total points, for example, may have a 15% to 50% proba-
bility of developing CKD: TMAO levels greater than 7 µmol/L, age over 40 years, female
gender, morbid obesity, BMI greater than 35 kg/m2, diabetes duration of more than 20 years,
and smokers.

4. Discussion

This study explored the association between plasma TMAO levels and CKD in patients
with T2D. Patients with CKD demonstrated higher levels of plasma TMAO than non-CKD
patients. Plasma TMAO levels were positively correlated with biomarkers of renal function,
including serum creatinine, BUN, and UACR, and were inversely correlated with eGFR. No
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significant relationship was found between plasma TMAO and other markers, including
urine creatinine, serum electrolytes, ALP, total bilirubin, GGT, and hs-CRP. Elevated plasma
TMAO levels were associated with CKD in the unadjusted model as well as when risk
factors of CKD were adjusted for. However, the significant association was lost after
further adjustment was made for CKD biomarkers, including UACR and eGFR. A simple
monogram, based on the five variables that were significant in the multivariable analysis
in Model 2 including TMAO level, age, BMI, gender, diabetes duration, and smoking
demonstrated that TMAO levels contribute to the identification of T2D patients at high risk
of developing CKD.

TMAO has been shown to aggravate kidney function decline and tubular interstitial
injury, activate the inflammatory pathway via increasing p38 phosphorylation and human
antigen R (HuR) level, upregulate NADPH oxidase 4 (NOX4), promote oxidative stress and
nod-like receptor family pyrin domain containing three (NLRP3) inflammasome activa-
tion [37]. It has been speculated that TMAO can promote renal macrophage recruitment to
induce tubular epithelial cell injury via the enhanced release of inflammatory cytokines [37].
CKD is also known to cause an imbalance in the gut microflora leading to a reduction in
probiotics and a concurrent increase in toxigenic flora [38]; their toxic products may enter
the host circulatory system and lead to sustained systemic inflammation.

Uncontrolled hyperglycaemia, particularly diabetes mellitus, remains a critical risk
factor for CKD [39]. We [33] and others [13] have recently shown that TMAO levels are
elevated in people with diabetes mellitus. In this study, we provide evidence that TMAO
levels are further aggravated in those diagnosed with CKD. A recent study by Winther
et al. showed that TMAO levels are elevated in individuals with T2D and albuminuria,
placing them at a high risk of developing renal and cardiovascular disease [31], while the
study by Al-Obaide et al. demonstrated higher TMAO levels in patients with T2D and
advanced CKD [29]. In the current study, we report that TMAO levels are much higher
in people with T2D who have progressed to develop CKD. Whether further increase in
TMAO levels is the cause or consequence of progressing from T2D to CKD patients remains
unknown. Higher plasma TMAO levels have been associated with an increased abundance
of TMAO-producing bacteria in the intestinal microbiota of T2D patients with CKD [29]. In
addition, TMAO is almost exclusively excreted by the kidneys [17], therefore, circulating
levels can be expected to build up in CKD patients or those with renal impairment.

Accumulating evidence has demonstrated a significant association between TMAO
and CKD [16,19–22], regardless of the patient’s diabetic status. However, the exact mech-
anism underlying the potential relationship between TMAO and CKD is still unclear. A
linear incremental relationship has been noted between plasma TMAO levels and biomark-
ers of kidney histopathologic and functional impairment [16]. TMAO pathway has been
found to contribute to kidney disease progression by dietary exposure to a choline-rich
diet or TMAO directly, resulting in the development of tubule-interstitial fibrosis and
dysfunction [16]. The study findings of an inverse correlation between TMAO and GFR
substantiate previous findings suggesting the elimination of TMAO from the circulation to
be mostly dependent on urinary excretion [22,40].

The study observations are in line with several previous studies in patients with
cardiovascular diseases [23–27] and CKD [16,19,20,28]. Pelletier et al., on the other hand,
observed only a modest correlation between TMAO and eGFR, which could be attributed to
the study use of a different GFR formula than eGFR [22]. TMAO levels were also found to
be positively correlated with serum creatinine and UACR as an early indicator of vascular
injury in T2D, supporting earlier study findings [22,24,28,30]. In contrast to previous
observations [20,30], this study found a nonsignificant correlation between TMAO levels
and hs-CRP. The exact reason for the discrepancies in the findings between these studies
and ours is unknown; however, these could be attributed to the study participants’ active
disease and inflammatory state that may impact the outcome. TMAO metabolism is affected
by the degree of CKD and haemodialysis status, as reported by other studies [20,30].
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The association between plasma TMAO and CKD has been confirmed in the unad-
justed model as well as after adjusting for CKD risk factors, including age, gender, BMI,
diabetes duration, and smoking. However, when the model further adjusted for biomarkers
of kidney disease such as UACR and eGFR, the association between TMAO and CKD was
attenuated. This finding proposed a potential interaction between TMAO and biomarkers
of kidney disease, suggesting TMAO as a surrogate marker for GFR and urine albumin as
a predictor of poor outcomes in CKD patients [16]. Furthermore, our nomogram demon-
strated that TMAO levels are one of the significant predictors of CKD progression in T2D
patients. Increased TMAO levels have been shown to increase the likelihood of CKD de-
velopment by up to 55% when combined with other T2D risk factors. This finding further
supports the proposed link between TMAO and CKD in people with T2D.

The present study is the first in the Middle East to investigate the association between
TMAO and blood markers of kidney disease in patients with T2D. We were able to under-
stand the renal implications of TMAO and its correlation with poor renal outcomes in T2D
patients. In this cross-sectional study, we have included only patients with a clinically con-
firmed diagnosis of T2D to control for any potential confounding produced by differences
in diabetes diagnosis. The observational nature of the present study prohibits any infer-
ences on the causality of TMAO and CKD in T2D patients. Patients from only one medical
centre in the capital city of Saudi Arabia were included, limiting the generalizability of
the findings. Further studies with a larger number of patients are warranted to verify the
association between circulating TMAO levels and CKD with T2D.

In conclusion, our study has confirmed the association between circulating TMAO
levels and CKD in a Saudi Arabian population where the dietary habits are different
from the countries where the association has been previously established. Plasma TMAO
levels are significantly associated with CKD, aggravated further in people with T2D, and
correlated with biomarkers of renal function such as serum creatinine, eGFR, BUN, and
UACR. Longitudinal and randomised controlled studies are warranted to establish if the
progressive increase in TMAO and CKD is the cause or consequence of renal impairment
in people with T2D. Identification of dietary and other lifestyle factors that can influence
circulating TMAO levels may further enhance investigations into the prevention of T2D
and CKD.
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