Fundamentals of Analytical Chemistry

Acid-Base Titrations

Ahmad Aqel Ifseisi

Associate professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University
P.O. Box 2455 Riyadh 11451 Saudi Arabia

Building: 05, Office: 2A/149 \& AA/53
Tel. 014674198, Fax: 014675992
Web site: http://fac.ksu.edu.sa/aifseisi
E-mail: ahmad3qel@yahoo.com aifseisi@ksu.edu.sa

Strong acid versus strong base

An acid-base titration involves a neutralization reaction in which an acid is reacted with an equivalent amount of base. The end point signals the completion of the reaction. A titration curve is constructed by plotting the pH of the solution as a function of the volume of titrant added. The titrant is always a strong acid or a strong base. The analyte may be either a strong base or acid or a weak base or acid.

In the case of a strong acid versus a strong base, both the titrant and the analyte are completely ionized.

An example is the titration of hydrochloric acid $\mathbf{H C l}$ with sodium hydroxide $\mathbf{N a O H}$:

$$
\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

The H^{+}and OH^{-}combine to form $\mathrm{H}_{2} \mathrm{O}$, and the other ions (Na^{+}and Cl^{-}) remain unchanged, so the net result of neutralization is conversion of the HCl to a neutral solution of NaCl .

Titration of

100 mL of 0.1 MHCl with 0.1 M NaOH

$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$

100 mL 0.1 M HCl vs. $\mathbf{0 . 1} \mathrm{M} \mathrm{NaOH}$

The titration curve for 100 mL of 0.1 MHCl titrated with 0.1 M NaOH

	A	B	C	D	E
1	100.00 mL of 0.1000 M HCl vs. 0.1000 M NaOH				
2	$\mathrm{mL}_{\mathrm{HCl}}=$	100.00	$\mathrm{M}_{\mathrm{HCl}}=$	0.1000	
3	$\mathrm{M}_{\mathrm{NaOH}}=$	0.1000	$\mathrm{K}_{\mathrm{w}}=$	$1.00 \mathrm{E}-14$	
4	$\mathrm{mL}_{\mathrm{NaOH}}$	[H^{+}]	[OH^{-}]	pOH	pH
5	0.00	0.1			1.00
6	10.00	0.0818182			1.09
7	20.00	0.0666667			1.18
8	30.00	0.0538462			1.27
9	40.00	0.0428571			1.37
10	50.00	0.0333333			1.48
11	60.00	0.025			1.60
12	70.00	0.0176471			1.75
13	80.00	0.0111111			1.95
14	90.00	0.0052632			2.28
15	95.00	0.0025641			2.59
16	98.00	0.0010101			3.00
17	99.00	0.0005025			3.30
18	99.20	0.0004016			3.40
19	99.40	0.0003009			3.52
20	99.60	0.0002004			3.70
21	99.80	0.0001001			4.00
22	99.90	5.003E-05			4.30
23	99.95	2.501E-05			4.60
24	100.00	0.0000001			7.00
25	100.05		2.5E-05	4.60	9.40
26	100.10		5E-05	4.30	9.70
27	100.20		1E-04	4.00	10.00
28	100.40		0.0002	3.70	10.30
29	100.80		0.0004	3.40	10.60
30	101.00		0.0005	3.30	10.70
31	102.00		0.00099	3.00	11.00
32	105.00		0.00244	2.61	11.39
33	110.00		0.00476	2.32	11.68
34	120.00		0.00909	2.04	11.96
35	140.00		0.01667	1.78	12.22

Equations governing a strong-acid (HX) or strong-base (BOH) titration

Fraction f Titrated	Strong Acid		Strong Base	
	Present	Equation	Present	Equation
$f=0$	HX	$\left[\mathrm{H}^{+}\right]=[\mathrm{HX}]$	BOH	$\left[\mathrm{OH}^{-}\right]=[\mathrm{BOH}]$
$0<f<1$	HX/X ${ }^{-}$	$\left[\mathrm{H}^{+}\right]=$[remaining HX]	BOH/B ${ }^{+}$	$\left[\mathrm{OH}^{-}\right]=$[remaining BOH$]$
$f=1$	X^{-}	$\left[\mathrm{H}^{+}\right]=\sqrt{K_{w}}$	B^{+}	$\left[\mathrm{H}^{+}\right]=\sqrt{K_{w}}$
$f>1$	$\mathrm{OH}^{-} / \mathrm{X}^{-}$	$\left[\mathrm{OH}^{-}\right]=$[excess titrant]	$\mathrm{H}^{+} / \mathrm{B}^{+}$	$\left[\mathrm{H}^{+}\right]=$[excess titrant]

f to denote the fraction of analyte

Note that prior to the equivalence point, when there is excess acid, the relationship is
$\left[\mathrm{H}^{+}\right]=\left(M_{\text {acid }} \times \mathrm{V}_{\text {acid }}-M_{\text {base }} \times \mathrm{V}_{\text {base }}\right) / \mathrm{V}_{\text {total }}$
Beyond the equivalence point when there is excess base,
$\left[\mathrm{OH}^{-}\right]=\left(M_{\text {base }} \times \mathrm{V}_{\text {base }}-M_{\text {acid }} \times \mathrm{V}_{\text {acid }}\right) / \mathrm{V}_{\text {total }}$
Where: V is the volume and $\mathrm{V}_{\text {total }}$ is always $\mathrm{V}_{\text {acid }}+\mathrm{V}_{\text {base }}$

Titration curve for 100 mL 0.1 M NaOH vs. 0.1 MHCl .

The equivalence point pH is 7.00 .

Dependence of the magnitude of end-point break on concentration.
-Curve 1: 100 mL of 0.1 MHCl vs. 0.1 MNaOH .
-Curve 2: 100 mL of 0.01 MHCl vs. 0.01 MNaOH .
-Curve 3: 100 mL of 0.001 MHCl vs. 0.0001 MNaOH . The equivalence point pH is 7.00 in all cases.

Example

Calculate the pH at $0,10,90,100$ and 110% titration (\% of the equivalence point volume) for the titration of 50.0 mL of 0.100 MHCl with 0.100 M NaOH .

Solution

At 0\%:
$\mathrm{pH}=-\log 0.100=1.00$
At 10\%:
5.0 mL NaOH is added. We start with $0.100 \mathrm{M} \times 50.0 \mathrm{~mL}=5.00 \mathrm{mmol} \mathrm{H}$. Calculate the concentration of H^{+}after adding the NaOH :
$\mathrm{mmol} \mathrm{H}+$ at start $=5.00 \mathrm{mmol} \mathrm{H}^{+}$
mmol OH - added $=0.100 \mathrm{M} \times 5.0 \mathrm{~mL}=0.500 \mathrm{mmol} \mathrm{OH}^{-}$
$\mathrm{mmol} \mathrm{H}+$ left $=4.50 \mathrm{mmol} \mathrm{H}^{+}$in 55.0 mL
$\left[\mathrm{H}^{+}\right]=4.50 \mathrm{mmol} / 55.0 \mathrm{~mL}=0.0818 \mathrm{MpH}=-\log 0.0818=1.09$
At 90\%:
$\mathrm{mmol} \mathrm{H}+$ at start $=5.00 \mathrm{mmol} \mathrm{H}^{+}$
mmol OH - added $=0.100 \mathrm{M} \times 45.0 \mathrm{~mL}=4.50 \mathrm{mmol} \mathrm{OH}^{-}$
$\mathrm{mmol} \mathrm{H}+$ left $=0.50 \mathrm{mmol} \mathrm{H}+$ in 95.0 mL
$\left[\mathrm{H}^{+}\right]=0.00526 \mathrm{MpH}=-\log 0.00526=2.28$
At 100\%:
All the H^{+}has been reacted with OH^{-}, and we have a 0.050 M solution of NaCl . Therefore, the pH is 7.00 .

At 110\%:

We now have a solution consisting of NaCl and excess added NaOH .
$\mathrm{mmol} \mathrm{OH}=0.100 \mathrm{M} \times 5.00 \mathrm{~mL}=0.50 \mathrm{mmol} \mathrm{OH}^{-}$in 105 mL
$\left[\mathrm{OH}^{-}\right]=0.00476 \mathrm{M}$
$\mathrm{pOH}=-\log 0.00476=2.32 ; \mathrm{pH}=11.68$

Indicator

Methyl violet ———－yellow \square violet
Crystal violet ————－yellow \square blue
Cresol red————————— red \square yellow
pH transition ranges and colors of some common indicators．

Bromphenol blue－————————－yellow \square blue
Methyl orange - －- －- －- －- red \square yellow
Bromcresol green yellow \square blue

Methyl red - －ーーーーーーーーーー一ー－red \square yellow
Methyl purple—————————————— purple \square green
Bromothymol blue - －- －- －- －- －- －－yellow \square blue

Cresol red———————————————————－yellow \square red
Thymol blue————————．red \square yellow - －－yellow \square blue
Phenolphthalein－ーーーーーーーーーーーーーーーーー colorless \square red violet
Thymolphthalein－———————————————————— colorless \square blue

Weak acid versus strong base

Example, the titration of 100 mL of 0.1 M acetic acid (as a weak acid) with 0.1 M sodium hydroxide (as a strong base). The neutralization reaction is:

$$
\mathrm{HOAc}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{OAc}^{-}
$$

Equations governing a weak-acid (HA) titration

Fraction f Titrated	Present	Weak Acid
$f=0$	HA	$\left[\mathrm{H}^{+}\right]=\sqrt{K_{a} \cdot C_{\mathrm{HA}}}$
$0<f<1$	$\mathrm{HA} / \mathrm{A}^{-}$	$\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{C_{\mathrm{A}^{-}}}{C_{\mathrm{HA}}}$
$f=1$	$\mathrm{~A}^{-}$	$\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{K_{w}}{K_{a}} \cdot C_{\mathrm{A}^{-}}}$
$f>1$	$\mathrm{OH}^{-} / \mathrm{A}^{-}$	$\left[\mathrm{OH}^{-}\right]=[$excess titrant $]$

Weak base versus strong acid

The titration of a weak base with a strong acid is completely analogous to the above case, but the titration curves are the reverse of those for a weak acid versus a strong base. Example, the titration of 100 mL of 0.1 M ammonia (as a weak base) with 0.1 M hydrochloric acid (as a strong acid). The neutralization reaction is:

$$
\mathrm{NH}_{3}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

Equations governing a weak-base (B) titration

Fraction f Titrated	Weak Base	
	Present	Equation
$f=0$	B	$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} \cdot C_{\mathrm{B}}}$
$0<f<1$	$\mathrm{~B} / \mathrm{BH}^{+}$	$\mathrm{pH}=\left(\mathrm{p} K_{w}-\mathrm{p} K_{b}\right)+\log \frac{C_{\mathrm{B}}}{C_{\mathrm{BH}^{+}}}$
$f=1$	BH^{+}	$\left[\mathrm{H}^{+}\right]=\sqrt{\frac{K_{w}}{K_{b}} \cdot C_{\mathrm{BH}^{+}}}$
$f>1$	$\mathrm{H}^{+} / \mathrm{BH}^{+}$	$\left[\mathrm{H}^{+}\right]=$[excess titrant $]$

Titration curve for $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NH}_{3}$ versus 0.1 MHCl .

Titration curves for 100 mL 0.1 M weak acids of different K_{a} values versus 0.1 M NaOH .

Example

Calculate the pH at $0,10.0,25.0,50.0$, and 60.0 mL titrant in the titration of 50.0 mL of 0.100 M acetic acid with 0.100 MNaOH .

Solution

At 0 mL
We have a solution of only 0.100 MHOAc :

$$
\begin{aligned}
\frac{(x)(x)}{0.100-x} & =1.75 \times 10^{-5} \\
{\left[\mathrm{H}^{+}\right] } & =x=1.32 \times 10^{-3} M \\
\mathrm{pH} & =2.88
\end{aligned}
$$

At 10.0 mL
We started with $0.100 \mathrm{M} \times 50.0 \mathrm{~mL}=5.00 \mathrm{mmol} \mathrm{HOAc}$; part has reacted with OH^{-} and has been converted to OAc^{-}:
mmol HOAc at start $=5.00 \mathrm{mmol} \mathrm{HOAc}$
$\mathrm{mmol} \mathrm{OH}+$ added $=0.100 \mathrm{M} \times 10.0 \mathrm{~mL}=1.00 \mathrm{mmol} \mathrm{OH}^{-}$
$=\mathrm{mmol} \mathrm{OAc}{ }^{-}$formed in 60.0 mL
mmol HOAc left $=4.00 \mathrm{mmol} \mathrm{HOAc}$ in 60.0 mL
We have a buffer. Since volumes cancel, use millimoles:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]} \\
& \mathrm{pH}=4.76+\log \frac{1.00}{4.00}=4.16
\end{aligned}
$$

At 25.0 mL

One-half the HOAc has been converted to OAc^{-}, so $\mathrm{pH}=\mathrm{pKa}$:
mmol HOAc at start $=5.00 \mathrm{mmol} \mathrm{HOAc}$
$\mathrm{mmol} \mathrm{OH}^{-}=0.100 \mathrm{M} \times 25.0 \mathrm{~mL}=2.50 \mathrm{mmol}_{\mathrm{OAc}}{ }^{-}$formed
mmol HOAc left $=2.50 \mathrm{mmol} \mathrm{HOAc}$

$$
\mathrm{pH}=4.76+\log \frac{2.50}{2.50}=4.76
$$

At 50.0 mL

All the HOAc has been converted to $\mathrm{OAc}^{-}(5.00 \mathrm{mmol}$ in 100 mL , or 0.0500 M):

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{\frac{K_{w}}{K_{a}}\left[\mathrm{OAc}^{-}\right]} \\
& =\sqrt{\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}} \times 0.0500}=5.35 \times 10^{-6} \mathrm{M} \\
\mathrm{pOH} & =5.27 \quad \mathrm{pH}=8.73
\end{aligned}
$$

At 60.0 mL
We have a solution of NaOAc and excess added NaOH . The hydrolysis of the acetate is negligible in the presence of added OH^{-}. So the pH is determined by the concentration of excess OH^{-}:
$\mathrm{mmol} \mathrm{OH}^{-}=0.100 \mathrm{M} \times 10.0 \mathrm{~mL}=1.00 \mathrm{mmol}$ in 110 mL
$\left[\mathrm{OH}^{-}\right]=0.00909 \mathrm{M}$
$\mathrm{pOH}=-2.04 ; \mathrm{pH}=11.96$
412

