

Blood Biochemistry BCH 220 [Practical]

Lab (2) Determination of Non-functional Plasma Enzymes

in Serum

Emtenan Mohammed Alkhudair

Office: Building 5, 3rd floor, Office No. 269

E.mail: Ealkhudair@ksu.edu.sa

Website: http://fac.ksu.edu.sa/ealkhudair

Objectives

- To determine the level of alanine transaminase (ALT) in serum.
- To evaluate the presence of tissue damage.

Blood Enzymes

- Plasma, serum or blood proteins, are proteins present in blood plasma which have several functions.
- Some blood proteins also act as enzymes.
- Enzymes are biocatalysts that increase the rate of the chemical reaction.
- Clinical enzymology refers to measurement of enzyme activity in body fluids for the diagnosis and treatment of diseases.
- Most clinical enzyme measurements using serum or plasma, occasionally other fluids, such as urine and gut secretions are also investigated.
- The most commonly used body fluid for this purpose is **SERUM**. (Why?)

Differences Between Plasma Enzymes

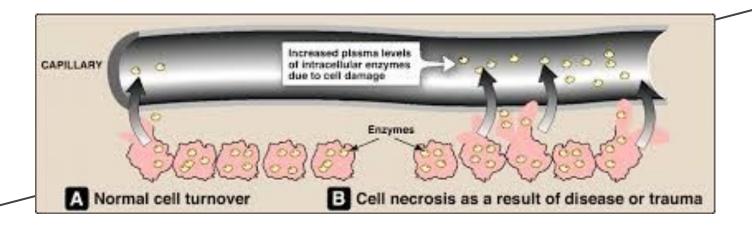
Plasma Enzymes

1. Plasma-specific Enzymes (Functional)

Enzymes that are <u>normally present</u> in the plasma and <u>perform their primary function in the blood</u>.

2. Non-plasma specific Enzymes (Non functional)

<u>Intracellular</u> enzymes that are normally <u>present in very small amount</u> in blood and <u>perform no known</u> function in blood.


	Functional plasma enzymes	Non functional plasma enzymes
Their substrate	Always <u>present</u> in the blood	Absent from the blood
Site of synthesis	<u>Liver</u>	<u>Different</u> organs
Effect of diseases in its plasma levels	Decrease in liver diseases	Different enzymes <u>increase</u> in different organ diseases
Examples Thrombin Plasmin		ALT LDH

Pause and Think Which of these enzymes is a better diagnostic indicator? Why?

Sources of Non functional Plasma Enzyme

- 1. Cell damage with the release of its content of enzymes into blood e.g. Myocardial infarction.
- 2. Block in the secretory pathway e.g. pancreatitis.
- 3. Increase enzyme synthesis e.g. bone cancer.

So estimation of the plasma concentration of these enzymes in blood <u>is useful for the diagnosis of disease</u> depending on their tissue origin.

Clinical Significance of Non-Functional Plasma Enzymes

Measurement of non-functional enzymes is important for:

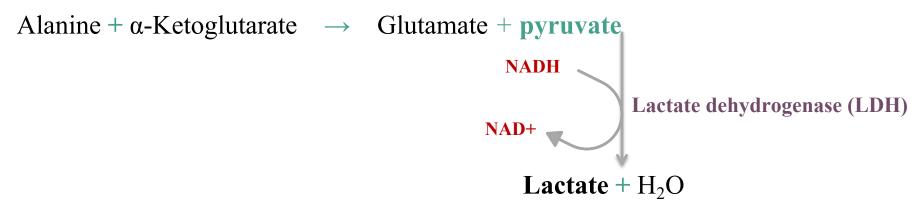
- 1. Diagnosis of diseases.
- 2. **Prognosis of the disease:** following up of the treatment by measuring plasma enzymes before and after treatment.

Alanine Transaminase

- ALT is an enzyme that catalyzes a type of reaction (**transamination**) between an amino acid and α -keto acid.
- It is important in the <u>production of various amino acids</u>.
- Also called alanine transferase (ALT), serum glutamate-pyruvate transaminase (SGPT).

■ Transamination reaction is the process by which amino groups are removed from amino acids and transferred to acceptor keto-acids to generate the amino acid version of the keto-acid and the keto-acid version of the original amino acid.

ALT Diagnostic Importance


- ALT is found in serum (at low level) but is most commonly associated with the liver.
- Thus, an elevated level ALT is a sensitive <u>index of acute hepatocellular injury</u>.
- Elevated serum ALT (SGPT) level are found in hepatitis, cirrhosis and obstructive jaundice.

Practical Part

Alanine Transaminase Assay

Principle

Alanine Transaminase (ALT)

■ The rate of NAD⁺ formation is indicated by **decreased the absorbance at 340 nm** and it is <u>indirectly proportional to serum LDH activity.</u>

Method

Tube

ALT reagent

1 ml

Pre-warm at 37 °C for 3 minutes and add

Sample (serum)

 $100 \mu l$

Mix and incubate at 37 °C for 1 minutes, then read the absorbance at 340 nm against distilled water (blank) every minute for 2 minutes and determine $\Delta A/min$.

Measure enzyme kinetics using UV-visible spectroscopy:

1 2) Applications → 2) Simple Kinetics → wave length (340 nm) → 1) Seconds → Duration (120 sec = 2 min) →

Intervals (60 sec= 1 min) → Print Data Table (off) → Press start (2 times)

Results and Calculations

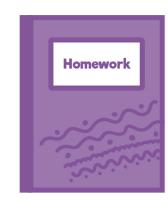
Results

	Time (min)	Absorbance at 340 nm
A_1	1	
A_2	2	
A_3	3	

Calculations

•
$$\Delta A_1 = A_1 - A_2$$
 $\Delta A_2 = A_2 - A_3$

$$\Delta A/\min = (\Delta A_1 + \Delta A_2) / 2$$


• ALT(U/L) =
$$\Delta$$
A x 1768

Normal Values

Males: **up to 42(U/L)**

Female:

up to 32(U/L)

Homework:

a. Name five plasma enzymes that can be used for diagnosis.