King Saud University College of Sciences Mathematics Department Academic Year (G) 2020–2021 Academic Year (H) 1442 Bachelor AFM: M. Eddahbi

Solution of the final exam ACTU-464-474 Spring 2021 (20%) April 19, 2021 (three hours: from 1:30 to 4:30 PM) Keep four digits after dot and round by default there after.

Exercise 1 (4 marks)

- 1. An actuary have shown from available data that the number of claims in an insurance company is a member of C(a,b,0) class of distributions such that $p_0=p_1=\frac{1}{4}$, $p_2=\frac{3}{16}$. Find the expected number of claims.
- 2. Suppose that the number of claims N has a Poisson distribution with mean $\lambda = 3$. Let $(p_n)_{n\geq 0}$ denotes the probability mass function of N. Calculate $\frac{p_1442}{p_1441}$.

Solution:

1. We know that

$$p_n = p_{n-1} \left(a + \frac{b}{n} \right)$$
 for all $n \ge 1$

(a) We have $p_1 = p_0 (a + b)$ and $p_2 = p_1 (a + b)$

$$a + b = 1$$
 and $a + \frac{b}{2} = \frac{3}{4}$

this gives $a = \frac{1}{2}, b = \frac{1}{2}$,

(b) N is Negative binomial $\mathcal{NB}(r;p)$ where $p=1-a=\frac{1}{2}$ and r=2

$$p_4 = p_3 \left(a + \frac{b}{4} \right) = p_2 \left(a + \frac{b}{3} \right) \left(a + \frac{b}{4} \right) = \frac{3}{16} \frac{1}{4} \left(1 + \frac{1}{3} \right) \left(1 + \frac{1}{4} \right) = \frac{5}{64} = 0.08125.$$

- (c) $E[N] = \frac{rq}{p} = 2$. (since p = q).
- 2. We know that $p_n = e^{-\lambda} \frac{\lambda^n}{n!}$ thus

$$\frac{p_{1442}}{p_{1441}} = e^{-3} \frac{3^{1442}}{1442!} \frac{1441!}{3^{1441}} e^3 = \frac{3}{1442} = 0.00208.$$

Exercise 2 (4 marks) Losses in 2020 follow the density function $f_X(x) = 3x^{-4}$, x > 1 and 0 otherwise where X is the loss in millions of dollars. Inflation of 5% impacts all claims uniformly from 2020 to 2021.

- 1. Determine the c.d.f. of losses for 2021
- 2. Find the probability that a 2021 loss exceeds 2.1 millions of dollars.

Solution:

1. The losses in 2021 can be written as Y = 1.05X hence for x > 1.1,

$$F_Y(x) = P(Y \le x) = P\left(X \le \frac{x}{1.05}\right) = F_X\left(\frac{x}{1.05}\right) = \int_1^{\frac{x}{1.05}} 3t^{-4}dt = \left[-\frac{1}{t^3}\right]_1^{\frac{x}{1.05}} = 1 - \frac{(1.05)^3}{x^3}.$$

2. The required probability is

$$P(Y > 2.1) = 1 - F_Y(2.1) = \frac{(1.05)^3}{(2.1)^3} = \frac{1}{2^3} = 0.125.$$

Exercise 3 (4 marks) A portfolio of independent insurance policies has three classes of policies:

Class	Number in Class	Probability of Claim per Policy	Claim Amount b_k
1	1000	0.1	30
2	2000	0.2	20
3	500	0.3	10

- 1. Calculate the expectation and variance of the aggregate loss S.
- 2. Use normal approximation to calculate Π_{SL} such that the probability of that the aggregate loss is less or equal than the Π_{SL} is equal to 0.95.

Solution:

1. We have $E[S] = \sum_{i=1}^{3} n_k \ b_k \ q_k = 1000 \times 30 \times 0.1 + 2000 \times 20 \times 0.2 + 500 \times 10 \times 0.3 = \mathbf{12500}$. And

$$\sigma_S^2 = \operatorname{Var}(S) = \sum_{i=1}^3 n_k \ b_k^2 \ q_k (1 - q_k)$$
$$= 1000 \times 30^2 \times 0.1 \times 0.9 + 2000 \times 20^2 \times 0.2 \times 0.8 + 500 \times 10^2 \times 0.3 \times 0.7 = \mathbf{2195} \times \mathbf{10^5}.$$

2. Under normal approximation the r.v. $T = \frac{S - E[S]}{\sigma_S}$ follows a standard normal distribution, therefore

$$P(S \le \Pi_{SL}) = P\left(\frac{S - E[S]}{\sigma_S} \le \frac{\Pi_{SL} - 12500}{1000\sqrt{2195}}\right) = 0.95,$$

The safety loading premium is $\Pi_{SL} = 12500 + 1.644845 \times 1000\sqrt{2195} = 89562$.

Exercise 4 (4 marks) For an insured portfolio, you are given:

- (i) the number of claims has a geometric distribution with $\beta = \frac{1}{3}$,
- (ii) individual claim amounts can take on values 3, 4 or 5, with equal probability,
- (iii) the number of claims and claim amounts are independent, and
- (iv) the premium charged equals expected aggregate claims plus the variance of aggregate claims.

The p.m.f. of a geometric distribution with β is given by $p_n = P(N = n) = \frac{\beta^n}{(1+\beta)^{n+1}} = q^n p$ for $n \ge 0$ with $p = 1 - \frac{\beta}{1+\beta} = \frac{1}{1+\beta}$.

- 1. Calculate the expected value and the variance of the aggregate claims.
- 2. Determine the exact probability that aggregate claims exceeds the premium given that $F_S(8) = \frac{31}{32}$.

Solution:

1. We know that $E[S] = E[N]E[X] = \frac{1}{3} \times 4 = \frac{4}{3} = 1.3333$, and

$$\operatorname{Var}(S) = \operatorname{E}[N] \operatorname{Var}(X) + \operatorname{Var}(N) (\operatorname{E}[X])^2 = \frac{1}{3} \times \frac{2}{3} + \frac{4}{9} \times (4)^2 = \frac{22}{3} = 7.3333.$$

2. The Premium is $=\frac{4}{3}+\frac{22}{3}=\frac{26}{3}=8.6667$. Since S is integer-valued we have

$$P\left(S > \frac{26}{3}\right) = P\left(S > 8\right) = 1 - P\left(S \le 8\right) = 1 - F_S(8) = 1 - \frac{31}{32} = \frac{1}{32} = \mathbf{0.03125}.$$

Exercise 5 (4 marks)

- 1. Find the quantile premium with a risk of 5% for loss random variable X which is exponentially distributed with mean $\theta = 667.6236$.
- 2. The c.d.f. of aggregate losses S covered under a policy of stop-loss insurance is given by $F_S(x) = 1 \frac{4}{x^2}$, x > 2. Calculate $E[1000 \max(S 10; 0)]$. (Hint: If X is r.v. with c.d.f. F_X then $E[\max(X K, 0)] = \int_K^{\infty} (1 F_x(x)) dx$).

Solution:

- 1. The equation $S_X(x) = e^{-\frac{x}{\theta}} = 0.05$ implies that $x = -\theta \ln(0.05) = 2.9957\theta$ hence $\Pi_{0.05} = 2.9957 \times 667.6236 = 2000$.
- 2. We have

$$E[(S-10)^{+}] = \int_{10}^{\infty} (x-10) f_S(x) dx = \int_{10}^{\infty} (x-10) \frac{8}{x^3} dx = \frac{2}{5}$$

thus

$$E[1000(S-10)^+] = \frac{2000}{5} = 400.$$

Alternatively we can use

$$E\left[1000(S-10)^{+}\right] = 1000 \int_{10}^{\infty} (1 - F_S(x)) dx = 1000 \int_{10}^{\infty} \frac{4}{x^2} dx = \frac{2000}{5} = 400.$$