الْملك سسعود

 King Saud University
Applied Mathematics for Biomedical Technology

BMT (222)

Time: 90 Minutes

Student's Name	
Student's ID	

Question No.	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Total
Maximum Marks					

Question I

i. Solve the equation by completing the square: $2 x^{2}+6 x-\frac{7}{2}=0$ (all details are needed)
ii. Two resistors when connected in series have a total resistance of 40Ω when connected in parallel their total resistance is 8.4Ω. If one of the resistors has a resistance of $R_{x} \Omega$. (write all details)
a. Show that $R_{x}^{2}-40 \mathrm{R}_{\mathrm{x}}+336=0$
b. Calculate the resistance of each.

Question 2

i. In figure below the moment of weight W is 5 . The lever balances when $d_{1}=3 \mathrm{~m}$ and $\mathrm{d}_{2}=2 \mathrm{~m}$ and when $\mathrm{d}_{1}=6 \mathrm{~m}$ and $\mathrm{d}_{2}=3 \mathrm{~m}$. Determine the weights W_{1} and W_{2} (write all details)

ii. Resolve $\frac{3+6 x+4 x^{2}-2 x^{3}}{x^{2}\left(x^{2}+3\right)}$ into partial fractions (all details are needed)

Question 3

i. Find the currents of the circuits by solving the system of equations given (write all details)

$$
\begin{array}{r}
\mathrm{I}_{1}-\mathrm{I}_{2}+\mathrm{I}_{3}=0 \\
\mathrm{I}_{1}+2 \mathrm{I}_{2}=10 \\
-2 \mathrm{I}_{1}-\mathrm{I}_{3}=-5
\end{array}
$$

ii. Simplify the complex fraction $\frac{\frac{2}{\mathrm{x}-2}+\frac{1}{x}}{\frac{3 x-2}{x-5}}$ (all details are needed)

Question 4

i. Solve the following systems of equations by using Cramer rule (all details are needed)

$$
\begin{array}{r}
2 x-3 y+z=1 \\
x-2 y-3 z=1 \\
2 x-z=2
\end{array}
$$

ii. Solve the given equation for $x: \frac{\mathbf{1}}{\mathbf{x}}-\frac{\mathbf{1}}{\mathbf{x}-\mathbf{4}}=\frac{\mathbf{1}}{\mathbf{3}}$ (all details are needed)

