
# **Objectives**

- 1. To determine the blood group according to the **ABO** system.
- 2. To test for the availability of the **Rh factor** (**D antigen**).

## **Blood Group Substances**



- The differences in human blood are due to the <u>presence or absence</u> of certain protein molecules called **antigens** and **antibodies**.
- The antigens are glycoproteins located on the surface of the red blood cells.
- The **antibodies** are proteins present in the plasma to attack foreign **antigens**, resulting in clumping (**agglutination**).
- ABO blood grouping consists of:
  - 1. Two antigens (A & B) on the surface of the RBCs
  - 2. Two antibodies in the plasma (anti-A & anti-B)

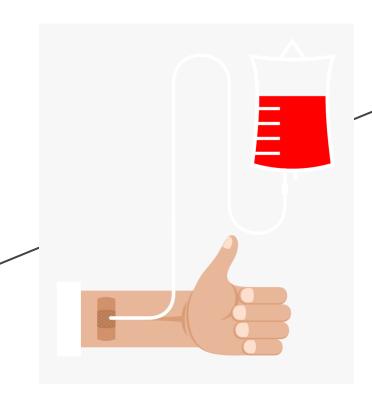


## **ABO Blood Type System**



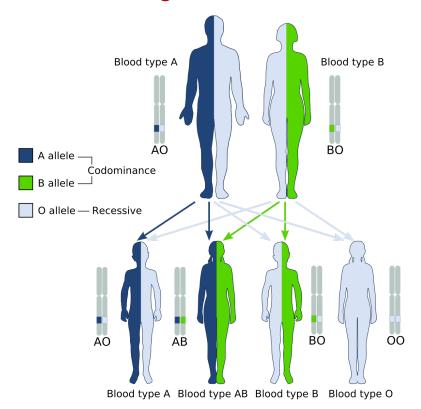
• The **ABO** blood type system is the **major** blood type classification system.

**Universal Donor** 


• The **four blood types** in the ABO system (**A**, **B**, **AB**, and **O**) refer to different versions of **glycoproteins** which are <u>present on the surface of RBCs.</u>

#### **Blood Types:**

| Type B  B-surface antigens  Anti-A  ype AB  A and B antigens  No antibodies  Universal Recipient | <b>Blood Type</b> | Surface<br>antigens | Plasma<br>antibodies |            |                     |
|--------------------------------------------------------------------------------------------------|-------------------|---------------------|----------------------|------------|---------------------|
| ype AB A and B antigens No antibodies Universal Recipient  No surface                            | Type A            |                     | Anti-B               | $\Diamond$ |                     |
| No surface                                                                                       | Type B            |                     | Anti-A               | 0          |                     |
| No surface A                                                                                     | Type AB           | A and B antigens    | No antibodies        | O          | Universal Recipient |
| antigens Anti-A and anti-B                                                                       | Type O            |                     | Anti-A and anti–B    |            |                     |


# **Importance of The ABO System**

- Blood group antigens must be determined to secure a safe practice of blood transfusion.
- They are also useful in determining familial relationships in **forensic medicine**.

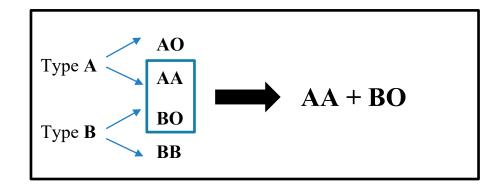


## **Genetics of Blood Types**

- Individuals inherit a gene which codes for specific antigen(s) to be added to the red cell.
- You have two copies of this gene, one inherited from your mother and the other inherited from your father.
- There are 3 versions 'alleles' for blood type: A, B and O.
- Since we have 2 genes, there are 6 possible combinations (genotypes).
- The A and B genes are dominant and the O gene is recessive.



| Father | Mother |    |    | Genotypes | Blood type |  |
|--------|--------|----|----|-----------|------------|--|
|        | A      | В  | O  |           |            |  |
|        |        |    |    | A+A       | A          |  |
| A      | AA     | AB | AO | A+O       | A          |  |
|        |        |    |    | A+B       | AB         |  |
| В      | BA     | BB | BO | B+B       | В          |  |
|        |        |    |    | B+O       | В          |  |
|        | OA     | OB | 00 | O+O       | О          |  |
| 0      | UA     | UB | 00 |           |            |  |


#### Codominance (AB blood group)

Is a condition in which the alleles of a gene pair in a heterozygote are fully expressed thereby resulting in offspring with a phenotype that is neither dominant nor recessive.

#### Let's assume a female with blood type A married a male with blood type B.

What is the possible blood type combinations of their children?

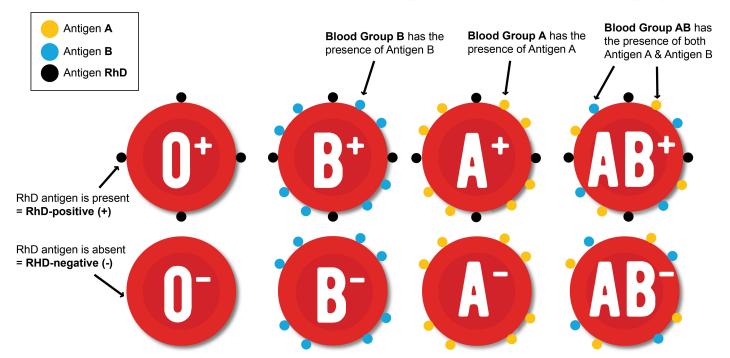
#### 1<sup>st</sup> Determine **genotype**:



3<sup>rd</sup> Children's **possible** blood types:

"AB and A"

2<sup>nd</sup> Determine combination using **Punnett square**:


|   | A  | A  |
|---|----|----|
| В | AB | AB |
| 0 | AO | AO |

| Genotypes | Blood type |
|-----------|------------|
|           |            |
| A+A       | A          |
| A+O       | A          |
| A+B       | AB         |
| B+B       | В          |
| B+O       | В          |
| O+O       | О          |
|           |            |




## **Rhesus Blood Group**

- First studied in <u>rhesus</u> monkeys.
- Is the <u>second most significant</u> blood group system in human transfusion.
- The D antigen (RhD) is the most important.
- If it is present on RBCs' surface, the blood is RhD positive (~80% of the population), if not it's RhD negative.



If people with **group** A have it, and will therefore be classed as A+ (or A positive), while the ones that don't, are A- (or A negative) and so it goes for groups B, AB and O.



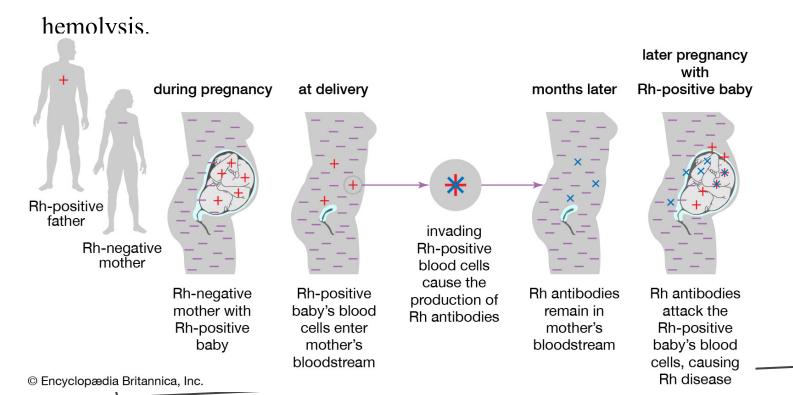
## **Rh Blood Group Transfusion**

- A person with Rh<sup>+</sup> blood can receive blood from a person with Rh<sup>-</sup> blood without any problems.
- A person with Rh<sup>-</sup> blood can develop Rh antibodies in the blood plasma if he or she receives blood from a person with Rh<sup>+</sup> blood, whose Rh antigens can trigger the production of Rh antibodies.

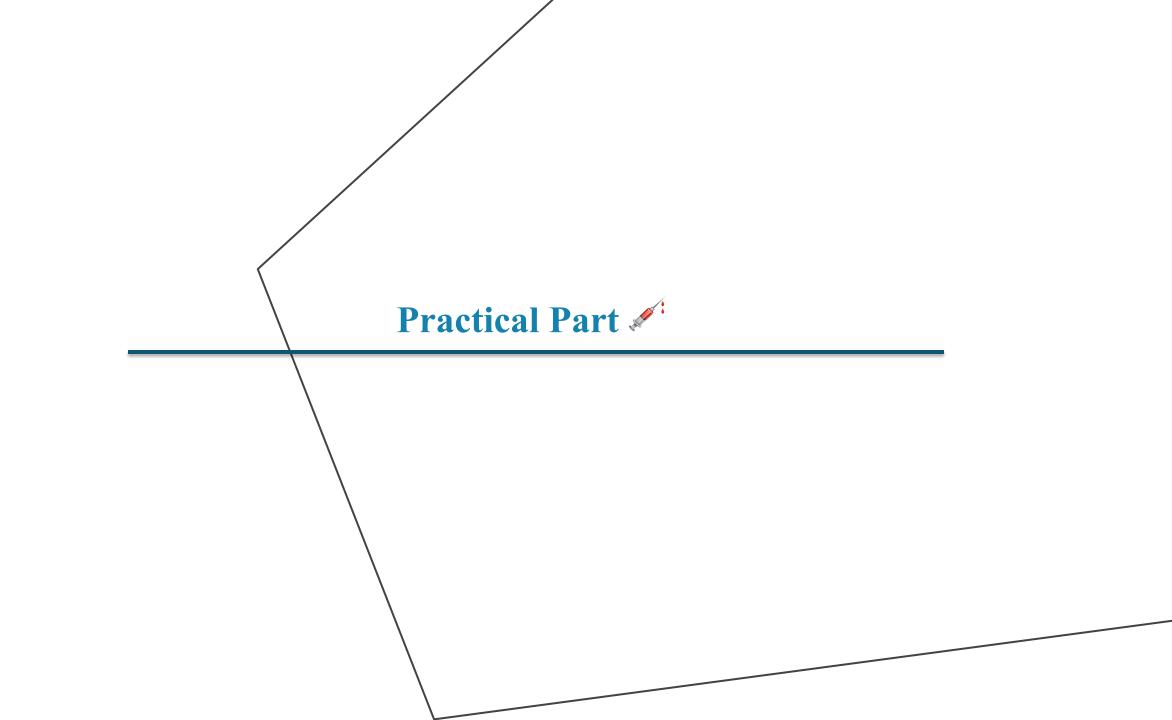
| Blood Type | Surface<br>antigens | Plasma<br>antibodies |  |  |
|------------|---------------------|----------------------|--|--|
| Positive   | D antigen           | No antibodies        |  |  |
| Negative   | No surface antigens | Anti-D               |  |  |

# **Blood Types Compatibility**

**Red Blood Cells Compatibility Table** 


| Recipient  | Donor |    |            |    |    |    |     |     |
|------------|-------|----|------------|----|----|----|-----|-----|
|            | 0-    | 0+ | <b>A</b> - | A+ | B- | B+ | AB- | AB+ |
| 0-         | 1     | X  | X          | X  | X  | X  | X   | X   |
| 0+         | 1     | 1  | X          | X  | X  | X  | X   | X   |
| <b>A</b> - | 1     | X  | 1          | X  | X  | X  | X   | X   |
| A+         | 1     | 1  | 1          | 1  | X  | X  | X   | X   |
| B-         | 1     | X  | X          | X  | 1  | X  | X   | X   |
| B+         | 1     | 1  | X          | X  | 1  | 1  | X   | X   |
| AB-        | 1     | X  | 1          | X  | 1  | X  | 1   | X   |
| AB+        | 1     | 1  | 1          | 1  | 1  | 1  | 1   | 1   |

**Universal Recipient** 

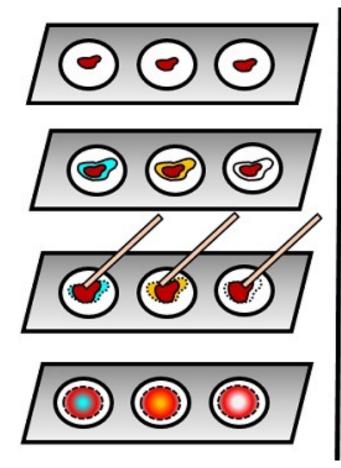

**Universal Donor** 

## Hemolytic Disease of The Newborn (HDN)

- Also called, **Erythroblastosis Fetalis** a **hemolytic anemia** in the fetus or neonate, caused by <u>trans-placental</u> transmission of maternal antibodies to fetal RBCs.
- Mother is Blood type Rh<sup>-</sup>, Father and fetus are Rh<sup>+</sup>.
- **First pregnancy** = Sensitization at delivery due to hemorrhage.
- Second pregnancy = Mother produce anti-Rh IgG antibodies that cross placenta to attack fetal RBCs leading to

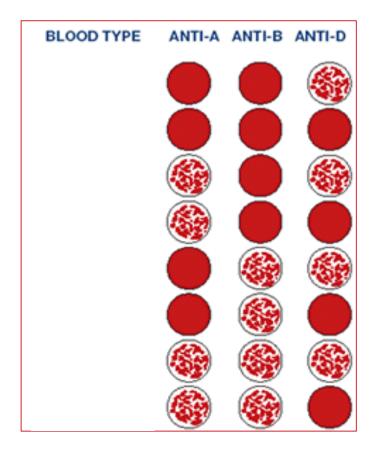


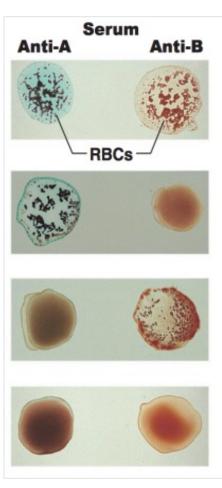





## **Principle of Test**

- The ABO and Rh blood grouping system is based on agglutination reaction.
- Agglutination is the reaction between antigens present on red blood cells and antibodies present in serum resulting in visible clumping.
- **Agglutination** occurs if an <u>antigen is mixed with its corresponding antibody</u>, i.e. occurs when A antigen is mixed with anti-A or when B antigen is mixed with anti-B.





#### **Procedure**



- 1.Add three drops of blood in a clean glass slide
- 2.Add antisera A, B and D sequentially to the 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> drop of blood
- 3.Properly mix the antisera with the blood by separate toothpicks
- 4.Allow to stand for 2-3 minutes and note down the result on the basis of clump formation

#### **Results**





- If the agglutination occurs in the RBCs to which anti-A is added, then the blood group is 'A'.
- If agglutination occurs in the RBCs to which anti-B is added, then the blood group is 'B'.
- If the agglutination occurs in the RBCs to which **both** anti-A and B is added, then the blood group is 'AB'.
- If there is **no agglutination occurs** in the RBCs, then the **blood group** is 'O'.
- If the **agglutination occurs** in the RBCs to which **anti-D** is **added**, then the blood type is **positive** (+) whereas if **no agglutination** occurs in the RBCs to which anti-D is added, then the blood type is **negative** (-).

### Homework

- Does blood type change with a bone marrow transplant in case of leukemia patients?
  If yes, why?
- How many human **blood group systems** are there? *Name five*.