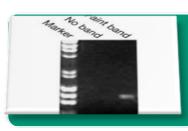
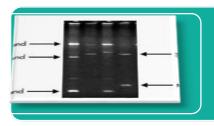
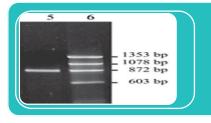
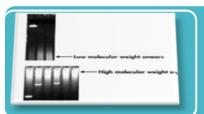

PCR Troubleshooting


BCH361- Practical

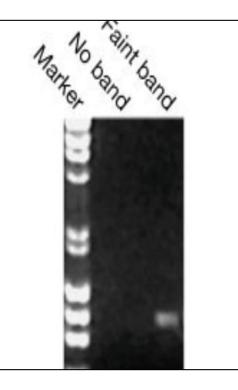

Performing PCR steps :


Common Issues in PCR:


Low or no amplification

Non-specific band or primer dimer

Incorrect product size

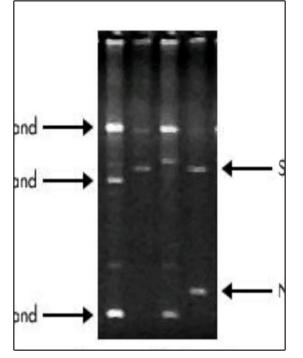


Smeared Bands

1- No Band or Faint Band:

Causes Related to Cycling Times and Temp.

- Too Few cycles were used.
- Extension time was too short.
- Incorrect annealing temperature.
- Denaturation temperature was too low.


Causes Related to PCR Components

- No enough template was in the reaction.
- Primer concentration was too low.
- Impure primers, dNTPs, or water
- PCR product has high GC content.
- Primers were designed or synthesized incorrectly.
- No enough Mg²⁺.

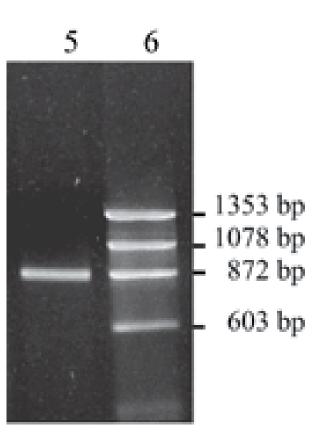
2- Nonspecific Bands or Primer Dimer:

Causes Related to Cycling Times and Temp.

- Annealing temperature was too low.
- Too many cycles were used.
- Extension time was too long.

Causes Related to PCR Components

- Too much primer was added.
- Too much Mg2+ was added.

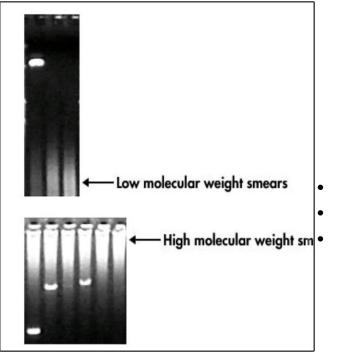

.

Primers were designed or synthesized incorrectly by user or manufacturer.

3- Incorrect PCR product size:

Causes Related to Cycling Times and Temp.

• Incorrect annealing temperature.


Causes Related to PCR Components

- Mispriming.
- Improper Mg2+ concentration.
- Impure primers, dNTPs, or water
- Primers were designed or synthesized incorrectly by user or manufacturer.

4- Smeared Band:

Causes Related to Cycling Times and Temp.

• Too many cycles were used.

Causes Related to PCR Components

Too much template was added.
Impure primers, dNTPs, or water.
Template contained an exonuclease or was degraded.

Common PCR additive reagents:

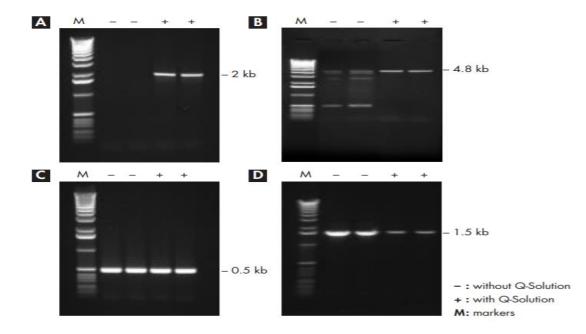
1. Additives that benefit GC Rich templates:

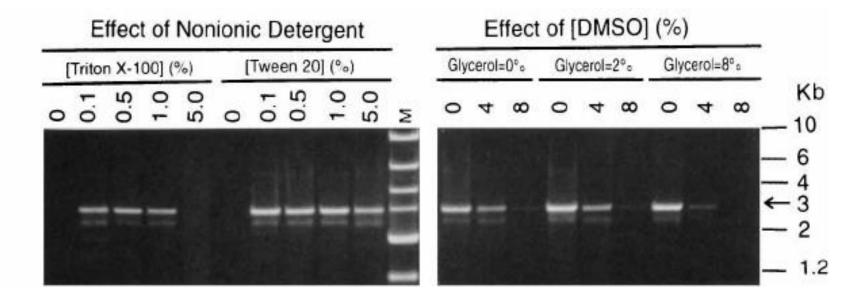
→1-10% DMSO (Dimethylsulfoxid):

- GC rich (GC content >60%).
- Lowering the Tm.
- Distrusting the base pairing.

→Q solution:

- High degree of secondary structure.
- GC-rich.
- Increases PCR specificity.


→PCRx Enhancer:


- For problematic and/or GC-rich templates.
- Higher primer specificity, broader magnesium concentration optima, broader annealing temperature optima.

2. Additives that help PCR in the presence of inhibitors:

→400 ng/µl BSA (Bovine serum albumin).

→Non-ionic detergents: Ex: 0.1 to 1% Triton X.

Home Work:

TERT is a gene code for telomerase, an enzyme that elongate the telomere and mutated in some cancers. Your aim is to amplify a region in its promoter using PCR technique.

- 1. Draw a flow chart that illustrate the steps of performing PCR.
- 2. **Design a primer using primer3plus tool.**
- 3. Check the specificity of the primer.