

College of Engineering GE106:Introduction to Engineering Design

Concept Generation and Evaluation

By

Matthew Amao

Outline

- Introduction
- The Design Cycle
- The Solar Oven Example
- Heat Transfer
- Understanding the Problem
- Key Ideas
- Needs
- Solar Oven Heat Transfer
- Summarizing What We Know
- Putting it All Together
- Solar Oven Concept Generation
- Concept Evaluation and Selection
- Examples of Applying Weights & Rates Method
- Final Remarks

Introduction

So far you should know how to:

- Interpret the <u>needs</u> and analyze them
- Specify the <u>objectives</u> (both primary and secondary)
- Formulate the constraints and criteria
- Determine the <u>human factors</u>
- Conduct a <u>morphological analysis</u> and generate concepts.

Today you will learn how to:

 Evaluate alternatives through the weight-and-rate technique

This will be covered through a <u>"solar oven</u>" design example.

The <u>first step</u> is **not** about finding solutions; it is about <u>understanding</u> the problem.

Heat Transfer

It occurs through one of three modes when a ΔT exists;

- <u>Conduction</u>: Heat travels from atom to atom of a <u>solid</u>.
 Example: Metallic doorknob will be hot if fire is on the other side.
- <u>Convection</u>: With a <u>gas or liquid</u>, the heat propagates as the molecules in the fluid move.
 <u>Example</u>: When you open the door of an oven, the temperature in the kitchen increases.
- 3. <u>Radiation</u>: A heated surface emits <u>electromagnetic waves</u> which carry energy away from the emitting object. This form does not require a medium, it can travel in a vacuum. Example: Heat felt from a brick wall that has been in the sun all day.

Understanding the Problem

$$\Delta T = T_{inside \ oven} - T_{ambient}$$

<u>ت ام ع ت</u>

الملك سعود King Saud University

Criteria:

- Maximize ΔT
- Minimize Cost

Key Ideas

- -Sunlight contains energy.
- -You want your oven to receive solar energy easily.
- -You want a <u>solar oven</u> that <u>gets as hot as possible</u> (highest temperature in oven chamber).
- –You also want your <u>oven not</u> to <u>loose</u> the <u>solar energy</u> it has captured/received.

Needs (Specifications)

- Low Cost
- Maximum Temperature
- No lenses will be used in the design
- Size of chamber (partition)
- No preheating
- Presence of a thermometer
- High simplicity

•	

...

-
ſ
\sim
\sim
\sim
\sim
-

Solar Oven Heat Transfer

Thermal power is how fast heat is produced. This is directly proportional to how fast the ΔT increases.

Introduction to Engineering Design GE-106

Time = a long time after "t=0"

Rate at which heat energy is generated inside the oven equals rate at which heat energy is being lost to the environment, this is thermal equilibrium.

- <u>We want the largest ΔT we can get for a given cost</u>
- To get a larger ΔT , we need <u>either</u> to:
 - 1. <u>Increase Power in</u> (get more sun into the oven)
 - **2.** <u>Decrease Power out</u> for a given ΔT (*reduce the rate at which energy is leaving the oven i.e. rate at which energy is lost to the surrounding*)

$$\triangle T = \uparrow T_2 - T_1$$
OR
$$\triangle T = T_2 - \checkmark T_1$$

How can Power be Increased? [↑]Power_{in}

Solar Intensity = 1,000 W/m²

Increase the area

What determines Power_{in}:

- Window Size
- Intensity of the Sun
- Window Thickness
- Angle at which light hits window
- Color of oven Wall*

To increase Power_{in} :

- Bigger window area (increase area)
- Thinner window* (decrease thickness)

How can we decrease Power_{out} for a given ΔT?

Power_{out} measures how thermal energy is being lost to the surrounding.

Energy leaves the oven through:

Radiation

(back out through the window)

- Conduction and Convection
 - back out through window
 - sides of oven
 - bottom of oven

Decreasing Power_{out} for a given ΔT ?

Heat Transfer via Oven's Window

- About 25 W /(m² °C) when T inside oven = 150°C
- About 12 W/(m² °C) for a thicker window

Heat Transfer via Sides and Bottom – About 1.5 W/(m² °C)

More heat is lost through window

College of Engineering

- Therefore, you want a <u>smaller, thicker window</u> to keep the heat energy in!
- Also, some good insulation on the sides and bottom

Putting it all Together

- To <u>increase Power_{in}</u>
 - Increase window size
 - Decrease window thickness
- To <u>decrease Power_{out}</u>
 - -Decrease window size
 - -Increase window thickness
- **<u>Conflicting objectives</u>**? well, this is Engineering Design; you must make tradeoffs (compromise)

Solar Oven Concept Generation (Brainstorming)

No Reflector

Single Flat Reflector

Parabolic

4 Flat Reflectors Open Corners

4 Flat Reflectors Closed Corners

Concept Evaluation Based on Criteria

جــامـعــة الملك سعود King Saud University College of Engineering

- <u>Characteristics of Engineering</u> <u>Decisions:</u>
 - <u>Multiple criteria</u>
 - Criteria are of <u>different</u> <u>importance</u>
 - Criteria are <u>conflicting</u>
 - Multiple interested parties

 Use a <u>Decision Matrix</u>: A simple decision approach to weigh pros and cons applying <u>weight</u> and rate concept (multiply and sum)

Applying Weight-and-Rate

- Features/attributes of the Solar Oven viewed as important:
 - ✓ <u>Direct Energy</u> into Oven
 - ✓ Easy to Manufacture
 - ✓ <u>Room for Error</u> in Aim
 - ✓ Hold Energy in Oven
 - ✓ Durable (Durability)

√...

 <u>Keep attributes as independent</u> as possible, Do not repeat any attribute or criteria! This will ensure an objective evaluation.

Weights

• To determine the importance of each attribute, we use a simple approach based on weights that sum to 100.

Evaluation Criteria	Direct Energy	Manufactu rability	Flexibility	Holding Energy in Oven	Total Weight
Scenario 1: Compromise	25	25	25	25	100%
Scenario 2: Most light in	40	5	15	40	100%
Scenario 3: Easy to make	20	40	20	20	100%

Weights signify the relative importance of the evaluation criteria.

Rates

- جامعة الملك سعود King Saud University College of Engineering
- Once alternative concepts are determined, <u>rate each</u> <u>attribute</u> for each alternative concept on a <u>scale from 1</u> (worst) to 10 (best)
- For the <u>solar oven example</u>, we will only use <u>three</u> alternative <u>concepts*</u> and <u>four attributes</u>
- Normally, you would have more concepts and more attributes

attributes = criteria; concepts = alternative solutions; scenario = division of weights (e.g. compromise = equal weights); rates = score for each attribute (1-10)

Rating the Concepts - Scenario 1 (most light in)

- Let us use the <u>"most light in</u>" Scenario
- This scenario uses weights (<u>40, 5, 15, 40</u>)

Evaluation Criteria	Direct Energy	Manufactu rability	Flexibility	Holding Energy in Oven	Score
Weights ->	40	5	(15)	40	
Concept 1:		10	8 5	3	
NO reflector Big window	40	50	75	120	→ 285
Concept 2: 1 reflector Small window	4	8	7	6	
	160	40	105	240	545
Concept 3: Parabolic	9	2	4	4	\bigstar
	360	10	60	160	590

Rating the Concepts – Scenario 2 (Compromise)

- Let us use the <u>"compromise</u>" Scenario*
- This scenario uses weights (*25, 25 , 25, 25*)

Evaluation Criteria	Direct Energy	Manufactura bility	Flexibility	Holding Energy in Oven	Score
Weights ->	25	25	25	25	
Concept 1: No reflector Big window	1	10	5	3	
	25	250	125	75	475
Concept 2: 1 reflector Small window	4	8	7	6	
	100	200	175	150	625
Concept 3: Parabolic	9	2	4	4	
	225	50	100	100	475

Final Remarks

- <u>Decision matrices</u> (weight-andrate) are <u>helpful</u> tools <u>for</u> <u>exploring trade-offs.</u>
- <u>Use more than one scenario</u> and do not be driven by a singleobjective mentality.
- You do <u>not necessarily</u> have to use the one with the <u>highest</u> <u>score.</u>

College of Engineering GE106:Introduction to Engineering Design

Concept Generation and Evaluation

By

Matthew Amao