

Acid-Base Titrations

Ahmad Aqel Ifseisi

Associate professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building: 05, Office: 2A/149 & AA/53 Tel. 014674198, Fax: 014675992 Web site: http://fac.ksu.edu.sa/aifseisi E-mail: ahmad3qel@yahoo.com aifseisi@ksu.edu.sa

Strong acid versus strong base

An acid-base titration involves a **neutralization** reaction in which an acid is reacted with an equivalent amount of base. The **end point** signals the completion of the reaction. A **titration curve** is constructed by plotting the pH of the solution as a function of the volume of titrant added. The **titrant** is always a strong acid or a strong base. The **analyte** may be either a strong base or acid or a weak base or acid.

In the case of a **strong acid** versus a **strong base**, both the titrant and the analyte are completely ionized.

An example is the titration of hydrochloric acid **HCI** with sodium hydroxide **NaOH**:

$H^+ + CI^- + Na^+ + OH^- \rightarrow H_2O + Na^+ + CI^-$

The H⁺ and OH⁻ combine to form H₂O, and the other ions (Na⁺ and Cl⁻) remain unchanged, so the net result of neutralization is conversion of the HCl to a neutral solution of NaCl.

The titration curve for 100 mL of 0.1 MHCl titrated with 0.1 MNaOH

		А	В	С	D	E	
	1	100.00 mL of 0.1000 M HCl vs. 0.1000 M NaOH					
	2	mL _{HCI} =	100.00	M _{HCI} =	0.1000		
	3	M _{NaOH} =	0.1000	K _w =	1.00E-14		
	4	mL _{NaOH}	[H+]	[OH ⁻]	рОН	рΗ	
	5	0.00	0.1			1.00	
	6	10.00	0.0818182			1.09	
	7	20.00	0.0666667			1.18	
	8	30.00	0.0538462			1.27	
	9	40.00	0.0428571			1.37	
	10	50.00	0.0333333			1.48	
	11	60.00	0.025			1.60	
	12	70.00	0.0176471			1.75	
	13	80.00	0.0111111			1.95	
	14	90.00	0.0052632			2.28	
	15	95.00	0.0025641			2.59	
	16	98.00	0.0010101			3.00	
	17	99.00	0.0005025			3.30	
	18	99.20	0.0004016			3.40	
	19	99.40	0.0003009			3.52	
	20	99.60	0.0002004			3.70	
	21	99.80	0.0001001			4.00	
ľ	22	99.90	5.003E-05			4.30	
	23	99.95	2.501E-05			4.60	
	24	100.00	0.0000001			7.00	
	25	100.05		2.5E-05	4.60	9.40	
	26	100.10		5E05	4.30	9.70	
	27	100.20		1E-04	4.00	10.00	
	28	100.40		0.0002	3.70	10.30	
	29	100.80		0.0004	3.40	10.60	
	30	101.00		0.0005	3.30	10.70	
	31	102.00		0.00099	3.00	11.00	
	32	105.00		0.00244	2.61	11.39	
	33	110.00		0.00476	2.32	11.68	
	34	120.00		0.00909	2.04	11.96	
	35	140.00		0.01667	1.78	12.22	

Equations governing a strong-acid (HX) or strong-base (BOH) titration

Fraction f		Strong Acid	Strong Base	
Titrated	Present	Equation	Present	Equation
f = 0	HX	$[\mathrm{H}^+] = [\mathrm{HX}]$	BOH	$[OH^-] = [BOH]$
0 < f < 1	HX/X ⁻	$[H^+] = [remaining HX]$	BOH/B ⁺	$[OH^-] = [remaining BOH]$
f = 1	X-	$[\mathrm{H^+}] = \sqrt{K_w}$	\mathbf{B}^+	$[\mathrm{H}^+] = \sqrt{K_w}$
f > 1	OH^-/X^-	$[OH^-] = [excess titrant]$	$\mathrm{H^+}/\mathrm{B^+}$	$[H^+] = [excess titrant]$

f to denote the fraction of analyte

Note that prior to the equivalence point, when there is excess acid, the relationship is $[H^+] = (M_{acid} \times V_{acid} - M_{base} \times V_{base}) / V_{total}$

Beyond the equivalence point when there is excess base,

$$[OH^{-}] = (M_{base} \times V_{base} - M_{acid} \times V_{acid}) / V_{total}$$

Where: V is the volume and V_{total} is always $V_{acid} + V_{base}$

Titration curve for 100 mL 0.1 *M* NaOH vs. 0.1 *M* HCl.

The equivalence point pH is 7.00.

Dependence of the magnitude of end-point break on concentration.

-Curve 1: 100 mL of 0.1 *M* HCl vs. 0.1 *M* NaOH. -Curve 2: 100 mL of 0.01 *M* HCl vs. 0.01 *M* NaOH. -Curve 3: 100 mL of 0.001 *M* HCl vs. 0.0001 *M* NaOH. The equivalence point pH is 7.00 in all cases.

Example

Calculate the pH at 0, 10, 90, 100 and 110% titration (% of the equivalence point volume) for the titration of 50.0 mL of 0.100 *M* HCl with 0.100 *M* NaOH.

Solution

At 0%:

pH = -log 0.100 = 1.00

At 10%:

5.0 mL NaOH is added. We start with 0.100 $M \times 50.0$ mL = 5.00 mmol H⁺. Calculate the concentration of H⁺ after adding the NaOH:

```
mmol H<sup>+</sup> at start = 5.00 mmol H<sup>+</sup>
```

```
mmol OH^- added = 0.100 M \times 5.0 \text{ mL} = 0.500 \text{ mmol } OH^-
```

```
mmol H<sup>+</sup> left = 4.50 \text{ mmol H}^+ in 55.0 \text{ mL}
```

```
[H^+] = 4.50 \text{ mmol} / 55.0 \text{ mL} = 0.0818 M \text{ pH} = -\log 0.0818 = 1.09
```

At 90%:

```
mmol H<sup>+</sup> at start = 5.00 mmol H<sup>+</sup>
```

```
mmol OH^- added = 0.100 M \times 45.0 \text{ mL} = 4.50 \text{ mmol } OH^-
```

```
mmol H^+ left = 0.50 mmol H^+ in 95.0 mL
```

 $[H^+] = 0.00526 M pH = -\log 0.00526 = 2.28$

At 100%:

All the H⁺ has been reacted with OH⁻, and we have a 0.050 M solution of NaCl. Therefore, the pH is 7.00.

At 110%:

We now have a solution consisting of NaCl and excess added NaOH.

```
mmol OH^- = 0.100 M \times 5.00 mL = 0.50 mmol OH^- in 105 mL
```

[OH⁻] = 0.00476 *M*

pOH = -log 0.00476 = 2.32; pH = 11.68

Weak acid versus strong base

Example, the titration of 100 mL of 0.1 *M* acetic acid (as a weak acid) with 0.1 *M* sodium hydroxide (as a strong base). The neutralization reaction is:

HOAC + Na⁺ + OH⁻ \rightarrow H₂O + Na⁺ + OAC⁻

Equations governing a weak-acid (HA) titration

Fraction f	Weak Acid		
Titrated	Present	Equation	
f = 0	HA	$[\mathrm{H^+}] = \sqrt{K_a \cdot C_{\mathrm{HA}}}$	
0 < f < 1	HA/A ⁻	$pH = pK_a + \log \frac{C_{A^-}}{C_{HA}}$	
f = 1	A	$[OH^{-}] = \sqrt{\frac{K_w}{K_a} \cdot C_{A^{-}}}$	
f > 1	OH ⁻ /A ⁻	$[OH^-] = [excess titrant]$	

12 Titration curve for 100 mL 0.1 M HOAc vs 10 0.1 *M* NaOH. Note that the equivalence point pH is not 7. At 0.05 M NaOAc, it is Phenolphthalein 8.73. 8 펍 6 Midpoint: $pH = pK_a$ Methyl red 4 12 2 2 Equivalence 3 10 point pH: 1:8.73 0 Phenolphthalein 40 60 80 100 120 140 2:8.23 20 0 8 mL 0.1 M NaOH 3: 7.73 펍 6 Dependence of the titration curve of weak acid on concentration. -Curve 1: 100 mL of 0.1 MHOAc vs 0.1 MNaOH. 2 -Curve 2: 100 mL of 0.01 MHOAc vs 0.01 MNaOH. -Curve 3: 100 mL of 0.001 MHOAc vs 0.001 MNaOH. 0 20 40 60 80 100 120 140 0 mL NaOH

Weak base versus strong acid

The titration of a weak base with a strong acid is completely analogous to the above case, but the titration curves are the reverse of those for a weak acid versus a strong base. Example, the titration of 100 mL of 0.1 *M* ammonia (as a weak base) with 0.1 *M* hydrochloric acid (as a strong acid). The neutralization reaction is:

$NH_3 + H^+ + CI^- \rightarrow NH_4^+ + CI^-$

Equations governing a weak-base (B) titration

Fraction f	Weak Base		
Titrated	Present	Equation	
f = 0	В	$[OH^-] = \sqrt{K_b \cdot C_B}$	
0 < f < 1	B/BH ⁺	$pH = (pK_w - pK_b) + \log \frac{C_B}{C_{BH^+}}$	
f = 1	BH^+	$[\mathrm{H^+}] = \sqrt{\frac{K_w}{K_b}} \cdot C_{\mathrm{BH^+}}$	
f > 1	$\rm H^+/BH^+$	$[H^+] = [excess titrant]$	

Titration curves for 100 mL 0.1 M weak acids of different K_a values versus 0.1 M NaOH.

Titration curve for 100 mL 0.1 M NH_3 versus 0.1 *M* HCI.

Example

Calculate the pH at 0, 10.0, 25.0, 50.0, and 60.0 mL titrant in the titration of 50.0 mL of 0.100 *M* acetic acid with 0.100 *M* NaOH.

Solution

At 0 mL

We have a solution of only 0.100 MHOAc:

$$\frac{(x)(x)}{0.100 - x} = 1.75 \times 10^{-5}$$
$$[H^+] = x = 1.32 \times 10^{-3} M$$
$$pH = 2.88$$

At 10.0 mL

We started with 0.100 $M \times 50.0$ mL = 5.00 mmol HOAc; part has reacted with OH⁻ and has been converted to OAc⁻:

mmol HOAc at start = 5.00 mmol HOAc

mmol OH^- added = 0.100 $M \times 10.0 \text{ mL} = 1.00 \text{ mmol } OH^-$

= mmol OAc⁻ formed in 60.0 mL

mmol HOAc left = 4.00 mmol HOAc in 60.0 mL

We have a buffer. Since volumes cancel, use millimoles:

$$pH = pK_a + \log \frac{[OAc^-]}{[HOAc]}$$
$$pH = 4.76 + \log \frac{1.00}{4.00} = 4.16$$

At 25.0 mL

One-half the HOAc has been converted to OAc⁻, so pH = pKa: mmol HOAc at start = 5.00 mmol HOAc mmol OH⁻ = 0.100 $M \times 25.0$ mL = 2.50 mmol OAc⁻ formed mmol HOAc left = 2.50 mmol HOAc

$$pH = 4.76 + \log \frac{2.50}{2.50} = 4.76$$

At 50.0 mL

All the HOAc has been converted to OAc⁻ (5.00 mmol in 100 mL, or 0.0500 M):

$$[OH^{-}] = \sqrt{\frac{K_w}{K_a}} [OAc^{-}]$$
$$= \sqrt{\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}} \times 0.0500} = 5.35 \times 10^{-6} M$$

 $pOH=5.27 \quad pH=8.73$

At 60.0 mL

We have a solution of NaOAc and excess added NaOH. The hydrolysis of the acetate is negligible in the presence of added OH^- . So the pH is determined by the concentration of excess OH^- :

```
mmol OH<sup>-</sup> = 0.100 M × 10.0 mL = 1.00 mmol in 110 mL
[OH<sup>-</sup>] = 0.00909 M
pOH = -2.04; pH = 11.96
```


