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1 The Riemann Integral

1 Definition of The Riemann Integral

Definition 1.1.

1. A finite ordered set o = {zg, ..., 2, } is called a partition of the interval

[a,b] if a = zg < ... < x,, = b. The interval [z;,2;41] is called the 4th

subinterval of o.

2. If o = {xo, ... ,x,} is a partition of the interval [a, b], we define the norm
of o by:
lloll = sup  xj41 — ;.
0<j<n—1

3. A partition o, = (xq, ... ,z,) of the interval [a,b] is called uniform if
b—a
—

b—
(zx =a+ k—a). In this case ||o]| =
n

4. A partition o1 = {xg, ... ,xz,} is called finer than a partition oo =
{vo, -+, ym} i {yo, - ,ym} C {zo, ... , 2} and we denote oy < 07.

5. If o1 = {xo, ... ,xn} and o2 = {yo, ... ,Ym} are two partitions of the
interval [a,b], we define the partition o7 U oy defined by ordering the
points {Yo, -+ , Ym, L0y « -« , Tn }-

Definition 1.2.
Let f: [a,b] — R be a bounded function. Define

Mj= sup f(z), my= _inf f(2),
z€[w;,Tj41] z€[zj,j41]
n—1 n—1
U(f,0) =Y Mj(xj41— ), L(f,0) = mj(zje1 — ) (1.1)
=0 =0

The sums U(f,0) and L(f, o) are called respectively the upper and the lower
sums of f on the partition o. (Note that L(f,o0) < U(f,0).)

9



Lemma 1.3.
Let o1 = {zg, ... , 2} be a partition of the interval [a,b], o2 = {a,y,b} with
y €la, bl and f: [a,b] — R a bounded function, then

L(fa 0) S L(fa 01) S U(fa Ul) S U(f70)7 (12)
where 0 = 01 U 0.

Proof .
The proof obvious if y € o1. Suppose now that y G]mj,xjﬂ[ we have

L(f,o1) = Zz o(xz+1 zi)m; + (zj41 — x5)m; + Zz ]+1(x1+1 Ti)m;,
U(f,01) = XiZg (wiga — ) M; + (w41 — 25) My + 3070 (wig1 — i) M; and

j—1
L(f,o) = Z(%‘H—mi)mi+(y—xj)x€1]gfy[f()
i=0 7
n—1
+ (xi4e1 — inf )+ Tig1 — T;)My.
(Tj+1 y)xe]y,xmf() i;j;rl( +1— T)
j—1
U(fo) = Z(mi+1_$i>Mi+(y_$j) sup f(x)
i=0 z€lx;,y|
n—1
+ (rip—y) sup @)+ Y (wipr — )M
ze]y,wj+1 i=j+1

But m; < inf,ep,; 0 f(2), my < infoqy o f(2), My > sup,e,, , f(2) and
M;j > sup,eyy ., f(2). This yields that L(f,o) < L(f7 o1) and U(f,o1) <

U(f,o O
Corollary 1.4.
If oy is finer than oy and f: [a,b] — R is a bounded function, then
L(f,02) < L(f,01) < U(f,01) S U(f,02) (1.3)
Proof .
t
Theorem 1.5.

If f:[a,b] — R is a bounded function and o7,09 are two partitions of the
interval [a, b], then L(f,01) < U(f, 02).



Proof .

L(f,01) < L(f,01Uoz) <U(f,01 Uoy) <U(f,02). a
Definition 1.6.
Let f: [a,b] — R be a bounded function, P([a,b]) the set of partitions of
[a, b], then we define respectively the upper and the lower integral of f on the
interval [a, b] by:

U(f) = inf U(fva)a L(f) = sup L(fva)'

o€P([a,b]) oeP([a,b])
U(f) and L(f) are called respectively the upper and the lower Darboux sums
of f on the interval [a, b].

Definition 1.7.
Let f: [a,b] — R be a bounded function. The function f is called Riemann
integrable on the interval [a,b] if U(f) = L(f).

If f is Riemann integrable on the interval [a, b], we denote / f(x)dz =U(f) =

L(f) and called the integral of f on the interval [a, b].
The set of Riemann integrable functions on the interval [a,b] is denoted by

P ([a,b]).

Remark 1 :
Let f:[a,b] — R be a bounded function. If there exists a partition o of
[a,b] such that U(f,o) = L(f,0), then f is Riemann integrable on [a,b] and

/ f(z)dz = U(f.0)
This is because L(f,0) < U(f) and L(f) < U(f,0).
Example 1.1 :

1. Any step function on an interval [a, b] is Riemann integrable. Indeed let
o= (x0 =a,...,z, = b) be thepartition of [a,b] associated to f. If
f(x) =c¢jonz;,xj41], then M; =m; =c¢; and U(f,0) = L(f,0) and f
is is Riemann integrable.

2. Let f be the caracteristic function of Q@ N [0,1]. For any partition o of
[0,1], L(f,0) =0 and U(f,o0) = 1. Then f is not Riemann integrable.
1.1 Criterions for the Riemann Integrability

Theorem 1.8. [Riemann’s Criterion]
Let f: [a,b] — R be a bounded function. The following statements are equiv-
alent

1. f is Riemann-integrable.



2. Ve > 0; there exists a partition o such that U(f,0) — L(f,0) < e.

NC: If U(f) = L(f), then V ¢ > 0, there exists a partition o such that 0 <
L(f,0) < § and there exists a partition o’ such that 0 < U(f,0’) —
5. Then 0 < U(f,oU0o") =U(f) < U(f,0') =U(f) < 5. Also
SC: L(f,0) < L(f) < U(f,0) and L(f,0) < U(f) < U(f,), then 0 <
U(f)—L(f) <U(f,0) — L(f,0) < e, for all € > 0. Hence U(f) = L(f). O
Theorem 1.9. [Darboux’s Criterion]
Let f: [a,b] — R be a bounded function. The following statements are equiv-
alent

1. f is Riemann-integrable,

2. For all € > 0; there exists § > 0 such that for all partition of the interval
[a, ] such that if ||o]| < § then U(f,0) — L(f,0) <e.

Recall the notion of oscillation of a function on an interval.

Definition 1.10. [Oscillation of a function]
The Oscillation of a function f: I — R at a point a € [ is defined by

we(f) = }i_r>1(1)sup{|f(y) —f(2)|; v,z €la—r,a+r[NI}.

If f is bounded, the oscillation of f on the interval [a, b] denoted by O(f, [a, b])
is defined by sup f(xz)— inf f(x).
z€[a,b) z€la,b]
Note that w,(f) > 0 and f is continuous at a if and only if we(f) = 0.
Moreover, if f is bounded then w,(f) < O(f,[a,b]).

Proof .

The condition is obviously sufficient.

NC: Let f be a Riemann integrable function (we assume that f is not con-
stant), so V ¢ > 0 there is a partition 0 = (9 = a, ... ,x, = b) such that
U(f,o0) — L(f,0) < e. Weset M = O(f,[a,b]) the oscillation of f on the

interval [a,b], a1 = niM’ Qg = 03}2271(%4_1 —z;) and o = min(a1, a2). That
iso’ = (yo=a,...,ym = b) a partition of [a,b] such that |¢/| < a. There

are at most n intervals |y;_1,y;[ which contain ;. The others are contained in
intervals |z _1, z;[. We denote

M; = sup f(z), Mj= sup f(z),
€]y ,Y;+1l w€lwj,zj1]
m; = inf  f(z) etm;= inf f(z).

z€lY;,Yj+1[ z€lz;,@j41[



U(f’ OJ) - L(f’ 0/) = Z (yj+1 - y])(Mg/ - m;)

1y yi+1[Clei,zipr]

+ > Wi — ) (M) —m))

T €]Y;,Y5411
It follows that
n—1
U(f,0) = L(f,0") < > (wip1 —2:)(Mi —my) +naM
i=0

= U(f,0) = L(f,0) + naM < 2e.

Proposition 1.11.
b

Let f be a Riemann integrable function and I = | f(x)dx. ThenV e > 0 there
exists a > 0 such that for all partition o of [a, b] with loll < a, [U(f,o0)—I|<e
and |L(f,0) —I| <e.

Theorem 1.12.
Any monotone function on an interval [a, b] is Riemann integrable.

Proof .

Suppose that f is increasing. Let ¢ = (xg = a, ... ,x, = b) be a partition of

[a,b] and o = [|o|| = supy<j<p1(Tjt1 — ;).

U(f, O') - L(f, 0) < Ck[(Mo - mo) +...+ (Mn,1 — mn,l)].

TM}z = SUPze]mj,ijrl[f(x) < f(ijrl) and m; = infme]mj,xjﬂ[f(x) > f(xj)
en

n—1

U(f,0) = L(f,0) <a ) (f(zj11) = f(z5)) < a(f(b) = f(a))-

J

Il
<

For € > 0, we take a partition o = (xg = a,...,x, = b) of [a,b] such that

(f(b) = f(a)) sup (zj41—a5) <e.
0<j<n—1
We get: U(f,0) — L(f,0) <e. Then f is Riemann integrable. a

Theorem 1.13.
Any continuous function on an interval [a, b] is Riemann-integrable.



Proof .

Let f be a continuous function on an interval [a, b], then f is uniformly contin-
uous. Hence Ve >0, 3a > 0suchthat |f(z) — f(2')| < 3= forall [z—2'| < a.
Let o = (¥9 = @, ... ,Tm = b) be a partition of [a, b] such that supg< <, 1 (71—

r;) < a. As f is continuous on [a,b], there exists 2’ and x;-, in [z;,241]
such that M; = f(z}) and m; = f(x;-l); |2

L= x| < |zjp1 — x5 <, then
Mj —m; < =. We deduce that

n—1 n—1
€
0<U(fi0) = L(fi0) < ) _(wj41 — 2;)(M; —my) < 3— D (@i —xj) =e.
j=0 =0
g
Definition 1.14.
Let 0 = {xog, ... ,2,} be a partition of the interval [a,b]. We say that o =
{ag, ... ,ap_1tisamark of 0 if VO < j <n-—1, a; € [z, zj41].
We define
n—1
U(f,0,0) = flog) (@i — ;)
3=0
called the Riemann sum of f on the partition ¢ with respect to the mark «.
Remark 2 :
1. Let f be a Riemann integrable function on the interval [a,b]. If o =
{zg, ... ,xn} a partition of [a,b] and 7 = (A1, ..., \,) a mark on o, then
n—1
the sum R(f,0,7) = Z(xjH — ;) f(A;) verifies
3=0

U(f,0) < R(f,0,7) < L(f,0).

Then V € > 0 Ja > 0 such that for all partition o such that ||o|| < a and
for all 7= (A1, ..., Ay) a mark on o, we have: |R(f,o,7) —I| <e.

2. The same result is obtained if we replace f();) by any constant y;, with
mj < pij < Mj.

3. If f is Riemann integrable on the interval [a, b], the sequence (S,,),, defined
by:

Sn:biaZf(a+kbia)

n n
k=1



b
converges to/ flx)dx

Proposition 1.15.
A function f is Riemann integrable if and only if
Y € > 0, there are two step functions on [a,b] f. and g. such that f. < f < g.

and [ (g — fe) de <e.

1. If f is Riemann integrable, then V € > 0, there exists a partition o of
[a, b] such that U(f,0) — L(f,0) < e. We take fe = m; and g. = M; on
|z, xiva| and fo(x;) = ge(z:) = f(z;) forall 0 <i<n—1.

2. Conversely: Let e > 0 and o a partition of [a,b] associated to both f.
and g.. fe < f<ge..

b
0 < U(f.0) — L(f,0) < Ulger0) — L(fo.0) = / (9o — f.) dz < <. So f

is Riemann integrable.

O

1.2 Properties of the Riemann Integral
Properties 1.16.

1. Linearity: /: (f +Bg)(z x—a/f dm-l—ﬁ/

b
2. If f >0, then / f(z)dxz > 0.

b
3. If f <g, then/ f(z dm</ g(x)dx.

/f da:‘</|f )|dz.

5. If m < f(z) < M, for all x € [a,b], then

mb—a) < / f(z)de < M(b—a).



Theorem 1.17.

A bounded function on an interval [a, b] is Riemann-integrable if and only if it
is Riemann-integrable on [a, c] and on [¢,b], for all ¢ € [a,b]. Moreover if f is
Riemann-integrable on [a, b], then

/abf(x) dr = /:f(x) dx+/cbf(x) dz. (1.4)

(This identity is called the Chasles identity)

Proof .
Assume that f is Riemann-integrable on [a,b], so V & > 0, there exists a par-
tition o of [a,b] such that U(f,0) — L(f,0) < e. Let ¢/ = o U {c}; then
U(f,o') = L(f,0') <U(f,0) — L(f,0) < e. Consider ¢/ = o1 U o, with 01 a
partition of [a, ¢] formed from the points of ¢’ in [a, ¢] and o9 a partition of [c, b]
formed from the points of ¢’ in [¢,b]. It follows that U(f,01) — L(f,01) < ¢
and U(f,02) — L(f,02) < e. So f is separately Riemann-integrable over [a, c|
and [c, b].

If f is separately Riemann-integrable over [a, ¢] and [¢, ], so V & > 0, there is
a partition oy of [a, ¢] and a partition o3 of [¢, b] such that U(f,o1)—L(f,01) <¢
and U(f,02) — L(f,02) < e. The set ¢ = 01 U oq is a partition of [a,b] and
U(f,0) — L(f,0) < 2¢, which proves that f is Riemann-integrable on [a, b].

Consider for a Riemann-integrable function f on [a,b] the numbers: I =

/f ) de, I) = /f ) dz and I = /f ) dz.

Ve > 0, there exists o >0 such that for any partitions o of [a, b], o1 of [a, ] and
oy of [c, b], with (||o]| < @, ||o1]] < a and ||o2|| < a we have: |U(f,c) — I| <
g, |[U(f,01) — I1] < ¢ and |U(f,02) — Is| < e. We consider the partition
o' = o1 Uoq, |0 < «, [U(f,0") = I| < & similarly |U(f,0') — I — Iz| <
|U(f7 51) — Il| + IU(f, SQ) — IQ| <2.Sol=1+ 1.

t

Remark 3 : .
a
By convention if b < a, we set / f(z) dez = —/ f(z) dx
b a

Exercise 1.1 :
Compute the following integrals:

1. F(z) = / |z — t|sintdt for z € R.
0

2. F(z) = / |z — t|sintdt for x € R.
0

Solution



1. Iz <0, F(x):/ (t — x)sintdt =7 — 2.
0

If0 <2 <, then F(x) = / (x—1) sintdt—l—/ (t—z)sintdt = m—2sinx.
0 T

If > 7, then F(z) :/ (x —t)sintdt = 2z — 7.
0

2. If x <0, then F(z) = / (t —z)sintdt = 7 — 2z.
0
If0 <z <, then F(x) = / (x—t) SintdtJr/ (t—z)sintdt = m—2sinx.
0 T

If © > 7, then F(x) = / (x — t)sintdt = 2z — .
0

Definition 1.18.

A function f defined on an interval [a,b] is said to be piecewise continuous if
there is a partition 0 = (xg = a, ... ,x, = b) of [a, b] such that f is continuous
on each open interval |z;, x;11] and f admits a right limit of z; for all 0 < ¢ <
n — 1 and a left limit of x;41 for all 1 <1i <mn.

Exercise 1.1 :
Show that any piecewise continues function on an interval [a,b] is Riemann
integrable.

Theorem 1.19.
The space of Riemann-integrable functions on [a, b] is a vector space on R.

Theorem 1.20.
If f is Riemann-integrable on an interval [a, b], then |f| is too.

Proof .
Let [¢,d] C [a, b].
e If f is non negative on [c,d], then sup|f| = sup f and inf |f| = inf f.

le,d] [e,d] [c.d] [c,d]
e If f is non positive on [c,d], then sup |f| = — inf f and inf |f| = —sup f.

le,d] [e.d] [e.d] le,d]
e If f has no constant sign on [¢,d], then sup f > 0 and inf. 4 f < 0.

[c,d]
It follows that sup|f| = max(sup f, — [ini] f). We deduce that in all cases
[c,d] [c,d] &

sup f| — iuf |f] < sup f — inf [, which gives that U(\f].0) — L(l.0) <
[e,d] = [e,d] =
U(f,o) — L(f,0), for any partition o of [a,b]. It results that |f| is Riemann-
integrable. a
Proposition 1.21.
If two functions f and g are Riemann-integrable on a interval [a,b], then
sup(f, g) and inf(f, g) are Riemann-integrable.



Proof .
sup(f,g9) = 5(f +9+|f —gl) and inf(f,9) = 5(f +g—|f —g)). O
Theorem 1.22.

The product of two Riemann-integrable functions is a Riemann-integrable func-
tion.

Proof .

It suffices to prove the result for two non negative functions. Let f and g be two
non negative Riemann-integrable functions on [a, b]. Let M be an upper bound
of f and g over [a,b]. For any a partition o of [a,b], U(fg,0) — L(fg,0) <
MU(f,o) = L(f,0)) + M(U(g,0) — L(g,0)). It follows that f.g is Riemann-
integrable. O
Theorem 1.23.

Let f be a non negative Riemann-integrable function on [a,b]. Then for all
a > 0, the function f*(z) is Riemann-integrable.

Proof .
Let € > 0, there is a partition o = (29 = a, 21, ... ,z, = b) such that:
n—1
Z(.’Eprl — xz)(Ml — mi) <eg,
i=0
with
M;= sup f(x) etm;= _inf f(x).
w€lwi,mig] z€]wi,Tita|

Note that ¥V t € [0,1]; 1 — t* < (1 — ¢) sup(1, @), which gives that

M —m < (M; —m;) M sup(a, 1).
Ifa>1: MM < M* ! with M = sup f(x). In this case, we have:

z€[a,b]
n—1
D (@iv1 — x) (M —mf) < aeM*,
i=0

which gives the result in this case.
If a < 1andif M; <e we have: M —m§ < ¢* and if M; > ¢ we have:
M~ < £271 which yields

n—1 n—1 n—1
Y @i —x) (M —m$) < > (g1 —w)e® + (i1 — x3) (M — my)e™ !
1=0 1=0 1=0

n—1

= (b—a)e™ 7! Z(xiH —x)(M; —m;) <e*(b—a+1).
i=0



In general, we have the following theorem:
Theorem 1.24.
Let f: [a,b] — [c,d] be a Riemann integrable function and ¢: [¢,d] — R a
continuous function. Then ¢ o f is Riemann integrable.

Proof .

Let e > 0, we will construct a partition o = (xg = a,x1, ... ,x, = b) of [a,b]
such that: U(po f,0) — L(gpo f,0) <e.

The function ¢ is uniformly continuous on [¢,d] and bounded, then there is

M > 0 such that |p(z)| < M, Vz € [¢,d] and if &' = , there is

2M + (b—a)
0 < a < ¢’ such that for |z — y| < a, |p(z) — @(y)| < &, for all z,y € [e,d].
Since f is Riemann-integrable on [a,b], there exist a partition o = (zg =
a,xi, ... ,xy, =b) of [a,b] such that:

U(f,o0)— L(f,0) <o (1.5)

Let M; = sup{f(x); = € [xja%“jﬂ]}a m; = inf{f(z); @ € [xj,2;1]}, M; =
sup{p o f(z); = € [z, 2j41]}, My = inf{po f(z); x € [z, 7j41]}.

We denote J; = {0 < j <n—-1; Mj—m; <aetJy={0<j<n-1; Mj—m,; >
a.

If j € Ji, then by the uniform continuity of o f, we have |po f(x)—po f(y)| < &’
for all z,y € [z}, z;41], which yields M; —m; < ¢, then

> (M — ) (w1 — ;) < €'(b—a). (1.6)
JE€J1

By (6.1),

o > Y (M —my) (i1 —xj) > Y (541 — ;).
jeJ2 JjEJ2
Then Z (zj41 — x;) < a < & and since M; —m; < 2M, we have:
JEJ2
D (M =) (w0 —ay) S2M Y (2540 —x;) < 2Me, (L.7)
Jj€J2 Jj€J2
It results by (6.2) and (6.5) that

n—1

Ulpo foo) = Lipo fo) = Y (Mj— i) (zju1 —a;) < '(b—a) +2M) = .

§=0
O
Remark 4 :



1. The integral of a non negative Riemann-integrable function is a non neg-
ative real number.

2. If f is Riemann-integrable on [a, b], then
b b
[ g dal < [ 1@ de < 6 —a) s ()
a a x€E|a,

Corollary 1.25.

If f is Riemann-integrable on [a,b], then the function F(z / f() dt is
continuous on [a, b].

Proof .

F(z)— / f(t) dt. Since f is bounded on [a, b], there exist M > 0 such
that|F() ()|<M|x—y| a

Corollary 1.26.
Let f be a Riemann-integrable function on [a,b]. If m = inf,c[, 4 f(2) and
M = sup,¢(q) f(), there exist A € [m, M] such that

1 b
= | fe) o=
Proof .

b
1
We have: m(b—a) < / f(x) dx < M(b—a), then 5o

b
a/ f(z) do € [m, M].

Corollary 1.27. [First Mean Value Formula|
Let f and g be two Riemann-integrable functions on an interval [a, b]. Assume
that f is continuous and g has a constant sign on [a,b]. Then there exists

¢ € la, b] such that
b b
[ @tz = 1) [ o) a.

Pro%f . .
If/ g(z) de =0, then/ f(x)g(x) de = 0.
a 1 b
If/ ) dz # 0, we set g1 = —————g, then / g1(z) dz = 1 and
[, 9(x) dx a
if m = 11[1fb}f(x) and M = sup f(z), there is A\ € [m,M] such that
z€la, z€la,b]

b
/ f(x)g1(x)dx = .



O

Theorem 1.28. [The Fundamental Theorem of Calculus]
Let f: [a,b] — [c¢,d] be continuous function, then the function F' defined by

F(z) = / f(t)dt
is differentiable and F'(z) = f(x).

Proof .
For x € [a,b] and h € R* such that « + h € [a, ]].

F(x—&—h}z—F(x) _ }t(/j*hf(ﬂ dt_/:m) dt)
(c)

1 x+h

- o rwa= e

where ¢ € [z,2 + h] or ¢ € [x + h,z]. Since f is continuous, }llilr%) f(c) = f(x).
—

Then F'(z) = f(x). ad

Corollary 1.29.

Let f: [a,b] — R be a differentiable function and f’ is Riemann integrable,
then

b
/ f(@)dz = f(b) - (a).

Theorem 1.30. [The Cauchy-Schwarz Inequality]
Let f and g be two Riemann-integrable functions on an interval [a, b], then

(/abf(x)g(x) dr)* < /:f"’(a:) da:/ang(x) dz.

Proof .
Let A\ be a real number.

b b b b
P()) :/ (f(z)+Ag(x))? do = )\2/ g*(x) dm—i—?)\/ f(z)g(x) dx+/ f(z)? dz

b
It / g*(z) dr > 0, P(\) is a non negative polynomial. It follows that its

a
discriminant is non positive, which gives the desired inequality.

b b
If/ g*(x) dz = 0, P(\) > 0, then / (f9)(x) dz = 0 and the inequality holds.
a a



Corollary 1.31. [Minkowsky Inequality]
Let f and g be two Riemann-integrable functions on an interval [a, b], then

b . b N b L
([ 1ot )t < () gt ([ o) )
Proof .

/ (f(x) +g(x))? dx:/abe(x) daH—/ang(x) dx+2/abf(x)g(x) dz. By the

C%uchy—Schwarz inequality we have

Nl

(/f(f() 9(@))? dl’2</f2 ) do)? + (/abgz<x)dx)%.

Remark 5 :
If f is a non negative Riemann-integrable function and / f(x) de =0, then

/ f(z)g(x) de = 0 for all Riemann-integrable function g. In particular

b
/ fYz) dz =0, Va > 0.

Theorem 1.32. [Holder Inequality for Integrals]
Let f and g be two non negative Riemann-integrale functions on an interval
[a,b]. Then for all conjugate positive numbers p, q, (% + % = 1) we have:

/ ’ Falgo) do < ( / ) ao) / gty )
Proof .
b

b
If/ fP(x) de =0or / 9(x) dx = 0, the result is trivial.
a a

g
b b
If/ fP(x) dx # 0 and / g4(z) dz # 0, we set fi(z
a a / f2(t) dt) 1/p

(x)
and g1(z) = bg—, we get P(z) de = | gi(x) dv = 1. From
([ g0 v [ [

the convexity of the function ¢ — ¢? on |0, +oo[, for p > 1, we get ff'g

11
P q
91

1 1
—f1+ —g1. We deduce the desired result.
p q

/ab f(@)g(x) dx < (/ab 17(z) da:)é(/abgq(x) dx)%_



O

Theorem 1.33. [Second Mean Value Formula]
Let f be a decreasing non negative continuous function on the interval [a, ]
and let g be a Riemann-integrable function on [a, b]. Then there exists ¢ € [a, b]

such that
b C
[ 1@0@) iz = 1@ [ o(e) d

Proof . .
Consider the function G(x) = / g(t) dt. G is continuous on [a,b]. Let m =

infgerep G(x) and M = Supg:e[zb] G(z). To prove the theorem it suffices to

prove that mf(a / f(x)g(x) de < Mf(a). Let 0, = (xp = a, ... ,2,) be
b—
the uniform partition of [a,b] i.e. 241 —x; = T’ T =a+ j— We set
), = G@ip1) = Glzi)
‘ Ti41 — X4 .
n—1 b
Jim Y i = ) (o)) = [ S@)g(e) do
=0 a
n—1 n—1

(ig1 — @) (M; —my)

]
8
+
=
|
8
=
~—
)
N
—
o
—~
&8
|
>
<
IA
=
)
~—

i=0 i=0
= @Ulg.00) - Lig.ow) 5 0.
with M; = sup g(t) and m; = _inf  g(¢). It results that
te]xi,ac,Jrl[ t€lzi,wita|
b
i Z F@)(G () = 6e) = [ F(alote) de
n—1 n—1 n—1
D @) (Glzie) - Glay)) = Zf 2)G(wip1) = Y f(2:)G(x)
i=0 =0
n—1
= D _(flwi) = f@))G(:) + f(wn1)G(O).
i=0

Since f is decreasing and non negative, we deduce



IA
=
—

8
3

|

i
N—
+
=
g

|

I
N~—

|

=
5

Then

b
mf(a) < / f(@)g(z) dz < Mf(a).
Corollary 1.34.

Let f be a monotone continuous function on an interval [a,b] and let g be a
Riemann-integrable function, then there exist ¢ € [a, b] such that

/ab f(@)g(z) dz = f(a) /acg(:r) dz + f(b) /Cbg(x) dr.

Proof .
We can assume that f is increasing. We use the previous theorem to the
functions h(z) = f(b) — f(z) and g. O

Theorem 1.35.
Let f be a Riemann-integrable function on the interval [a, b].

1. If lim f(x) = s exists, then the function F(x) = / f(t) dt is dif-

x—t,(z>t)
ferentiable at the right of ¢t and F’(t+) = s.
2. If li{n : f(x) = s exists, then the function F is differentiable at the
z—t,(z<t

left of t and F'(t—) = s.

Proof .
1. For € > 0, there exists a > 0 such that |f(z) —s| < ¢, for all z €]t, ¢+ af.
If u € [t,t + «], then |/ (f(x) —s) dz| < e(u—1t) and |F(u) — F(t) —

t
s(u—t)| < e(u —t). Hence %

- )—s\ga.

2. With the same arguments we get the result.



Theorem 1.36.

Let f: [a,b] — R be a continuous function and w: I — [a, b] a differentiable
function. Then the function F(z) = / f(t) dt is differentiable on I and

F'(x) =u/(z)f(u(x)), for all z € I.
Proof .
Let G be an antiderivative of f such that G(a) =. Then G ou = F and
Flx) = (Gou)(z) = G'(u(x)).u'(z) = f(u(z))v(z).
t

Theorem 1.37. [Integral by Substitution]
If g is continuously differentiable (C') on [a,b], and if f is continuous on

g([a,b]. Then
g(b)
/ ) do = / fogl(t
g(a
Proof .
g9(t)
Lot F(t) = [ f(a) do, Gt /'fog ) do, G'(t) = g'(8)f o g(),
g(a)
F(a) =G(a) =0and F'(t) = ¢'( . Then F’ = G’ on the interval [a, b]
and F = G on the interval [a b] ad
Example 1.2 :

a

1. If the function f is even, then / f@t) dt = 2/ f(t) dt and if f is odd,
0

then ft) dt =
a+T

2. If the function f is T—periodic, with T > 0 on R. Then / f@) dt =

a

/ f(t) dt, for all a € R.

/ 1) di = /f dt+/ f(t dt+/ ot Then/TaJrTf(t)dt:

/ f(t) dt, (substitution t =T + x).
0

Theorem 1.38. [Integration by Parts]
Let f and g be two continuously differentiable functions (C') on an interval

I, then
/?@wmwmzﬂmmm—/fuwuwm



Moreover if [a,b] C I, then

b
/ fa = F()g(b) — f(a)g(a) - / F(@)g(z) dx

Example 1.3 :

1 2 1 1 1 2
/ stan~ zdr = 2 tan™! x} - f/ Y =T

Theorem 1.39.
Let f and g be two functions of class C™ on an interval I, then

S
N

JECTAL dw—Z< 7P @)y @)+ (1) [ g(o)f (@)
Proof .

n—1 n—1

(D@ @) = Y @) )
p=0 p=0

n—1

+ 3 (1P (@) ()

= @)y )

p=0

Z )9 (z)
)9

= ( (@) = (=1)"g(2) f " ().

O

Theorem 1.40. |[Taylor Formula with integral Reminder]
Let f be function of class C"*! defined on an interval I in R. For a and x in
I, we have:

+Z O 0(a) 1 / ' (x(;)t!)nf("“)(t)dt.

Proof .
We apply the theorem (1.39) to the function f and the function g(t) =
O

(x —t)" !
(n—1)! "



1.3 The Lebesgue Theorem

Definition 1.41.
A subset F C R is said to be a null set (or a set of zero measure or a negligible

set or zero set) if for any € > 0 there is a countable number of open intervals
+oo

(Jan, b [)n such that Z(b” —ap[< e and E C U an, by).
n=1
Theorem 1.42. [Lebesgue’s Theorem on Riemann Integrable Functions|
A bounded function f: [a,b] — R is Riemann integrable if and only if the set
of discontinuity points of f is a null set.

Proof .
Let D = {z € [a,b] : f is discontinuous at z}. We have

+oo

D = {x € [a,b]; wo(f) >0} = | J{= € [a,0]; wa(f) >

n=1

1.

1
n

Let D,, = {z € [a,b]; w,(f) > 1}. Note that D is a null set if and only if each
D, is a null set.

Now assume that f be Riemann integrable on [a,b]. Let & € N and ¢ >
0 arbitrary. Since f is Riemann integrable, there exists a partition o =
(zo,21,...,2,) of [a,b] such that

n
U(f,0) = L(f,0) = > (My —my)(zx — 1) <&,
k=1
Let Jk = {] S}Ij_l,lij[ka 7£ @}
If J, = 0, then Dy C {zg,21, - ,2,}, hence Dy is finite and then it is a
null set. Otherwise, for each j € J, there exists t € DyN]x;_1, ;[ and hence
% < w¢(f) < M;j —m;. Thus we have

S g =) € S0 (M = my) (g - ) < ¢

JEJI) JjEJk

and hence Z (¢j—xj_1) < ke. Then Dy \o C U Jzj—1,x;[, where Z (xj—
JE€Jk JE€JIx JEJTk

xj_1) < ke. Since ¢ is arbitrary, Dy \ o is a null set. Thus D C (D \o)Uo

is a null set.

Conversely if D is a null set, to show f is Riemann integrable, we take an

arbitrary € > 0. Since D is a null set, there is a countable family of open
+oo

intervals (I; =la;,b;[); such that Z(bj —aj) <eand D C U1, For all
j=1



x € [a,b] \ D, w;(f) = 0 and hence by definition there exists an open interval

J containing x such that sup{|f(y) — f(2)|; y,2 € J» N[a,b]} < e.

The set F = {I;; j € N}U{J,; « € [a,b]\D} is an open cover of the compact set

[a,b]. So F has a finite subcover ' = {I;; j =1,... mpU{Jy; j=1,...,p}

Let o = {to,t1,...,tn} Wwith a =tg < t; < --- < t, = b be the partition of [a, ]

determined by those endpomts of (I )1<J<m and (Jz,)1<j<p which are inside

[a,b]. Also let M; = sup  f(t), mj = inf f(t) and §; = t; — t;_1,
teltj—1, t;] teltj—1, L

j=12,...;nand |f(x)| < M.

Then for each j € {1,2,...,n} theinterval |¢;_1,¢;[ is contained in some Iy, 1 <

k < m or some J,, 1 <k <pandlet J = {j; |t;_1,t;) C I for some k =

1< m}.

Note that if j ¢ J then |t;_1,¢,;[C J,, for some k=1,2,...,p and

My, — my, < sup{|f(t) — f(s)|; t,s € Jy, N]a,b]} <e. Then

n

U(f,O')—L(f,O’) = Z(Mj_mj)aj

=1
= Z( —m] 5 +Z —m] t —tj_1>
Jjeg igT
S Z 2M j 1 + Z
JjeJ JE€T
< Z2M(bjfaj)+(bfa)s
JEA
< ) 2M(b; +(b—a)e
jeN

< 2Me+ (b—a)e=(2M +b— a)e.

can be made arbitrary small. Hence f is Riemann integrable on [a, b].

1.4 Exercises

Let f be a function of class C! on [a,b] C R. For n € Nand a; = a+i 22
for i € [0,n], compute :

Evaluate the following limits:



1
(a) dim > () im =[]+ 827,
k=1 k=1
1 k2
b 1 — , k
( ) n—l>rr-il-oonkz_ln2 () hmn%JrooZCOS( W)?
= n
k=1
1 n
(c) ninioo - Zsm(—), z €R, 2" 3
k=1 () limy— 400 Z oin
n k k=1
d) 1
( ) n—1>r-|r-loo Z n2 + k2’ (k=1)n
k=1 Wl Z 1
n n ()n_l>r-fr-loo = n-+

n 1
. 1 (1) lim —22 jln—j),
1 & km - J\w
2 i EAA
®  dm e SsnCE. et TI(+)

kn 1
MForanynkEN define S, (k) -.
J

1
(a) i. Prove that / —x =
A
Ydx M da
x

ii. Deduce that/ < S, (k)g/ —.
n

n+1

(b) Compute nll)rfw Sp (k).
~1.

(¢) The sequence (T,), defined by T,, = Z — is it convergent?

j=1

Let f be a non negative function, Riemann-Integrable on [a, b] C R, such
b

that:/f(a:)daczO.

b
1
is Riemann-Integrable, and compute ——dx.
g P / 1+ f(@)

1
Prove that
1+ f

b g b
Hint: Co te | —— — ldzx).
Compute the following integrals:



x ) %
1) / sin® t cos tdt, 9) / In(1 4 tanz) dz,
0 0
x 2 x
) / 2y/1 + 34t 10) / S —
1 ) 1 B3+e¥)ver —1
Totdt
3) / 1T vi 11) / da )
o 1+t cosh(3z) — coshx
2 / grtterl 12 / dz
0 1+t+12 sinh® z + cosh®z — 1’
5) /“ dx 13 dx
o l+sinz’ ) / coshz + 3sinhz + 4’
i dx
6) / . 5 1 / 1 — .13 \/ 1—=z dl‘
o l+sin“zx
T qind dx
1 sin° wcosw
7 o PR g 15 /7.7
) /0 1+ cos?(2z) “ ) VT + Vz

) /7T dz / [1—2x
o 3+ cos(2x)’ 1+ 1+ac

1-1-6| (a) Compute I,, :/2 cos" (z)dx, J, :/ sin" (z)dz and K, / (2 — 1)"da.
0

0
z dt
(b) i. Find arelation between L,, = / 5, and Ly, forn > 2.
o (T+t3)n
ii. Compute the integral I = /w idt (x >0)
N p g - 0 (t2 + 1)3 ) .

State the condition on the different real numbers a, b, ¢, d such that the
(x —a)(x —b)

———Z are rational functions.
(x —c)?(z —d)?

primitives of x —

1-1-8| (a) Compute K = / 2 cos(22)dex.

jus jus

4 4

(b) Let I :/ e % cos?(x)dx and J:/ e 2" sin?(2)dz. Compute
0 0
I+ J, I — J and deduce the values of I and J.
Let f: R — R be a Riemann integrable function such that: Vzx €

R, f(z) = f(1 — z). Prove that/ xf(x / flx

[1-1-10| Compute F(x / |x —t|sint dt for any = of R. The function F is it

continuous?



1-1-11 | Let f be a real locally integrable function defined on R and fulfills

o) = /Oazf(t)dt, aER.

n(n+1)

(a) Prove that f is C*° and for alln € N, f™(z) =a™ 2 f(a"x).
(b) Assume that |a| < 1. Using the Taylor formula prove that f = 0.

1-1-12| Define the function F' by:

cos® x sin?
F(z) = / cos ™ Vtdt + / sin~! V/dt.
0 0

(a) Prove that F'is differentiable on R and compute F’(z) for z € [0, T].

(b) i. Prove that F is even, m-periodic on R and deduce that it is
constant on R.

ii. Prove that cos™'u+sin™'u=Z, Vu € [-1,1]
ili. Deduce that F(z) = §, Vx € R.

1-1-13 | Let a be a real positive number and f, g two continuous functions on
[0,a]. Assume that f(x) = f(a—=x) and g(z) + gla—2x) = k; V 2 € [0, a].

(a) Prove that /O " P g(tydt = g /0 " fyat.

rsinx

b) C te the int | ———dx.
(b) Compute elnegra/o T oo™

1-1-14 | Let a be a non negative real number. Give all the non negative continuous
functions f: [0,1] — R such that

1 1 1
/ flx)dx =1, / zf(x)de =a and / 22 f(x)dx = a®.
0 0 0
1
(Hint: Compute/ (x — a)*f(z)dz).
0
Compute lir%l/ (1 + sin 2t) 7 dt.

1
1-1-16 | Define I,, = / In"(1 4 x)dz, for n € N.
0



(a) Compute nirr}roo I,.

(b) Express I, in term of n and I,,11.

(¢) Compute I, in term of n.

1-1-17 | For n > 1, we set:

1 . 1 .
sin 2 2
Un:/ o 22 xdx, Vn:n./ " s Y .
0 2 0

x? — x2—2
(a) Compute nirr}roo U,.

sin(2x)

(b) Leta €]0, 1], compute lim n/ 2" f(x)dz, with f(x) = RS
0 —

n—>-+o0o

1
(c) Deduce lim V,. (Hint: remark that V, = n/ z"(f(z) —
0

n—-4oo
)

nf(1)

f(1)dx + )

T _ usy
2~ € 2

1-1-18| (a) Compute lim (—sinz)"dz and lim (—sinz)"dx.

n—->»-+o0o 0 n—->-+o0o 0

(b) i Prove that Va €]0, %], 2 < sioe <1,

s
2

ii. Deduce the limit lim (sinrz).e” "5 dy,
7—>+00 0

(¢) i. Prove that V& >0, cosz > 1 — ”32—2

x—0

2x
t
ii. Deduce lim h(z), where h(z) :/ —Cots dt.
x>0 z

1-1-19 | Let f: R — R be a continuous function. Define the map F by: F(z) =
/ tf(t)dt.
0

(a) i. Prove that F is C* on R.
ii. Prove that F' (0) exists.
(b) What we can say about F'if f is even?
(¢) Determine F, in the following cases:
filz) =tan"t'z, fo(z)=xtan" ',

tan~1z 1
f3(w) = At a2 fa(z) = cohZa




1-1-20 | Let f: [a,b] — R be a function of class C2. Prove that:

b _a b "
[ raie = S @+ 1) + 5 [ = a)e—nf @i

1-1-21 | For ¢ €]0,1[ and n € N, we set: I, = / 2" In(1 + 2?)dz,
0
1
I :/ 2" In(1 + 2?)dz.
0

I
Prove that lim I, = lim J,= lim —
n——+oo n——+oo n——+oo Jn

1-1-22 | Let f: R — R be a continuous function.

Prove that the map ¢: R — R defined by:

=0.

o(x) = /b f(@—t)(1+ ¢ +sint)dt

is differentiable and compute ¢'(x).

™

Bl
1-1-23| (a) Prove that lim n/ coszsin" zdx = 1.
0

n——4oo
Let g be a Riemann integrable function on [0, 7] and a € [0, T .
(b) Compute:

i. lim nsin"a.
n——4oo

a
ii.  lim n/ coszsin” zg(z)dx.
0

n—-4oo

(c) Deduce that if lim g(x) exists, then

r—(5)"

lim n/2 cosz(sinz)"g(z)de = lim g(x).
0

n—-4oo w—)(%)—

1-1-24| (a) Let g: [a,b] — R be a non negative continuous function. Prove
that

b
/g(x)dx:O — ¢g=0.

(b) Let f: [a,b] — R be a function of class C! such that f(a) = 0.



i. Prove that

x b
@) < (@ —a) / P (0)dt < (z - a) / ()2,

ii. Deduce that

b —a)2 [t
/ |f (z)Pdx < ® 5 ) / If'(z)|?dz.

iii. Prove that the equality in the previous question holds if and
only if f is constant on [a, b].

2 Improper Integrals

2.1 Presentation of the Improper Integral

Definition 2.1.

1. Let f be a piecewise continuous function on the interval [a,b], where
a €R,beRU{+o0}.

We say that the integral of f on the interval [a,b[ is convergent if the
function F(z) = / f(t)dt defined on [a,b] has a finite limit when z

tends to b (z < b). This limit is called the improper integral of f on [a, b]
b
and will be denoted by: / f(x)dx.

2. Let f a piecewise continuous function on the interval |a, b], where a €
RU{—o0}, b eR.

We say that the integral of f on the interval ]a,b] is convergent if the
b

function G(x) = / f(t)dt defined on ]a,b] has a finite limit when z

tends to a (z > a). This limit is called the improper integral of f on |a, b]
b
and will be denoted by: / f(z)dz.
a

3. Let f be a piecewise continuous function on the interval ]a,b[, where
a € RU{—occ}, be RU{+oc0}.

We say that the integral of f on the interval |a,b| is convergent if the
integral of f is convergent on a, c] and on [, b[ for any ¢ in |a, b].



4. Let f be a piecewise continuous function on an interval I. The function
is called integrable on I (or the integral is absolutely convergent) if the
integral of | f| on the interval I is convergent.

Example 2.1 :

teode T dx x [Ydx
1. is divergent, 5 = 5 — =2.
o 14z o l+a* 27 Jy V&

+o0 d
2. Let a € R and a € R’. The integral / —i is convergent if and only
T

a

¢ dx
if @ > 1 and the integral / — is convergent if and only if v < 1.
0 T

3. For 8 € R and a €]1, +o0[, we set

Toodt
Fs(z) :/a Hm )P’

for x > a. In taking the change of variable u = Int, we get:
Fi(z) =In(lnz) — In(Ina) and for § # 1;

Inxz
du 1 1 1 .
Fs(x) = /1 B = lfﬂ[ﬂnz)ﬁ*l - (lna)ﬁfl]' Thus the integral

na

o de . .
——— is convergent if and only if g > 1.
o z(nz)?

Definition 2.2.
Let f be a locally Riemann integrable function on an interval I. The intgeral
of f on I is called absolutely convergent if the integral of |f| on I is convergent.

Proposition 2.3.
Let f be a locally Riemann integrable function on the interval [a, b].

b b
1. If the integral / f(x)dx is absolutely convergent, then / f(z)dx is

convergent.
2. If there exists a non negative piecewise continuous function g on [a, b,

b b
such that / g(x)dx converges and |f(x)| < g(z), then / f(z)dx is
a

a
absolutely convergent.

Remark 6 :



b b
If / f(z)dx is convergent, then / f(x)dx is not in general absolutely con-

a a
vergent.

sinx
Consider the function on the interval [1, +oo].

x

®sinx cos s ®cosx

By integration by parts, / dxr =cos1 — — / —5—dux; this shows
1 X S 1 X

sinz
that the integral of the function

is convergent on [1,+oo[. (we can also

x
use the second mean value formula theorem 1.33). Moreover

nw | o3 n—1 .(k+1)7 | _:
/ |smx|d$ _ Z/ |smx|dx
™ T km <

1 (k+1)7r
m /k | S1n x|dﬂ:

IV
LLUTIL L

2
(k+1)7

b
Il
—

1 1
As the sequence (v,,),, defined by v, =1+ B + ...+ — is divergent, then the
n

integral of f is not absolutely convergent.
Another proof: we remark that |sinz| > sin®z = 1=9s2¢

+oo +00 | 2
cos(2x sin x
/ Ldm is convergent, the integral / uclac is divergent.
1 1 T

As the integral
2x

2.2 Convergence Tests of Improper Integrals

Theorem 2.4. [The Cauchy Test|
Let f be a piecewise continuous function on [a,b], b € RU {+oo}.

b
/ f(z)dx converges if and only if
a

Ve > 0,3 ¢ tel que Vz,y €]e, b;

/y f(t)dt’ <e.

(We can suppose only f locally Riemann integrable function).

Corollary 2.5.
Let f: [a,b]— R a bounded function and a,b € R. If f is piecewise continuous
on [a, b[, then the integral of f on [a,b[ is convergent.

Example 2.2 :



int
The integral of the function f(t) = SITH is convergent on ]0, 1].
1
Also the function g(t) = sin ;on 10,1].
Theorem 2.6.

Let f be a non negative locally Riemann integrable function on [a,b[. The
T

integral / f(t)dt converges if and only if there exists M > 0 such that Vz €

fa, b: / F(t)dt < M.
Corollary 2.7.

Let f and g be two non negative locally Riemann integrable functions on [a, b|.
Assume that f(t) < g(t); Vt € [a,b]. Then

b
If / g(z)dx converges; the integral / f(z)dx converges.

b
It / f(x)dx diverges, the integral / g(z)dz diverges.

Corollary 2.8.
Let f be a non negative locally Riemann integrable function on the interval
[a,b] and let € = {(zp)n € [a,b[; limy— 100z, = b}. For any = € [a,b], we

define F'(z) = f(t)dt. Then following properties are equivalent

a

—_

The integral of f on [a, b is convergent.

2. {F(z); = € [a,b[} is bounded.

3. For any sequence (z,,)n € &, the sequence (F(x, )y is convergent.
4

. There exists a sequence (x,), € & such that the sequence (F(x,), is
convergent.

Example 2.3 :
2 +oo
1. f(t) =e ¥, t € [0,+00[, we have f(t) < e ! and / e "dr = 1, thus
0

+oo 5
/ e~ ¥ dx is convergent.
0

z 4q 1 1
2. / o diverges because > -V €o, z}.
o Sin z sinex — x 2
Proposition 2.9.
Let I be an interval and f: I — RT a non negative locally Riemann inte-
grable function. The integral of f on I converges if and only if there exists an



increasing sequence of intervals ([a,,by])n which covers I and a real M > 0

bn
such that / f(x)dx < M, for any n € N. In this case

bn
/f(x)dx = sup f(z)dx
I neNJa,
Theorem 2.10.
Let f: [a,b[— R and g: [a,b[— R be two locally Riemann integrable func-
tions. Assume that there exists ¢ € R\ {0} such that f ~ ¢g (when ¢ tends to
b

b
b~). Then / f(z)dx converges if and only if / g(z)dz converges.
Proof .
If f ~ £g (when ¢ tends to b7), then there exists a function h such that
f(t) =Lh(t)g(t) and lirlr)l h(t) = 1. Thus f(t)—£g(t) = (h(t)—1)€g(t) and, thus
t—b—

there exists ¢ such that Vt €]e,b[, |f(t) —Lg(t)] < g(t), let | f(t)] < (14 [£])g(t).
b b

If the integral / g(x)dx converges, then the integral / f(z)dz converges
absolutely. ‘ ‘
b

If the integral / f(x)dx converges, as £ # 0, there exists ¢ such that Vi €

Jel:1£) — ta(®)] < W gtr

(t). If x < y €]c, b, we have:
l

||/ dtthusH/ dt</f t)dt
Remark 7 :

If g change of sign the previous result is not true. It suffices to take the

|Smt| sint sint )
+— and g(t) = —, for t € [1, +oo[. The integral of
Vit Vi

the function g is convergent on [1,400][, it suffices to use the Cauchy test and
the second Mean Value Formula. The integral of the function f is divergent.

Theorem 2.11.
Let f: [1,4+00[— R™ be a piecewise continuous function.

—Lg(t)dt| <

— 0.
z,y—b

function f(t) =

1. If there exists @ > 1 such that lim z“f(z) = 0, then the integral of f

r——+00
is convergent on [1, +ool.

2. If there exists o < 1 such that lim z%f(x) = 400, then the integral of

r—+o0
f is not convergent on [1, +oo.

Theorem 2.12.
Let a,b € R and f: Ja,b] — R+ be a locally Riemann integrable function.



1. If there exists o < 1 such that lim (z —a)®f(z) = 0, then the integral

z—a™t
of f is convergent on ]a, b].

2. If there exists & > 1 such that lim (x—a)®f(x) = 400, then the integral

xr——+00
of f is not convergent on ]a, b].

Theorem 2.13. [Abel’s Theorem]
Let a € R and b € RU{+0}, and f and g be two continuous functions on the
interval [a, b[. Assume that:

i) there exists M > 0 such that

y
/ f(t)dt‘ < M for any z,y in [a, b[.
ii) g is monotonic on [a, b and Pnll,xg(t) —0.
—
Then / f(z)g(z)dx converges.
Proof .

We can assume that g is decreasing. By second mean value formula, theorem
1.33, for any = < y in [a, b],

Q
=
Il

[ s
Mg(z) — 0.

z—b—

IN

Example 2.4 :

1. Let f be a non negative continuous function, decreasing and hr}_l f(z) =
T—+00

+oo
0, then the integral / e f(x)dx converges for \ # 0.
0

2. Let f: [a,+00[— [0,+00] be a decreasing continuous function. Define

a+k+1
foralln € N; z,, = Z fla+k) and y,, =z, — / f(z)dz. Then
a

k=0
i) the sequence (yn ), is convergent,
+oo

the integral f(z)dz converges if and only if the sequence (z,),
converges. =~
Indeed:

a+n+1

fla+n+1) = / fla+n+1)dz
a+n
a+n+1 a+n+1
< [ twdes [ fatnido = fatn)
a+n a+n



n a+k+1

Yn = Z(f(a +k)— / f(x)dx), thus the sequence (y,), is non

k=0 a+k
n

negative and increasing. Moreover y,, < Z(f(a—l—k)—f(a—i—k—i—l)) < f(a),
k=0
thus the sequence (yy), is convergent.

at+n+1)
The sequence (x,), is increasing and / f(@)dx <z, and @41 <
a

a+n-+1
fla) + / f(z)dz, thus the sequence (x,,), converges if and only if

+oo
the integral / f(z)dz converges.

n
As application the sequence z, = (
k=1

) — Inn is convergent. Its limit

el

is called the Euler constant.



2.3 Exercises

+oo dx
1-2-1 | Prove that the integral I,, = / ————— is convergent. Compute
g n 1 xn+1m g p

by induction I,, for n € N.

Foo dt

1 Vit —=1)(t —x)

Prove that the function f is continuous on the interval [—1,1].

1
the integral / x%g(x)dx converges.
0

(a) Prove that lim z°T'g(z) = 0. (We will be able to use the integral

) z—0t
/ g (t)dt).

(b) Deduce that if h is a continuous monotonic function on [1, +oco[ and

Let « € [-1,1], prove that the integral f(z) =

converges and that it diverges for x = 1.

+oo
the integral / z*h(x)dx converges, then lim z*T'h(x) = 0.
1 T—+00

—+oo
Let f be a continuous function on [1,+oo[ such that / f(z)dz con-
verges. !

What can we say about lim, o f(2)?

Let0<a<17ﬁsuchthat1—a<6gland)\>0.

(a) Prove that the following integrals are convergent

+oo dx +oo dx
I(”:/l PIESE J(A>=/1 0T 291+ )

—+oo
(b) Prove that I(A\) —A>~! / _dz has a limit when A tends to
0o r*(l+a)

0.

+oo d
(c) Prove that the integral K(\) = /1 e xaa);(l ) is conver-

oo dx
gent and that lim K(\) = / —_.
A—0+ 1 A1+ z%)




. . T sing
Study the nature of the improper integral ——dx.
o VT+sinz

Let f be a function of class C? on |0, 1] such that the integral / zf(sinz)dx
0

converges.

(a) Prove that/ xf(sinx)d / f(sinx)
0

(b) Prove that / zIn(sinz)dz = —7 1112 namely that / In(sinz)dz =
0 0

—71n2.

Compute, when they are convergent, the following integrals:

20 42 4 943 /1 zlnzx /1 Inz /’2' .
————du, —dx, sin 2z In(tan x)dz,
" Ny a4 o (1—a2)3/2 0 (1— x)% o ( )

2 | )d +oo ZA + 1 J +oo
cosx In(tan x)dz, x, —_—
/ ( e e L e

Give the nature of the following integrals.

/1 Inz " /1 lnzxdt +oo dx: too dzx
o 1—2277 Jo 1+2277 Jy f( +|Inz)” Jo Vao(l +a2)’

z"e"d:

/+°° rsinz d /J”’o Ccos T oo cos(am)d oo sinx d
————dux, ——dux, T —_—dx
0 ( +x2) o (1+z9) 0 14+er 7 )y VxFcosxz
Inx too ga—l Feo
dx, dx, e "d,
V1 — Jj2 1 — .T 0 1+ 0

+ +o0 -1 +o0 -1
2t — t
/ xstd:E, Sin(a:2)dz, / an” " x de / ( an” x
0 1 + xr 0 0 \/.E 0 xr
T
T Ve,
2(1+x)

/m in(z) sin(=)dz, /+°°s’ ( +1) dz /t d //7‘5 d
sin(z) sin(—)dzx, mlx+—|—, nzxaxr, nzxrar,
0 x 0 T \/E 0 0

+oo _sinz +oo 1
1 1 d
/ ¢ dz, — (ealc — cos ) dz, / xl .
1 €T 1 T T g COS™ " x
1-2-10| (a) Let s € R.

+oo
i. Prove that the integral / t*~! cos zdx is absolutely conver-
1

gent for s < 0.



+oo
ii. Deduce that the integral / t® sin tdt is defined for s < 0.
1

+oo
(b) Use the previous result to study if the following integral Visin(t?)dt.
1

1-2-11 | Let f: [0, +o0[— R be a continuous function. Assume that the integral
+oo
/ f(x)dx is convergent and that lim f(x)={.
0

r——r+00
(a) Prove that ¢ = 0.

+oo
(b) i. Say if the following proposition is true: / g(x)dx exists,
0
then Li}lﬂl_oog(x) =0.

ii. What can we say if g is non negative?

1-2-12| (a) Using the Abel Theorem, prove the convergence of the following

+oo i
sinz
integral: I:/ dz.
0 X

+oo | o3
sint
(b) Using the Cauchy criterion, prove that the integral / 7| , ‘dt is
1
not convergent.

b
d
1-2-13| (a) Prove that J :/ s convergent.
o Va0

(b) Compute this integral using the change of variable r = acos?t +
bsin? t.

+oo
1-2-14| (a) Set I'(z) = / t*~te~'dt called the Gamma function.
0

i. Prove that I' is well defined for « > 0.
ii. Compute I'(z + 1) in term of T'(z).

1 1
(b) i. Prove that F(% + %) < T(x)PI ()Y for p > 1 and ];—1—6 =1.
ii. Deduce that In(I") is a convex function.

1-2-15| (a) Discuss according to the values of o, 8 € Rt the nature of the inte-

+oo In(1 o
gral / In(1+1¢%) .,
0 th

(b) Discuss according to the values of « € R the nature of the integral

+00 (:,2
sin“ ¢
/ ma dt.
0 t




(c)

(e)
®

(b)

VB

dt
i. Study the convergence of the integral I(a) = / _
o l-+cosacost

ii. Compute I(a) when it exists.

Verify that Vu € [1,1], —Inu < In2.

Prove that the integral du is convergent.

/1 Inu

0o Vv 1-— u2

Deduce that the integrals /2 In(sin §)df and /2 In(cos 0)df are
0

0
convergent and have the same value.

Prove that the integral / In(sin #)df is convergent and
0

™

t/h@mmwzz/ﬁmmwma
0

0

o ™

——du=——
0 \/1—u2 2

Prove that In 2.

Int
VvV1-t

1
Study the convergence of the integral / dt and compute its
0

value.
sin®t

ot

+oo
i. Justify the convergence of the integral /
0

ii. Find the following limits

. 1—cose . 1—cose
lim — and lim —
e—0 € e—+0o0 g

b -
sint
iii. Using an integration by parts in the integral / Tdt’ prove
oo sint X
that the integral / Tdt is convergent and we have:
0

+oo +oo 1.2
sint sin“t
/ —dt :/ 5 dt.
0 13 0 3

T Int
1-2-18 | Prove that the integral / 5dt is convergent and compute its
0

1+¢

value.



3 Problems on Chapter-1

3-1| (a)

(b)

T sin(2n +1 % §in2
Consider the integrals: I, =/ de, Jn:/ s mCd
0 0

sinx sinx

an/zl cos(4n + 1)z dx.

cosx
a) Prove that I,, does not depends of n and compute its value.
b) Express I,, — J,, in term of K,, and deduce hm Jn.

) ’I’L‘) o0
a) State an induction relation between J,, and J,,_1.
b) Give the expression of J, in term of n.

' 1 1 ( l)n 1
¢) Deduce ngngroo(l 3 + - 5 +...+ m nﬂm Z

For any function f defined on [0,+occo[ and Riemann integrable on any

closed and bounded interval of [0, +oo[, we define F(x / f(t)dt,
for z > 0.

(a)

a) Prove that if iﬂ}n}roof(x) = {, then Igrrioo F(z)=1¢.

b) Compute F(z), for f(x) = cosx and study the reciprocal of a).
c) Let (up,),, be a sequence such that hm Uun = ¢and let f defined

by f(z) = u, for z € [n, n+1[
i) Prove that hm f()

ii) Compute / f(t)dt and deduce that
0

. Ug+uUp +...+u
lim

n——+oo n

=,

In which follows f is a continuous function of [0,1] and F(z) =

313/0 F(t)dt

Prove that F' can be extended to a continuous function on [0,1]. In
which follows we still denote F' this extension.

Prove that F is differentiable on ]0, 1] and compute F” in term of F
and f.
Assume that F = \f.

a) Prove that f is differentiable on ]0, 1] and give a simple relation
between f and f’.

b) How we can choose A to have f a polynomial.

xz,



(e) Assume that there is ¢ €]0, 1] such that F'(t) = sup,¢ 1) f(@)-
Prove f is constant on [0, t].

(f) Using the Taylor formula prove that if f is differentiable at 0, then
F is differentiable at 0 and compute F’(0).

Let f: R — R be a function which fulfills the following properties:
)V (z,y) €R? fz+y)+ flz—y) =2f(2)f(y)

ii) The restriction of f on any interval [a,b] is Riemann integrable and

the map F(x) = / f(t)dt is not the zero function.
0

(a) Prove that F is continuous on R.

(b) Let 29 € R be such that F(x9) # 0. For all y € R, define G(y) =
F(zo +y) — F(y — o).

Yy+xo Yy—=To
Prove that G(y) = / f(t)dt—/ f@)dt = 2F (zo) f(y). (We
will be able to makeythe change of \yfariable u=t—yandv=y—t

respectively).
(c) Deduce that: f C*™ on R.

(d) For z in R, we set H(y) = f(z +y) + f(x —y) = 2f(2) f(y)-
a) Compute H'(0) and deduce that f'(0) = 0.
b) Compute H' (0) in two manner and deduce that f fulfills the
following differential equation f~ (z) = f (0)f(z), V z € R.

(e) a) In using i) show that f(0) =0 or f(0) = 1.
b) Prove that if f(0) = 0, then f is identically zero.
c¢) Deduce that f(0) = 1.

For all n € N, define the function f,, by

©oodt
fn(z) = /0 cosh™ ¢
(a) Prove that f, is C> and odd. Compute f/, and f, .
(b) Compute fi(z), fa(z), A1 = Lam fi(z) and Ay = Lm fa(z).
(¢) Prove that f, is bounded on [0, +o0].
)
)

(d) Prove that lirf fn(z) = A\, exists in R.
T—>+00

(e) State the induction formula

(TL - 1)fn(m) = (TL - 2)fn—2(x) +



(f) Deduce an induction formula which express A, in term of A,,_o and
compute A,.

Define the Wallis integral of rank n € N by:

z
W, = / cos" xdx
0

n+1
Prove that W, .o = -
(a) Prove tha 2=
@2n)! w 227 (nl)?
b) Deduce that Wy, = ———5 - and Wap41 = ——.
(b) Deduce that Wan = 550 1 5 and Wanin = 5235,
(c) Prove that the sequence (nW,,W,_1), is constant and deduce that

W Wh_1=5

z
(d) Prove that W, 11 < W,, < W,,_1 and deduce that

lim W =1 and lim +/nW, = \/Z

n—-4o0o anl n—-4o0o
vn t2
(¢) Let By — / (1— Synar,
0 n
1
a) Prove that B,, = \/ﬁ/ (1 — u?)"du.
0

z
b) Prove that B, = \/ﬁ/ cos? L udv.
0

@ 2
(f) For x > 0, define A4, (z) = / 1+ %)*"dt, for n € N.
0

a) Prove that

x

Ap(z) = /Oﬁu +u?) " du.

and

z

tan™?! =
Ap(x) = \/ﬁ/ cos? 2 udv.
0

oI

b) Prove that lim lim A,(z) = lim nWa, o=

n—-+oo r—+oo n—-+oo

2
(g) a) Prove that Vy € R, ¢¥ > 1+ y and deduce that (1 + x—)" <
n
2
2

Vo € [0,v/m), 0< (1 - ) < e,
n



vn

b) Prove that lim A,(z) > lim e dr> lim B,.
r——+00 n—4oo 0 n—-4oo
Deduce that i
n
ﬁ = lim e dr.
n—-+oo 0

3-6] (a) a) Using the Taylor’s formula prove that § < e.
1 1
b) Compute/ In(1+4t)dt and show that /

0

0
t)dt).
¢) State the inequality In(1 + v) < v, for v > —1.

(b) a) Let u: [0,1] — R be a continuous positive function.

In(1+t)dt < ln(/1(1+
0

1
Using the question c¢) prove that if fol u(t)dt = 1, one has: / lnu(t)dt <
0

0.
How we can choose u to have the equality?
b) Let f: [0,1] — R be a continuous positive function. Prove that

1 1
/ In f(t)dt < In( / F(t)dt). (1.8)
0 0

(¢) Give a proof of (7.10) using the concavity of the function In and the
Riemann sums.

We set
+oo 1
H=y ———
(a) Prove that ¢ is of class C* on [0, 400 and compute . lir+n P(t).

— 00

(b) a) Prove that for any ¢t > 0 and n > 1
1 1 1
< < .
(n+t)(n+t+1) = (n+8)2 = (n+t)(n+t-1)

1 1
b) Deduce that P <yP(t) < 7 for any ¢ > 0, and that ¢(t) ~ 1;
(t = +00).
c¢) Prove that
+oo
1 1
t)— —— = .
V() t+1 n;l (n+t)2n+t+1)




n+1 dx

1
— < <
(n+t+1)3 —/n (t+x)3 ~ (n+t)3
that for any ¢ > 0

c¢) a) Remark that and prove
(c) a)

1 n(t)

with 7 a bounded function on ]0, +o0].

+o0 1
b) Deduce that the integral / (¥(t) — m)dt is convergent.
0

(d) Justify the following equality

+o0 too n
/0 (W) — ——)dr =3 (= — (21,






2 Infinite Series

1 Tests of Convergence of Infinite Series

Definition 1.1.
1. Let (un)n be a sequence of real numbers (eventually complex numbers).

n
Consider the sequence (S,,), defined by: S, = Z Uk
k=1
If the sequence (S,), is convergent, we say that the series > o, uy is
convergent.
+oo
The limit of the sequence (Sy,), if it exists is denoted by Z Up -

n=1

2. The series Z u, is called divergent if the sequence (S,,), is divergent.
n>1

Remark 8 :

1. If the series Z u, converges, then lim wu, =0. (u, =5, — Sp—1.)
et n—>-+0o

2. The condition lim wu, = 0 is not, however, sufficient to ensure the
n——+oo

convergence of the series ), u,. For instance, the series

Z vn +1—+/n is divergent because S,, = v/n +1—1, for every n € N
n>1
and lim wu, =0.
n—+oo
Theorem 1.2. [Cauchy Criterion]
Let (uy)n be a sequence of real numbers. The series Z uy, converges if and
n>1
only if,

51



q
V5>0,3N€EN;\Zun|§E, Vg>p>N.. (2.1)
n=p
Definition 1.3.
A series Z Uy, is called absolutely convergent if the series Z |wy, | is convergent.

n>1 n>1
Remark 9 :
Every absolutely convergent series is convergent but the converse is false, it
n
_pyntt —1)ptt
suffices to take the series > o, # Indeed, if S,, = Z L, then
> ~
_1\nt+l |
Soni1 — Sap = ﬁ P 0. To prove that the series 27@1 ( IBL is
convergent, it suffices to prove that the sequence (Say,), is convergent.
1 1 1
We have: Sgn+2752n = o+ 272,”/ T1 < 0 and SQn_H*SQn_l = o7 2n+1 Z

0, then the sequences (S2, ), and (Sap41)n are adjacent, which shows that the
sequence (Sy,)n is convergent.

2n
1 n 1 _1)nt+1
We remark also that Z z > on = 2 then the series 2721 (=1) is not
k=n-+1

absolutely convergent.

There are several standard tests for convergence of a series of non negative
terms. These tests are based primarily on the fact that an increasing sequence
is convergent if, and only, if, it is bounded above. It follows that a series
> n>1 Un With non negative terms is convergent if, and only, if, the sequence

(Sn)n defined by: S, =7 _, uy is bounded.

1.1 Comparison Test

Theorem 1.4. [Comparison Test|
Let (up)n and (v, ), be two sequences with non negative real numbers. Assume
that there exists an integer k£ € N such that u, < v,, for every n > k. Then if

the series g v, is convergent, the series g Uy, is also convergent.

n>1 n>1
Proof .
n n
Let S, = Zuj and T,, = Zvj. We have S,, < T,,. The series Zvn is
j=k i=k n>1

convergent if and only if the sequence (T},),, is bounded above, which gives the
result.
The result can also be deduced by the Cauchy Criterion (1.2). O



Corollary 1.5.
Let (un)n and (v,), be two sequences with non negative numbers. Assume
that there exists a > 0 and b > 0 such that au, < v, < bu, for every n > k,
then the series Z Uy, and Z vy, converge or diverge together.

n>1 n>1
Corollary 1.6.
Let (un)n and (v,), be two sequences with non negative numbers. Assume

that Lim -2 —¢.

n—-+o0o Un

1. If £ > 0, the series Z Uy, and Z vy, converge or diverge together..
n>1 n>1

2. If £ = 0, the convergence of the series Z vy, involves the convergence of
n>1

the series E Uy -

n>1

3. If £ = +00, the convergence of the series Z Uy involves the convergence
n>1
of the series Z Up-

n>1

Theorem 1.7.
Let (un)n, and (vy,), be two sequences of positive numbers. If there exists
m € N such that, Y2+l < Un+l whenever n > m, then the convergence of the

Up v
series E vy, involves the convergence of the series E Up,
n>1 n>1

Proof .

un+1 'Un+1 un+1 ul

Let N € N be large enough such that Vn > N, < ——. Thus <
Unp, Un Un+1 Un
for n > N. The sequence (u—n) Sy I8 decreasing and Un < N M eRr ,
Un nz Un UN
Vn > N. Then u,, < Mv, for all n > N, which yields the result. a

1.2 Integral Test

Theorem 1.8. [Integral Test]
Let f be a decreasing continuous function on [1,+oco[. We define u,, = f(n),
for all n € N. Then:

—+oo
/ f(z)dz is convergent <= Z U, is convergent.
1
n>1



Proof .

n n n+1
Let S, = Zuk and v, = / f(®)dt. We have: f(n+1) < / f®)dt <
k=0 1 n
f(n), thus
n n+1 n
Dork+1)< / F&)dt <> f(k).
= 1 k=1

k=1

If the sequence (S,), is convergent, then it is bounded above. Hence the
sequence (vy,), is also bounded above, and since it is increasing it is convergent.
Conversely if the sequence (v,,), is convergent, the sequence (S,,), is bounded
above and then it is convergent. O

Corollary 1.9. [Convergence of Riemann series|
The series Y is convergent if and only if, a > 1.

Proposition 1.10. [Application: Comparison with Riemann series]

Let (uy)n be a sequence with non negative real numbers. Assume that there
exist 0 < @ < b such that 0 < a < n%u, < b < +oo for every n large enough,
then the series ) ., u, is convergent if and only if, oo > 1.

n>1 no

This proposition results from Theorem (1.4)
Exercise 1.2 :

Show that the Bertrand series Z is convergent if and only if & > 1

"o nln’n
ora=1and g >1.
Solution n
Ifa <0, lim ——— = +00, then the series is divergent.

n—+oo n®(Inn)B

If0 < a <1, we take @« < 7 < 1 and consider the sequence v, = —.
n
1

n*(lnn)?

1 o hen th d
im ——— = 400, then the series is divergent.
n—+oo n(Inn)s * Z &
n>2
. 1 . nY
Ifa > 1, wetake 1 < v < « and consider the sequence v,, = —, lim ——— =
nY’ n>Foo n®(Inn)p

1
0, then the series Z W is convergent.
n>2
1 1
If @ = 1, we consider the sequence u, = ——5— and flx) = —5—, for
nln”n zln” x
x > 2. The function f is decreasing for = large. Then the series Z _—
n(lnn)s
n>2

. . . [ dx
is convergent if and only if D

2 xln”x



The integral

/ * dr  t=na / > dt
2 zln’z ma2 t?
is convergent if and only if § > 1. O

1.3 Root Test or the Cauchy Test
Theorem 1.11. [Root Test or the Cauchy Test|]
Let (un)n be a sequence of real numbers and ¢ = lim, 4 o0 V/|tn].
1. If £ < 1, the series Z Uy, is absolutely convergent.
n>1

2. If £ > 1, the general term of the series does not tends to 0 and the series
D n>1 Un is divergent.

3. If =1, we can not conclude about the convergence of the series.

Proof .

1. Let a be such that ¢ < « < 1, there exists N € N such that {/|u,| < «,
for every n > N. Then u,, < ™. Since the series ), ., o™ is convergent,
the series ., uy is convergent.

2. Let 1 < B8 < ¢, there exists an increasing sequence of integers (ng)g
such that lim |u,,|'/™ = £ > (. Hence there exists kg € N such

k—+oco

[t | > B"*, for all k > ko. It follows that lim |uy,| = +oo and the
k—+o00

series E Uy, is divergent.
n>1

1 1
3. We know that the series Z — is divergent and Z — 1s convergent, but
n n

n>1 n>1
in the two cases lim n~ % = lim n » = 1.
n—-+4o0o n——+00
(]
1.4 The Ratio Test or the D’Alembert’s Test
Proposition 1.12.
Let (un)n be a sequence of real numbers. Assume that lim |u"+1| = /.

n—-4+oo Uy

Then



1. If £ < 1, the series Z uy, is absolutely convergent.
n>1

2. If £ > 1 the series Z Uy is divergent.

n>1

3. If £ =1, we can not conclude about the convergence of the series.

We prove that is this case lim  {/|u,| = £.
n——+oo

Proof .
1. Let « be a real number such that £ < a < 1, there exists N € N such
(7 (% . .
that for every n > N, ||n+|1| < a, then u,, < a"%. Since the series
Uy, e

E ' is convergent, the series E U, is absolutely convergent.
n>1 n>0

2. Let 1 < B < ¥, there exists N € N such that for every n > N, M > B,
u

(2

then w, > B"luN‘

> >0 Un 18 1Ot convergent.

Since the series ) ., 8" is divergent, the series

1
3. We know that Zn>1% diverges and E — converges, but in the two
= n
n>1

. Un+41
cases lim —tL — 1.

n—+00 Uy

=/and 0 </ < +o0.

. un+1
Assume lim | |
n—>-4oo Unp

For 0 < a < £ < B < 400, there exists N € N such that Vn > N, ‘"‘Tlll <
B. It follows that

an LN | N| <a|un| < |un+1| <ﬁ‘un| <Bn N+1|u |_ﬁn

BN-1
We deduce that

a= lim o' M"{/|uy |< hm YViunl < hrf BN Juy|

n—-+oo

Thus a < limy, 400 V/|un| < B for every 0 < a < £ < 8 < 400, this which
yields that limy, oo V/|tn| = £.



If £ =400 and 0 < a. The above proof yields that o < lim,,— 4 V/|un|, then
limy, s oo v/ |un| = +00.
If £ =0 and 0 < 8. The above proof yields that lim, o ¥/ |un| < 8, then

limy, 400 V/|tn| = 0.

O

Examples 1 :

1. Let z € C, the series ), -, 'Z—W, is absolutely convergent on C, because for

Unp+1 z .
every z € C; |—=H| = L 0. We denote e* the sum of this
Uy, n+1 n—+oo
+oo
S z"
series. ¢ = Z —.
n!
n=0

2. For |z| < 1, the series ), -, % is absolutely convergent.

1.5 The Abel’s Criterion

Theorem 1.13. [Abel’s Criterion]
Let (un)n be a sequence of real numbers and let (v,), be a sequence of non
negative real numbers such that:

1. the sequence (v,,), is decreasing and converges to 0.

2. the sequence (Sn = Z uk) is bounded.
k=1 "

n

Then the series g U, Vp 1S convergent.
n>1

Proof .
We use the Cauchy criterion (1.2) for the existence of the limit of sequences.
Letgq>p>1,

q q q q—1
E URVE = E (Sk — Sk—1)v = E Skvg — E SkUk+1
k=p+1 k=p+1 k=p+1 k=p
qg—1

= Z (’Uk - ’Uk+1) + Sq’Uq - Sp'l}p+1
k=p+1

q
Since |Sk| < M, then | Z ugvg| < 2Muog — 0.
kpt1 k—+oo



Remark 10 :
The result holds also if we suppose that the sequence (S,,), is bounded and

+oo
the sequence (by,),, converges to 0 and the series Z(b" — bpt1) is convergent.
n=0
Examples 2 :
(—1)vnl _
1. Let b,, = ,for n>1 and a, = €™ for 0 < 6 < 27.
—+o0 +o0 2
|Z an| < 9/2 and we can prove that7;2|bnfbn_1| S;m
1)[\/ﬂ inf
It results that the series Z converges for all 0 < 0 < 27.
n

n>1

n

1
2. Let sn:ZE—lnn,nZL We set u; = S; = 1 and for all n > 2;
n—l_l 1 1 1 1 1

k=1
1

n — Pn " Pn—-1 = =—+In(l-——) = — ) —5))s

u Sn=n-1 n+n( n) n+( n 2n2+0(n2))

then u, = =% + o( 5 ), thus (s,), converges. We set v = 1iIJ1;1 Sn, 7 18
n—-+oo

called the "Euler constant.



1.6 Exercises

Consider a sequence (uy,),>1 of real numbers such that the series Z Uy,

n>1

is convergent. Prove that the series E U, is convergent.
n>1

Let (un)n>1 be a decreasing sequence such that the series Z U, 1S con-

n>1
vergent.
(a) Prove that lim nu, =0.
n—-+o0o
+oo +oo
(b) Prove that Z n(tp — Up41) converges and Z n(Up — Up41) Z Up.
n>1 n=1 n=1

(¢) Compute for 0 < r < 1 the following sums:

—+o0 —+o0
E nr" and g nr".
n=1 n=1

3

(=1

2-1-3| (a) Prove that the series Z is convergent.

n20n+1
n 1
(—1)* / dt 1
h h - — < .
(b)SOWtath:OkJrl o T+t| " n+2
o0 _ln
(c) Deduce that;(nJr)l =In2.

Find the following sums:

+o00 1 400 1
DY = 5)Zln(l—n2)’

n=2 n=2

+o00

1 T 1

2 _ —
) ;n(n+1)(n+2)’ 6) nzz:lln (cos 2n>,

+oo 9o

n 400 T

3 —, 1 n
) n; py 7) Z%n! [ (e

+oo 3
2n° +1
D>

n=0




Study the convergence of the following series:

2" o (nd 41
1) Z e 13) Zcos 1(n3+2)’

n>1 n>1
3"n! 3 2
2) , (n® + 1)
L 1) o
n! -
=in 15) 2(5) ;
n>1

1
1 21 ey
10) Znsin(f), ) 7;3 ninn(In(lnn))
n>1 " B n
\" 22) Z cosi L
11) Ze—<1+n> , —\"vn Ve’
n>1 -
1 1
12) cosh® n — sinh® n, 23) In— —1In (sin > )
x5 RN

Let a,b and ¢ three real numbers. Consider the sequence (u, ), defined
by:

U, =alnn+bln(n+1) +cln(n — 1), n > 2.

a) Express in term of a,b and ¢ the necessary condition of the conver-
E in t f a,b and ¢ th diti f th
gent of the series Z U, .

n>2



(b) If this condition is satisfied, prove that the series Z Uy, is absolutely
n>2
convergent.

(¢) Chooses a = —2,b = ¢ = 1, prove that the series Z Uy, 18 convergent
n>2
and compute its sum.

n!
_1- i = = >1).
Consider f(n) Ry and S, = In f(n), for (n > 1)

(a) Prove that the series Z Uy, is convergent, where u,, = S, — Sp_1.
n>2

(b) Deduce the convergence of the sequence (S )n.

(¢) Set £ = lim S,. Determine in term of ¢ an equivalent of n! when

n—-+4oo
n — +00.

Define the sequence of real numbers (uy, ), by:
ug arbitrary and v, =1—e7 ", Vn > 0.
(a) Study the convergent of the sequence (up ).

Upt1 — U
(b) Assume ug > 0, compute lim —t "

n—-+oo u%

and study the conver-

gence of the series E u?.
n>0

™ 1
Verify that the series Z ( \f) + — is alternate and divergent. Conclude.
n o n

n>1

2-1-10| (a) Consider the function f(x) = |sin(27z)|, for z > 1.
+oo
Prove that / f(t)dt diverges and the series Z f(n) converges.
1

n>1
(b) Consider the function

n?r+1-n® for zen—2nl (n>2)
g(x) =< —n?z+1+n3 for z€nn+ 5] (n>2)
0 for x does not in any of these intervals

+oo

Prove that / g(t)dt converges and the series Z g(n) diverges.
0 n>1

Conclude.



+o0
2-1-11| Let f be a function of class C! such that the integral / f()dt is
0

—+oo
convergent and the integral / f'(t)dt is absolutely convergent.
0

(a) Prove that the series Z f(n) converges. (Hint: We can use Taylor
n>0
formula with integral remainder).

(b) Study the convergence of the following series Z sin ﬂf)

n=1 n
™
2-1-12| (a) Prove that for any 6 € }0, 5 [:
sin(2m + 1)0 = (sin®"** 0) P, (cot? ),
where P, the polynomial defined by: P,,(z) = Z( 1) Cgflflxm k.
k=0

(One will be able to use the Moivre Formula).

(b) Deduce the roots of the polynomial P, and the following relation

N ( km ) m(2m — 1)
Z cot = .
P 2m +1 3

1
(¢) Prove that: VtE]O,g[, cot2t<t < cot?t+1.

+o0 2

k 1
(d) Apply this result for t = 2m7—r|— T deduce that ; 2= %
2-1-13 | Let Z Uy, and Z v, be two convergent series with non negative terms.

n>0 n>0

(a) Prove that the series Z u? and Z \/Un Uy, are convergent.

n>0 n>0
Let Z wy, be a series with non negative terms and such that lim (nw,) =
n—>+00
n>0
L.
(b) Prove that if the series Z wy, is convergent, then ¢ = 0.

n>0

2-1-14 | Let up be a number real of ]0,1[ and define the sequence (uy,), by:

_ 2
Up41 = Up — U



n>0
u
(e) Prove that the series Z In(—*1) and Z u, are divergent.
n>0 Un n>0
1 1

(f) Define for n € N, v, = — — .
Un, Un—1

i. Prove that lim . v, = 1.
ii. Deduce that u,, ~ %

u
iii. Study the convergence of the series Z sin(u?) and Z —_

n .
n>1 nZlVﬁ{

2-1-15| Let (un)n be a sequence of real numbers. Assume that |u,| < 1, for any
n € N.

(a) Prove that the series Z In(1 + u,,) is absolutely convergent if and
n>0
only if the series Z u, is absolutely convergent.
n>0
(b) What can we say about the convergence?

(c) Assume that the series Z Uy, is absolutely convergent.
n>0

(a) Prove that the series Z u?, Z
n>0 n>0

are absolutely convergent.
1+ u,

(b) What can we say about the convergence?

U
2-1-16 | Let (u,)n be a sequence of non negative numbers. Define v,, = 1 +" .
Un

Prove that the series Z Uy, and Z v, converge or diverge together.

n>0 n>0

2-1-17 | Let (un)n, (vn)n and (wy)y, be three reals sequences such that the series
Z u, and Z wy, converge, and u, < v, < w, for any n.
n>0 n>0

Prove that the series E v, 18 convergent.
n>0



£ (n+1)w
2-1-18 | Consider the sequence (up)n, with u,, = / sin(z?)dzx.

ST

(a) Prove that the series Z Uy is an alternate series.
n>1

(DT sin ¢|

n 2Vt

Deduce that the series Z Uy, is convergent.
n>1

Prove that it is conditionally convergent.

dt.

(b) Prove that Vn € N,  |u,| = /

2-1-19 | Study the convergence and the absolutely convergence of the following
(="

series E Up, where u, = —3 .
ni + cosn

n>2
2-1-20 | Let (uy)n>0 be a sequence defined by : ug > 0,V n € N, w41 = uy, +ul.

(a) Prove that lim w, = +4oc.
n—-+o0o

(b) Set v, = 27" Inwu,.
Prove that the sequence (v,), is convergent. (Study the series

§ Un+1 — Un)
n>0

d

(¢) Deduce that there exists o > 0 such that u, ~ o?".

1
2-1-21 | Let f(x) = ————————— defined on [0, +oo[.

1 + coshzsin® x

+oo
(a) Prove that / f(x)dx is convergent if and only if the series Z Up,
0

n>0
(n+1)7w
is convergent, with u,, = / f(z)dz.
(n+1)7 1
(b) Prove that for any n € N, 0 < w, < / —————dz.
e 1+ 52 sin“ x

2

V2

—nTm +w
(¢) Deduce that Vn € N, u,, < —e™2 and that the integral/ f(x)dx
0

is convergent.



2-1-22 | Let (ay), be a sequence of non negative numbers such that the series

Z ap is convergent. Define the sequences (R,,), and (b,), by: R, =
n>0

“+o0
Y ay and b, = };—", with a €]0, 1] fixed.
k=n+1 n—1

-« l—«
Rnfl - Rn

(a) Prove that for any n € N*, b, < . (We will be able to

" 1—«
n—1 dt

use the integral / —).

t()é

Ry

Deduce that the series Z b,, is convergent.

n>1

(b) Set for any n € N*, ¢, = a—n, d, = I and en = ln(Rn*l).
Rn Rn—l Rn
Prove that the series Z ¢, and Z d,, are divergent. (Prove that
n>1 n>1
. . d

the series Z en diverges and 0 < e, < ¢, and ¢, = 1 7” 4 )

n>1
(¢) If (u,) is a given non negative sequence such that the series Z Up,
n>0
converges, is there exists a sequence (v, ), such that the series Z Uy, Un,

n>0

converges and lim v, = +00?
n—-+4oo

2 Series Product

Definition 2.1.
Let (un)n and (v, ), be two sequences of real numbers. For n € N, we set

n
Cp = Zukvn,k. (2.2)
k=1
The series Z ¢y, is called the series product of the two given series Z U, and

n>1 n>1
E Un-

n>1

In this definition we are not interested in whether the product of the series
exists, because it depends on some conditions. Indeed we have the following
example:



Consider Z ¢n the series product of the series ) -, % with itself. The
n>1

series Zn21 % is convergent but the series Z cp, is divergent. Indeed:
n>1

R G A G ) PR 1
6"7,;\/k+1\/n—k+17( 2 ,;)\/k+1\/n—k+1'

Then |¢,| > 1 and the series Z ¢y, is divergent.

n>1
The following theorem affirms the existence of the series product under some
conditions.

Theorem 2.2.
Let (un)n and (v, ), be two sequences of real numbers.

1. Assume that the series Z Uy, and Z vy, are absolutely convergent. Then
n>1 n>1

the series Z ¢y, is absolutely convergent and we have

n>1
“+o0 +oo “+oo
D en =0 un)O_ vn). (2.3)

2. Assume that the series Zun is absolutely convergent and the series
n>1

g v, is convergent. Then the series g cn, is convergent and we have:

n>1 n>1
“+o00 “+ o0 “+ o0
ch = (Z un)(z Up)- (2.4)
n=1 n=1 n=1
Proof .
It suffices to proves 2). We set
Anzzuka anzvky anzcky
k=1 k=1 k=1

400 “+o00 400
AzZun, a:Z|un| and BzZvn.
n=1 n=1 n=1

Then

n n

n
Cn = ch = ZujBn—j = Zuj(Bn—j — B) + BA,,.
j=1 j=1 =1



Since lim B.A, = A.B, then to show that lim C, = A.B, it suffices to
n—-+o0o n—-4oo

show that the sequence (A,), converges to 0, where A,, = Z a;(Bn—; — B).
j=1

2 —

+oo
€
Let . AN h that |B, — B| < < and 1< S > N.
et e >0 € N such that | | < == an 2\/|a3|_2M vV n
=
Thus for every n > 2N,

N n

€
|An| <> lajl|Bu—j = Bl+ > la;||Bn_j — B| < 5t
j=1 J=N+1

9
— =¢&.

\}

It results that lim |A,|=0. O
n—>—+00



2.1 Exercises

2-2-1



3 Integrals Depending on
Parameters

We recall in this chapter, that a piecewise continuous function f is called inte-

grable on I if the integral [ |f(x)|dx is convergent.
I

1 Convergence Theorem

Theorem 1.1. [Monotone Convergence Theorem|

Let ( fn: I — R) be a sequence of integrable piecewise continuous functions
on I. Assume that

i) the sequence (f,), is increasing, (i.e. fn < fnt1)
ii) the sequence (fy,), is pointwise convergent to a integrable piecewise con-
tinuous function f on I.
Then f is integrable on I if and only if the sequence ( I; fn(x)dx) is
n

bounded above. Moreover with these assumptions

@yt = sup / fo(@)dz = lim / Ful@)da

neNJTI n—+oo Jr

Remark 11 :
Let ( fnid — R) be a sequence of integrable piecewise continuous functions
n

on I. We assume that

i) the sequence (fy,)n is decreasing, (i.e. fn, > fnt1)

ii) the sequence (f,,), is pointwise convergent to a integrable piecewise con-
tinuous function f on I. Then f is integrable on I if and only if the sequence

( I; fn(x)dx> is lower bounded. Moreover with these assumptions
n

/If( o)z = int [ 1, :ngrfoo/fn

69



Theorem 1.2. [Dominated Convergence Theorem)|
Let ( foil — R) be a sequence of integrable piecewise continuous functions
on I. We assume that

i) the sequence (fy,)n is increasing, (i.e. fn < fni1),

ii) the sequence (f,,), is pointwise convergent to a integrable piecewise con-
tinuous function f on I,

iii) there exists an integrable function ¢: I — RT such that |f,| < ¢, for
any n € N. (This assumption is called the domination assumption).

Then for any n € N, f,, is integrable on I and f is integrable on I. Moreover

Jim /1 Ful@)da = /I f(@)da.

1.1 Continuity

Theorem 1.3.

Let  be a subset of R™ and f: 2 x I — C a continuous function on Q x I
and fulfills the domination assumption, (i.e. there exists an integrable function
©: I — RT such that |f(z,t)] < ¢(t), for all z € Q.) Then the function

xr— F(x) = /f(x,t)dt is continuous on €.
I
Theorem 1.4.
Let © a subset of R™ and f: (2 x I — C a continuous function on 2 x I and

fulfills the local domination assumption, (i.e. for any compact K C €, there
exists an integrable function p: I — R™ such that |f(z,t)] < ¢(t), for all

x € K.) Then the function z — F(z) = /f(m, t)dt is continuous on ).
I

1.2 Differentiability

Theorem 1.5.
Let J be an interval and f: J x I — R a continuous function on J x I. We
assume that

i) For any = € J, the function ¢t — f(z,t) is integrable on I

ii) e exists, continuous on J x I and fulfills the domination assumption,
x

0
(i.e. there exists an integrable function ¢: I — R™ such that ‘a—f‘ < p(t),
x
for all x € J.)

Then the function x — F(x) = /f(a:, t)dt is of class C! on J.
I



2 Generalized Integral Depending on Parameter

2.1 Convergence Theorem of Generalized Integral

Let f(t,z) be a function defined on ]a, b[x]a, 8[; with —oo < a < b < 400 and
—o0 < a< B < +4o0o. We intend to study the continuity and the differentiabil-

ity of the function
b
= / ft,x)dt

To study this problem it suffices to study the case a € R. In which follows
we consider the case a € R. To study the function F', we consider a sequence
(tun)n of [a,b] which converges to b and we study the sequence

= /au F(t,z)dt

and we apply for each function F,, the previous results and deduce the regularity
of the function F' = lim F,,.

n—-+o0o
Definition 2.1.
Let X be a subset of R and f a function defined on [a,b[xX such that the

b
integral / f(t,x)dt converges for any = € X.

We say that the integral / f(t,x)dt converges unoformly on X if, Ve > 0, 3¢

independent of x such that | f f(t,z)dt| < e; for any ¢ < s <b.
b
We remark that if the integral / f(t,z)dt converges unoformly on X,
a
then for any sequence (uy), of [a,b] convergent to b, the sequence F,(z) =

Un
f(t,x)dt converges unoformly on X.
a

Theorem 2.2. [The Cauchy Criterion]|
Let X be a subset of R and f a function defined on [a,b[xX such that the

b
integral / f(t, z)dt converges for any x € X.

The integral / f(t,x)dt converges uniformly on X if and only if Ve > 0, e

independent of x such that | [ f(t,z)dt| < ¢, for any ¢ < u < v <b.
Theorem 2.3.

Let X be a subset of R and f a function defined on [a, b[x X. We assume that
there exists an integrable function defined on on [a, b such that | f(¢, 2)| < ¢(t),
for any x € X. Then



b
i) The integral / f(t,x)dt converges absolutely for any = € X.

b
ii) The integral / f(t,x)dt converges unoformly on X.

a

Example 2.1 :
+oo 5 . . R
1. Consider the integral / e e dt, for x € R. As |[e71%elt?| < et
0 o
which is integrable, thus / e~V el dt converges unoformly on R.
0

+oo :
Sin ¢
2. Vonsider the integral e‘“’%dt. This integrable converges uno-
0
formly on any interval [a, +ool; for any a > 0.

Theorem 2.4. [Abel Rule for the Uniform Convergence]
Let X be subset of R and f, g two functions defined one [a, +00[x X such that

u
i) There exists a real M independent of x such that |/ ft,z)dt| < M,
a

for any u € [a, +0o0.
ii) The function ¢ — g(¢, x) is decreasing for any x € X and there exists
a non negative decreasing function ¢ on [a, +o00[ such that |f(¢, z)| < ¢(¢) and

, ligl »(t) = 0. Then the integral / f(t,x)dt converges uniformly on X.
—+00 a
too | sint
Therefore the integral / e “”Tdt converges uniformly on ]0, +oo[. It
0

—tx

suffices to take f(t) =sint and g(t,z) = ¢

1
t =t

2.2 Continuity
Theorem 2.5. b
Let f be a continuous function on [a, b[x]«, B[ such that the integral [ f(¢, x)dt

a
converges uniformly on any compact [, €] Cla, S[. Then the function

b
F(m):/ ft,x)dt

is continuous on |, 3.



2.3 Differentiability
Theorem 2.6.

3]
Let f be a continuous function on [a,b[x]a, 3] such that a—f exists and is
x
b
continuous on [a, b] X]a, f[, for any = €]«, 8], the integral / f(t, z)dt converges
a

b
and the integral / ?(t,x)dt converges uniformly on any compact [(,£] C
x

e, B]. Then the function
b
2) :/ £t 2)dt

is differentiable on Ja, B[ and

Example 2.2 :

1
1. Let F,(z) = / t*In" tdt, for x €] — 1,0]. F, is well defined. Moreover
0

the functions f,(¢t,x2) = t*In" t and — Ofn
on ]0,1]x] —1,0] and for z € [a,0], Wlth —1 < a <0, one has t*|In" t| <

——(t,z) = fns1(t, x) are continuous

1
t*| In™ t|. Thus the integral / t* In" tdt converges uniformly on [a, 0] and
0

(=1)"n!

F,, is continuous and of class C* on | — 1,0]. F,(z) = Tk

2. Consider the function G defined for x > 0 by:

+oco _—at?
Gla) = / .
0

1+¢2

The function g(t,x) = £—5 is continuous on [0, +00[X [0, +00[. g(t,z) <

1+t
1
I thus G is continuous on [0, +00].
dg g ==t2 . 2 9g
8—(t,x) = —t“e 1+ which is continuous on [0, +00[X [0, +-00[ and 3 —=(t,x)dt
x 0 x

converges uniformly on any interval [a,4oo[, for any a > 0, because



0
|a—g(t,x)| < e which is integrable, for x > a. Therefore the function

G is differentiable on ]0, +oo[ and

’ e dg
G'(z) = /0 %(t,x)dt.



2.4 Exercises

Let E be the vector space of continuous functions on [0, 1], and let K be
the function of two variables defined by:

K(z,y) = {(m_ Dy siy<uz

zly—1) siz<y

To any function f of F we associate the function

fla) = / K(z,9)f(y)dy.

(a) Prove that for any f € E, f is of class C2, f(1) = f(0) = 0 and

<1

f=r
(b) Prove that for any f,g of E :

1 1
/0 i) f(2)dz = /0 Fle)g(w)d.

3-2-2| (a) Study the convergence of the following integral with respect to the
parameter xz € R.

+oo y—(a+1)
—dt.
1 VitZ —1
Let I be the set of = for which the integral is convergent.

(b) For z € I, define
+oo t*({L’«Fl)

—dt.
1 ViZ —1

Prove that F' is of class C* on I.

We claim to compute the following integral

1 — cos(t
F(J;):/ %(x).e*tdt; x>0
0

F(z) =

(a) Verify the existence of this integral.

1
b) P that F"'(z) = ——
(b) Prove tha (x) 522

(¢) Deduce the expression of F.



—tx

O sint oo
For & > 0 define the functions F(z) = / dt and G(z) = / ——5dt.
o t+ o L1+t

x

1
(a) Prove that F' and G fulfills the same differential equation y" +y = —.
x
(b) Prove that F = G.
. . +0 sin ¢
(¢) Deduce the value of the Dirichlet integral Tdt.
0
Let f be a continuous function and bounded on R;. We define for z > 0

+oo 1o
the function F(z) = / f(t)e **dt and G(z) = / tF(t)e~tdt.
0 0

(a) Verify that F' and G are well defined for z > 0.
(b) Determine the limit of F at +o0.
(c) Prove that F is differentiable and compute F’(x).

1 oo
Let 9(t) = A+ and f a continuous function on R such that / |f(t)|dt <
™ — 00
+00.
Define

(a) Prove that ¢ is continuous on R.
(b) Prove that ¢ is of class C*° on R.
(¢) Prove that

+o0 +o00 +00
/ p(z)dr = / f(t)dt. W (t)dt.

—oo —oo —o0

T cos(x —
(d) Let ¢(x) :/_ Mdt.

a) Prove that ¢ is of class C*° and fulfills a differential equation of
second order.

b) Compute ¢(0) and deduce the expression of @.

s

(a) Let I,, = /2 sin” zdz.
0

a) Compute Iy, and Izp4q, for any p € N.



b) Prove that for any n € N, I, I,,11 < IEL < I,I,,_1 and deduce the

Wallis formula:
[T
I, ~ioo A —-
* 2n

3
(b) a) Prove that f: z — / sin® tdt is C*° on | — 1, +00].
0

b) Give a simple equivalent of f at +oo.
c¢) Give an asymptotic rxpansion of three terms of f at —1.

+o00
Let F(x) = t
0

(1 +2) (22 +12)

(a) Prove that F is of class C! on |0, +ool.
(b) Find a relation between F(z) and F(1).

(¢) Determine the limit of F'(z) when 2 — +o0.

dt
(d) Remark that F'(x / and determine lim F'(z).
1+ 2) @2+ 22) =0

dt
1+t2 (22 +¢2)

(e) a) Prove that F(x) = 2/

b) Prove that F(x) ~ 2/
) 0 /x2+t2

¢) Deduce a simple equivalent of F' in a neighborhood of 0 and +cc.

Ler(1 —t)
-2-9| Defi = ——=dt.
efne f(x) = [ o

(a) Determine the domain of definition of f.

(b) Prove that f is differentiable on | — 1, 400[ and determine f'(z) for
any x > —1.

(¢) Give lim f(z) and deduce the value of f(z) for any z > —1.

r—> 400

3-2-10 | Let f be a continuous function on [0, +oo[ and

D={(u,t) ER*} 0<u<um 0<t<u}.

_ / /D T _fit))(u_t)dudt.

Define the function



(a) Prove that g is well defined.
(b) Compute

/ v du
¢ v (z—u)(u—1).
(We will be able make the change of variables u = t cos? @+ sin” .)

(¢) Prove that g(z) = Tl'/ f(t)dt and deduce the expression of f in
0

term of g.

3-2-11 | Define the function F' by:

/2 1
F(x) = / —dt.
0 V1 -—a2sin®t
(a) Prove that the domain of definition of F'is | —1,1].

(b) Prove that F is of class C? on ] — 1,1[, and give the expression in
integral form of F’ and F .

(c) a) Use the change of variables u = zsint to prove that

b) Deduce lim,_,;- F(x).



4 Sequences and Series of
Functions

1 Sequences of Functions

Definition 1.1.
Let (fn)n be a sequence of functions defined on a subset A of R.

1. The sequence (fy, ) is called pointwise convergent on A if for every z € A,
the sequence (fy,(x)), is convergent.

2. The sequence (f, )y is called uniformly convergent to f on A if

lim sup || fn(z) = f(2)] = 0.

n—-+o0o TEA

Remark 12 :

1. The sequence (f,), converges to f on A if and only if

Vax € A, Ve > 0, AN € N such that |f,(z) — f(z)| <e, VYn> N.

2. The sequence (f,), converges uniformly to f on A if and only if

Ve >0, 3N € N such that |f,(z) — f(z)] <e, Vn> N and Vx € A.

Examples 3 :

79



1. Let (fy)n the sequence of functions defined on I = [0,1] by: f,(z) = 2™,
for all z € I and n € N. The sequence (f,), converges to the function f

defined by:
0 if 0<z<1
f(””")_{l if  z=1
sup |fn(z) — f(z)] = sup z™ = 1, then the sequence (f,), is not
3?6[071] xE[O,l[

uniformly convergent on [0, 1] and also on [0, 1[. Moreover, the sequence

(fn)n converges uniformly on any interval [0,a], Ya € [0,1[. Indeed,
lim { sup z") = lim a" =0.

n—-+oo IG[Qa] n—-+oo

2. Let (fn)n be the sequence of functions defined on R by: f,(z) = sin(ne) .

The sequence (fy,), converges uniformly to 0 on R. (|f,(z)] < 1).

3. Let (fn)n be the sequence of functions defined on Rt = [0, +oo[ by:
fulz) = ni—i—x The sequence (fy,), converges to 0 on RT and not uni-

formly since sup fn(xr) = 1. Moreover the sequence (fy), converges
r€ERT
uniformly on any closed interval [a,b] C R™T.

4. Let f,(x) = xze ™" for x € RT. We have sup,cg+ fn(z) = 2. Then the
sequence (fy)n converges uniformly to 0 on R™.

x\/n
5. Let fn(z) = T na?

SUp,cp fn (%) = 55. Then the sequence (f,), is not uniformly convergent
on R. Moreover for all a > 0, the sequence (f,,),, converges uniformly on
[a, +0oo]. Indeed for n large enough sup,c(, 4oof fn(7) = fu(a).

for z € R. The sequence (f,), converges to 0, but

1.1 Cauchy Criterion for the Convergence

Theorem 1.2. (Cauchy Criterion for the uniform convergence)
Let (fn)n be a sequence of functions defined on an open subset Q of R. The
sequence (fn), converges uniformly on a A C Q if and only if

lim sup |f,(x) - f ()] = 0.

P,q—+00 zcA

This is still equivalent to:

Ve >0,3N, sup|frip(x) — fu(x)] <e, Vn>N,VpelN
z€A



Remark 13 :
If the sequence (f,,)n converges uniformly to f on A C €2, then for any sequence
(zn)n € A, the sequence (up, = |fn(zn) — f(zn)|), converges to 0. This is
because u, < sup |fn(x) — f(2)].

z€A

n

1.2 Continuity and Uniform Convergence

Theorem 1.3.

Let (fn)n be a sequence of functions defined on an open subset 2 C R which
converges uniformly to f on a subset I C . Let a € I and assume that
;l—% fn(x) = £, exists for any n, then the sequence (¢,,),, converges and ;11}1}1 fz) =

lim /,. Otherwise

n—-+o0o
i (B fa(e)) = B, (i fu(@)). @

Proof .

To prove that the sequence (¢,,), is convergent, we prove that it is a Cauchy
sequence.

For € > 0, there exists IN such that |f,(x) — fm(z)| < €, Yn,m > N and
Va € I. The inequality is still true if  tends to a. Then Ve > 0, |¢,, — {,,] < &,
Vn,m > N. The sequence (£,), is a Cauchy sequence in R. Let £ = lim ¢,.

n——+4oo
For ng > N, we have:

If(m) _£| < |f($> - fno(x)| + |fn0(l‘) _gnol + |£n0 _Zl

Since the sequence (fy ), converges uniformly to f, |f(z) — fn,(z)| < &, Va € I.
(We take m = ng and we tends n to +00). Since lim,_,4 fn, () = £5,, there
exists n > 0 such that Y € I, with 0 < |z — a| < n we have: |f,,(z) — £y,| <
€ = |y, — ¢ < e. We have: Vx € I such that [z —a| <7, |f(z) — ¢ <
€ 4+ ¢ + € = 3¢, which proves the result.

g

Example 1.1 :
n : t
Let (f,)n be the sequence of functions defined on R™ by: f,(z) = / %e*‘”dt.
0

efmt

— is decreas-

Msint _, ,
fr(@)—fm(z) = ¢ dt, (m > n). The function t —



e—JB’I’L

2<2/n,
then sup |f(z)— fm(z)] < 2/n, which proves that the sequence (f, ), converge
rER+

ing on [n,m], by the second mean formula, ! |f,(z) — fm(2)| <

uniformly on RT.

n : t
Moreover lim f,(x) = / %dt, because
0

z—0t

0. Then

" sint
fn(x)—/ —dt’ <azn ————
0 t z—0t

+oo +oo _:
t t
lim §Hl—e_xtdt::j/ ST,
¢ o ¢

z—0t 0

Theorem 1.5.
Let (fn)n be a sequence of functions defined on an open subset I C R. Assume
that:

1. The sequence (f,), converges uniformly to f on any closed interval
[a,b] C I,

2. For any n € N, the function f, is continuous at ¢ € I.

Then f is continuous at c.

Proof .

We consider a sequence (), € € which converges to ¢. By Theorem 1.3
lim f(z) = Tim_fo(e) = f(0) 0
Examples 4 :

1. Let (fn)n be the sequences of functions defined on Rt by: f,(z) =

" sint . .
dt. The function f,, are continuous on R*.
0 t +x

X

" sint
—Jn 0 S ’ —
fu@-r0 < | [ HE G
fn(0)] = 0. Tt results that f,, is continuous at 0.
For 29 > 0, |fu(x) = fu(2o0)| < Mp(zo)|z — x|, Vo > %2, with M, (2o) =

)dt| < z(In(n+x)—Inx), then lin}) | fn(2)—
r—r

/" dt
o (t+zo)(t+ %)

1

Theorem 1.4. [Second Mean Formulal
Let f be non negative decreasing continuous function on the interval [a,b] and let g be a
Riemann integrable function on [a, b]. Then there exists c € [a, b] such that

/ ’ f(w)o(a) dz = f(a) / “g(2) dx.



In use the second mean formula, we get: |f,(z) — fim(z)]| < n+z, for all

2

n < m and £ > 0. Then sup |fn(z) — fm(x)] < = and the sequence
z€R n

(fn)n converges uniformly on R+. It results that the function f defined

+oo i

t

by f(z) = / T 4t is continuous on R
0 t +x

1 (™ sint
2. Forz > 0, we set f,(x) = — / dt. The functions f,, are continuous
T Jo

t+x
on R%. The sequence (fy), convergences uniformly on [iﬁr, +oo[, Yh >
1 ° sint
0. It results that the function g defined by g(z) = — / ST gt is
T Jo t+x

continuous on RY .

Theorem 1.6.

Let (f)n be a sequence of continuous functions on an open set 2 C R and con-
verges uniformly on compact subsets of I to a function f. Then f is continuous
on I.

1.3 Integrability and Uniform Convergence

Let (fn)n be a sequence of Riemann integrable functions on an interval [a, b].
Assume that the sequence (f,), converges to the function f. Various problems
arise, however

1. the function f is it Riemann integrable?

2. if f is Riemann integrable on [a, b], can we have

b b
Jim / Fat)dt = / F(H)dt?

The answer to the question a) is negative, it suffices to take the function f
defined on [a, b] by:

_J1 ifzeQnla,b
f(x)_{o if not

This function is not Riemann integrable and it is a limit of Riemann integrable
functions. (Q is countable).
The answer to the question b) is also negative. We can take f, (z) = nx( 2)

defined on [0, 1]. The sequence (fy)n converges to 0 and lim / fulx)de =

n—-+oo
1

2
We still have the following theorem:



Theorem 1.7.

Let (f)n be a sequence of Riemann-integrable functions on an interval [a, b].
If the sequence (f,), converges uniformly to a function f on [a,b], then f is
Riemann-integrable on [a, b] and we have:

lim / ’ Falt)dt = / ’ F(t)dt.

n—4oo

Moreover the sequence (F,), defined by: F,(x) = / ’ fn(t)dt converges uni-
a

formly to the function F defined by: F(z)= /z f(®)dt on [a,b].

Proof .

As the sequence (f,), is uniformly convergent to f on [a,b], the function f is
bounded. Indeed, for € > 0, there is N. € N such that sup |f,(z)— f(z)]| <e,

z€la,b]
Vn > Ng. Then sup |f(z)] < sup |fn.(z)|+ e < +oo.
z€[a,b] z€Ja,b]
Let 0 = {z1, ... ,z,} be a partition of [a,b] and let n > N.. As Vz € [a,b]
fu(x) —e < f(z) < fa(z) + &, we have:
MP—e < My < M+ecand mjy—e < my < mil+e, with My = sup  f(x),
TE[Tk, Th41]
MP= sup fo(x),mp= inf f(z)andmp= inf f,(z).
€Tk, Tht1] €Tk, Tt1] z€[Tk,Tr11]

It results that:

U(fTHU) _E(b_a) < U(f70) < U(fn,O') +5(b_a)

L(fn,0) —e(b—a) < L(f,0) < L(fn,0) + (b — a).
Then

L(fn) —e(b—a) < L(f) < U(f) < U(fa) +£(b—a). (4.2)

Since the functions f, are Riemann integrable, we have U(f,) = L(f,) for all
n €N, and 0 < U(f) — L(f) < 2e(b— a), for all ¢ > 0. It results that f is

b b
Riemann integrable on [a,b] and for all n € N: \/ f(®)dt —/ fa(t)dt| <

e(b— a). Moreover we also have

V€ [a,b], [Fu(x) = F(x)] < (b— a)tzl[lpb] |fn(t) = f()].



Corollary 1.8.

Let (fn: [a,b] — R)  be a sequence of piecewise continuous functions on [a, b]
and uniformly convergent to f on [a,b], then f is Riemann-integrable on [a, b]
and we have:

/a b f(t)dt = lim / ’ Fu(t)dt.

n—-+o0o

1.4 Differentiability

Theorem 1.9.
Let (fn)n be a sequence of continuously differentiable functions (of class C1)
on an interval [a,b] C R. Assume that:

1. the sequence (f, ), is pointwise convergent to f on [a,b].

2. the sequence (f} ), is uniformly convergent on [a, b].

Then f continuously differentiable on [a,b] and: Vz € [a,b], f'(z) = lim,— 400 f1, ()
and (f,,)n converges uniformly to f on [a,b]. In particular f is of class C! on
[a, b].

Proof . .
We have / fL@)dt = fo(z) — fu(a). Let g be the limit of the sequence

a
x

(f1)n. We have / g(t)dt = f(z) — f(a). Moreover g is continuous, then f is
differentiable andaf'(x) = g(z),Vx € [a,b]. O

Exercise 1.3 :

Let (fn)n be a sequence of differentiable functions on an interval [a, b]. Assume
that the sequence (f/ ), is uniformly convergent on [a,b] and there exists zy €
[a, b] such that the sequence (f,(xo))n is convergent. Prove that the sequence
(fn)n is uniformly convergent on [a, b] to a differentiable function f and f'(x) =

lim f] ().
(Hint: use the mean value theorem to the function f,, — fi,, for n and m large
enough.)



1.5 Exercises

Define the sequence of functions (f,), on R by: f,(z) = nz(1 — z)".

(a) Determine the domain of pointwise convergence of the sequence
(fn)n-
1
(b) Compute / fn(x)dz and deduce that the sequence (f,,) is not uni-
0
formly convergent on the interval [0, 2[.
(c) Compute the limit of f,(1), when n — 400, and deduce an other

time the previous result.

Study the pointwise and the uniform convergence of the following se-
quences of functions (f,), defined by:

na
(a) falz) = T nzaz " R,
2n2x if zel0,5]
(b) fulz) = 0 if xe€l[i 1] on]0,1],
2n —2n%x if z € [%7 1]
x? sin(%) if z#0
(C) fn(l‘) - lf T = 0 on R7
bm(w) e~ T
o if z#0
N if z=0"" R+,

[0}

|
s
e
i

—
@
~

| |

(1 —nx —|1 —nz|) on Ry, a € R,

[e4

n a:l—nac if 0<x<;

- if l<o<] @SR
nr— 1+ if xzel0 L]
“V1-z if z € [+1] on [0, 1].

SRz o
ifxz=0

on each of the following intervals, with 0 < a < 1.

(i) fulz) =

1+x
[0,1—a], 1—a,1+4a], [1+a,+oo[
sin® nz .
() ful@)={ —pp T TETL

0 if xenZ



(a) Consider the function ¢, : ]0,n[— R defined for n > 2 by:

on(x)=e""% — (1 — %)n

i. Prove that ¢/ has a unique zero on the interval |0, n[.

4-1-3

ii. Study the variations of ¢, on [0,n].
(b) Study the pointwise and uniform convergence of the sequence of
functions (f,,)n>1 defined on [0, +oo[ by:
(1-2)" if 0<a<n

n

fu(z) =

0 if T>n

Study the pointwise and the uniform convergence of the following se-
quences of functions (f,), defined by:

(a) fu(z) = (cos™ x)sinz for € [0, T].

(b) gn(x) =1+ %)”7 if 2> —nand g,(z) =0if z < —n.

Consider the case of the uniform convergence on | — o0, al, for a € R.

Let (f)n be the sequence of functions defined by on R\{—2} by: f,(z) =
(z+1)" -1

(x+1)n+1°
Study the pointwise and the uniform convergence of the sequence (fy,)n
on R\{—2} and on any closed interval which does not contain neither —2

and 0.

Let u,(z) = nze ™", x € [0,1].
(a) Find the pointwise limit of the sequence of functions (uy)n

1
(b) Find lim up (z)de.

n—-4oo 0
(¢) The convergence of the sequence (uy), on [0, 1] is it uniform?

Let (fn)n be the sequence of functions defined on [0, +oco[ by: f,(x)
nx

14+ nx’

(a) Determine the pointwise limit f of the sequence (fy, ).

(b) The convergence of (fy), to f is it uniform on [0,1]? on [1,4oco[?

and on [0, +o00[?



(¢) Let F,, be the function defined on [0, +oc0[ by: F,(z) = / fa(t)dt
0

i. Determine the pointwise limit F of the sequence (F, ).
ii. The convergence of (F,), to F on [0, 1] is it uniform?

1
Let (fn)n be the sequence of functions defined by: f.(z) = /2% + —;,
n

for x € R.

(a) Prove that the sequence (f,), converges uniformly on R.

(b) Prove that the functions f, are differentiable on R and the limit of
the sequence (fy,)n is not differentiable.

Define a sequence of functions (f,), on R’ by:

fu(x) =n|lnz|™

(a) Determine the domain D of the pointwise convergence of the se-
quence (fn)n-
(b) Study the uniform convergence of the sequence (fy, ), to f on D and

on the compacts of D.
ne *(x® + x)

4-1-10 | Define the sequence of functions (f, ), on Ry by: f,(z) = T
na

(a) Determine the limit f of the sequence (fy), and deduce that the
sequence (fn)y, is not uniformly convergent on R .

(b) Prove that the sequence (f,), converges uniformly on any closed
and bounded interval of |0, +o0][ to f.

(¢) Prove that the sequence (Ifr. = f)n is bounded on [0, 1].

(d) Deduce that lim fn t)dt = /f

n—-+o0o 0

n

4-1-11 | Define the sequence (f,,),, of functions defined on Ry by: f,(z) =e " .

(a) Determine the domain D of pointwise convergence of the sequence
(fn)n-

(b) Prove that the sequence (f,), converges uniformly on [1, +ool.

(c) Prove that the sequence (fy, )y is not uniformly convergent on [0, 1].



(d) Study the uniform convergence of the sequence ( f,), on the compact
subsets of [0, 1[?

Let g, = fr/L
(e) Determine the domain of pointwise convergence of the sequence
(n)n-

—1.1
(f) Study the convergence of the sequence (gn(n 5 )n> .
n n

(g) Study the uniform convergence of the sequence (g, ), on the follow-
ing intervals, [0, +oo[, [0,1] and [1, +oo].

4-1-12| Define the sequence of functions (f,), on R by:

B x2+x—|—n

(@) = ()" (T2

Fale) = (1) (S I
z2+nP

(a) Prove that |f,(z)| o

(b) Determine, eventually according to the values of 8 the domain Dg
of the pointwise convergence of the sequence (fy,)n-

(c) Study the uniform convergence on Dg, and on the compacts of Dg.

4-1-13 | Let f be a continuous function on R. Assume that there exists a sequence
(Pp)n of polynomials which converges uniformly on R to f.

(a) Prove that there exists ng € N such that Vn > ng, P, — P, is
bounded on R.

(b) Deduce that f is a polynomial function.

4-1-14 | Study the pointwise and uniform convergence of the following sequence
of functions (fy,)n-

z?"Inz  if x €]0, 1]

(a) fa(z)=
0 ifz=0
nz"lnz if xz €]0,1]
(b) fu(z) =
0 ifx=0
s’ €]0, 1]
(©) fulw)=q "L

0 ife=0



(d) fulz) =4m(22""" —22").

(©) fale) = 0

1 1
and compute lim / fn(t)dt and lim f,(t)dt.
n—-+4o0o 0

0 n—-+4oo
1
4-1-15 | Let (fy)n be the sequence of functions defined by: f,(z) = x?sin — if
2 #0and f,(0) =0
(a) Prove that the sequence (f,), converges uniformly on any interval
[a,b] C R.
(b) The convergence is it uniform on R?

(¢) The sequence (f})y is it uniformly convergent on R.
n (—1)k_1$(}k
4-1-16 | For = € [0,1] and n € N, define f,(z) = Z —— —In(1+2)

(a) Prove that the sequence (fy), converges uniformly to 0 on [0,1].
(We can compute f;,(x)).

n

¥ =1In2.
n+1

b) Prove that lim 3 =0

(b) Prove tha n;r&ZT(
k=1

4-1-17| Let (f,)n be the sequence defined on [0,1] by:
n’x if zel0,1]
filz) = —na®+ 2z if zell 2]

0 it zel2,1]

(a) Study the pointwise and the uniform convergence of the sequence

(fa)n-
1 1
(b) Compare lim [ f,(z)dx and/ lim f,(z)dz.
0

n— oo 0 n—oo

2 Series of Functions

Definition 2.1.
Let (fn)n be a sequence of functions defined on a subset A of R.

1. The series of functions Z fn is called pointwise convergent on A if the
n>1

n
sequence (Sn = Z fk) is pointwise convergent on A.
n
k=1



2. The series Z fn is called uniformly convergent on A if the sequence
n>1

(Sn = Z fk) converges uniformly on A.
k=1 "

Remark 14 :
1. If the series Z fr is pointwise convergent to a function f on an interval

n>0
I, then lim f,(x) =0, for all z € I.
n——+00

2. A series Z fn is pointwise convergent on J, if and only if, the series

n>0
Z fn(x) tulfills the Cauchy criterion, i.e.
n>0
n+p
Vo € 1,Ve>0,3N;| Y fulx)| <e, Vn>=N,peN.
k=n

Examples 5 :

1. Let (fn)n be a sequence of functions defined by: f,(z) = z™, the series

Z fn(x) is pointwise convergent on the interval ]0,1[ to the function
n>0

1 . .
flx) = =% If || > 1, |fn(z)|] > 1, then the series Z:Ofn(z) is diver-
gent on R\]0, 1[. -
sin £
2. For x > 0, we set f,(z) = —2.

n+x
1
For all fixed z > 0 we have: sin— = — — — + O(—3), then
non n

T X

Ful@) = s = Gt + Ol

Then the series E fn is pointwise convergent on R*.
n>1

Also, the series Z fn is pointwise convergent on R\ Z_.
n>1

Remark 15 :



1. If the series Z frn is uniformly convergent to f on I, then the series
n>0
Z fn is pointwise convergent to f on I.
n>0

2. A series Z frn is uniformly convergent on I, if and only if, it fulfills the
n>0
Cauchy criterion for the uniform convergence i.e.

n+p
Ve > 0,3N € Nsup || ZUk(m)H <e, Vn>N,peN.
wel k=n
Example 2.1 :
The series Z 2™ is pointwise convergent on | —1, 1] to the function f(z) = 1,
n>0
but the convergence is not uniform because sup f,(z) = 1.

z€]—1,1]
Definition 2.2.
A series Z fn is called normally convergent on I, if the series Z sup || fr ()]
n>0 n>0 *€1
is convergent.
Proposition 2.3.
If the series Z frn is normally convergent on I, then it is uniformly convergent
n>0
on [.
For the proof we use the Cauchy criterion.

Corollary 2.4.

+oo
If sup | fn(2)| < ay, and the series Z an is convergent, then the series Z fn is
z€l n=0 n>0

normally converge on I.

Examples 6 :

inxz

e 1 :
1. Let fo(z) = &5, (a > 1). |falz)] < vt then the series converges

ne

normally on R.

e " 1 1
2. F €10, , we have: ~* <1, then f,(x) = < <
or x €]0,+o00[, we have: ze * < en fp(x) - s T
for all x € [h,4o00[. It results that the series E fn converges uniformly

n>1

on [h,+ool,Vh > 0.



3. Let fn(2) = m defined on R\ Z* . |f.(z)] < n|xl+n\ < nlni\zll‘ Let

K be any compact of R\ Z* , there exists R > 0 such that K C] — R, R].
Let ng € N such that R < ng, we have: |f,(z)] < m, Vn > ng,

Vx € K. Then the series Z fn converges uniformly on K.
n>1

2.1 Abel’s Criterion for the Uniform Convergence

Theorem 2.5.
Let (f,)n be a sequence of functions defined on a subset X C R and let (g,,),, be
a sequence of functions defined on a subset Y C R. The series Z fr(@)gn(y)

n>1
is uniformly convergent on X x Y under any one of the following conditions.

1. The series Z fr is uniformly convergent on X and the sequence (g, ),
n>1
is bounded and monotone on Y.

2. The partial sums of the series Z frn are uniformly bounded on X and
n>1
the sequence (g, )n is monotone and uniformly convergent to 0 on Y.

3. The series Z fn is uniformly convergent on X and the series |go| +

n>1
Z |gn — gn+1] is bounded on Y.
n>1
Proof .

n 400
1. We set S,(z) = pr(x) and S(z) = an(m) Assume that the se-
p=1 n=1

quence (Sy, )y, is uniformly convergent to S on X and the sequence (g, )n
is decreasing and bounded on Y. Then

Ve>0,INeN, Vn>N sup|Sp(z)—S(z)| <e.
rzeX

Let M > 0 such that |g,(y)| < M for every n € N and every y € Y. If
p>N+1and g > p, then

Y fal@gny) = D (Sulz) = S@)) (9u(y) = gar1(y))



Then

sup Ian gn(y)l < esup Z 9n(Y) = Gnt+1(y)]

rzeX,yeyY n—p er
+e Sup(lgq( )+ 19p(y)]) < 2eM.
yey
It follows that the series Z fn(x) frn(y) converges uniformly on X x Y.

n>1

. Let M > 0 such that |S,(z)] < M, Vz € X and Vn € N. Assume that
the sequence (g, )n is decreasing:

D Fa(@)gn®) = Sn(@)(9n(y) = g1 (1) + 59 (2) 94 (y) — Sp-1(2)9p (v)

We have: Ve >0, 3N € Nsuch that V n> N, sup|g,(y)| <e.
yey

Forp>N+1andg>p

S Ian y)| < sup | M (9p(¥)—94(¥))+Mgq(y)+Mgy(y) | < 2Me.
€T Y n=p

. Let M > O be such that

90y |+Z|gn —gnr1(W)| S M, Vyey.

LetnzN,

n—1

9n(¥) =Y (9p11(¥) — 9()) + 90(v)-

p=1

It follows that |g,(y)| < M, VneNand VyeY.

Y Fa@galy) = D (Sul(@) = S(@))(9n(y) = gns1(v))

+(Sq($) - S(x))gq(y) - (Sp—l(x) - S(x))gp(y).



Thus

iup |an |<€sup Z\gn — gn+1(y)| +2M) < 3eM.
rzeX,yeY n=p

Examples 7 :

1. Let (an)n be a sequence of non negative decreasing real numbers and

inz s uniformly convergent on any

convergent to 0. The series E ane
n>0

compact subset of R \ 27Z.

inx

2. Consider the series Z and K a compact of R\ Z*, 3R > 0 such
n>0

that K C [-R,R]. The sequence g,(z) = n_lm is decreasing positive

Vn > ng, (ng > R). The series is pointwise convergent on R\ Z* and it

is uniformly convergent on any compact subset K C R\ (Z_ U27Z). In

particular this series converges uniformly on any interval [§, 2 —§]; V6 >

0.

n—+x

Proposition 2.6.

Let ( fo:l — R)n be a sequence on continuous functions at a point a € I.
Assume that the series ), - f, is uniformly convergent on I to a function f.
Then f is continuous at a.

Proof .
We apply the theorem (1.5) of the previous section. 0

Proposition 2.7.
Let I be an open set in R and (f,: I — R)_ a sequence of continuous func-

tions. Assume that the series Z frn is uniformly convergent on any compact
n>0

of I to a function f. Then f is continuous on I.

Theorem 2.8.

Let ( fn:la, ] — R)n be a sequence of Riemann integrable functions. Assume

that the series Z fr is uniformly convergent on [a,b] to a function f. Then f
n>0
is Riemann integrable and we have:

b +oo

+oo b
,;)/a fn(l‘)dJ?:/a nzz;)fn(m)dx



Proposition 2.9.
Let ( fn:la,b] — R)n be a sequence of continuously differentiable functions
(C* functions). Assume that

1. the series Z fn is pointwite convergent on [a, b] to a function f.
n>0

2. the series Z f converge uniformly on [a, b].
n>0

Then f is continuously differentiable on [a,b] and we have:

+oo
Fa) =Y fi@), Vaelab.
n=0

Moreover the series Z fn converges uniformly on [a, b] to f.
n>0
Corollary 2.10.

Let I be an interval of R and let ( fo: I — R)n be a sequence of continuously
differentiable functions. Assume

1. the series ), - fn is pointwise convergent on I to f,

2. the series ) - f;, converges uniformly on any compact of I.

Then f is continuously differentiable and we have:

+oo
flx) =Y fula), Veel
n=0



2.2 Exercises

Study the pointwise, absolute, normally and uniform convergence of the
following series of general term:

1)ZM,:EGR, 8)2(71)n,x6R,

n>1 ’I’L2 n>1 n®
1 T
2) Z —tan"! =, z € R, z"
=i n 9)271+m2n,x€R,
2 n>1
3) Zm" sin(nmz), = € [0,qa],
n>1 (_1)n
0<a<l. 10) )y ©ER:
n>1
9 Y s aek
a1 (e 11) < zeR
T ;
5) Zme_"zz, x € R, n>1 (1 +na?)
= (-1)"
1)z
6) 2?e” V" 3 e Ry, 12) > TER,
5 HOE
na? x
S 2 L eR,, 13 T a>o.
);1—&—71330 v + );na(l—i—mc?) @

4-2-2| (a) Study the pointwise convergence of the series E (=1)"1n (1 + E)
n
n>1
on R, .

(b) Study the uniform and normal convergence of this series on any
closed bounded interval in R .

Find the domain of definition and the domain of continuity of the func-
+oo —
(_1)n nx

tion: f(z) = Z c

n=0

n+1

+o00 —
. . . . (—=1)re "
4-2-4 Find the d f definition D of the funct = —
(a) Find the domain of definition D of the function g(x) nEZO 2l
(b) Prove that g is of class C* on D.
x2n+1

2n+1

4-2-5| (a) Prove that the series Z(fl)”
n>0

is uniformly convergent on

~1,1].



+oo p2ntl
Let f(z) =Y (~1)"

v 2n+1

(b) Prove that f is differentiable on | — 1, 1[ and compute f’.
(¢) Deduce the expression of f(x), for —1 < a < 1.

for z € [-1,1].

1
(d) Compute / tan~! xdr and deduce the value the of the following
0

“+o0
(=1)"
i nz:% 2n+1)(2n+2)

Consider the series of functions Z fn defined on Ry by: f,(z) =2" —

n>1

"~

(NI

(a) Prove that the series Z fn is pointwise convergent on [0, 1].
n>1

+o0o
Denote f(x) = Z fn(z), for = € [0, 1].
n=1

—+oo
(b) Prove that the remains R, (z) = Z up(z) = 2" f(z).

p=n-+1

(c) Prove that the series Z fn is not uniformly convergent on [0, 1].
n>1
(d) Prove that there exists M € Ry such that:

/01 R, (z)dx

1
(e) Deduce that the series Z Jn, Where g, = / fn(x)dz is convergent
n>1 0

1
and its sum is / f(z)dx.
0

M

<
“n+1

1
(f) Compute / f(x)dx and deduce the value of the following sum
0

+o00 _1)n
S

n=1
Define the series of functions Z fn, where f, is defined by: fo(z) =0
n>0
2
and f,(z) = w, for n > 1.

n2



(a) Prove that the series Z frn is uniformly convergent on R.
n>0

(b) Study the convergence of the series Z fr.
n>0

(-

(a) Prove that f is continuous on R.

(b) Study the uniform convergence of the series Z f/ and deduce that
n>1
f is of class C!.

too n+1
4-2-9| (a) Find the set of definition D of the function f(z Z

n=1
prove that f is of class C* on D.

— 1
(b) For z > 1; express f(x) in term of Z —.
n

rsinnx . .
4-2-10| (a) Prove that the series E ————— is pointwise convergent on
=~ 2y/n + cosz

10, 27

(b) Prove that the convergence of the series is uniform on any interval
of the form: [a,27 —a] V0 < a <27,

1
4-2-11| Let a € R and f,(2) = — In(1 + n®z?), forn > 1 and z € R.
no

(a) Prove that the series Z fn(x) is pointwise convergent on R if and
n>1
only if a > 1.

(b) Assume that o > 1.

i. The series Z fn(x) is it uniformly convergent on R?
n>1

ii. Prove that the function f(z Z fn(x) is continuous on R.

(¢) Prove that if a > 2; f is differenhable on R*.
(d) Assume 1 < o < 2.
i. Prove that f is differentiable on R*.



o =1
ii. Prove that Vn >1; f(n= ) >In2. Z Ta
k=n

Deduce that Vn > 1;

f is it differentiable at 07
4-2-12| Define f,(z) = ﬁ, for x € R.
Prove that

(a) The series Z fn and Z(—l)" fn converge and compute their sum.
n>0 n>0

(b) Va > 0, the series Z fn converges uniformly on [a, +00[;

n>0
(¢) The series Z(—l)" fn converges uniformly on R.
n>0
In(1
4-2-13 | Let fn(x) = M, for z > 0. Prove that
nx"

(a) the domain of the pointwise convergence of the series Z fu(z) is
n>1

+oo
J1,400[. Let f = an on |1, +o0f.
n=1

(b) the series Z fn is not uniformly convergent on ]1,+oo[ and nor-
n>1
mally convergent on [a,4o0], for all a > 1.

(¢) f is continuous on |1, +o0[ and lim+ f(z) = 4o0.
z—1

—x\/n
e

4-2-14 | Define the sequence (f,,), by: fn(z) = ——.
awence (fun by Jule) =

(a) Determine the domain of convergence of the series Z f-
n>0

+oo
Denote f = Z fn-
n=0

(b) Prove that f is continuous on Ry.



(c) Prove that f is differentiable on R*.

4-2-15| Let f: ] — 1, 4+o00[ defined by:

+oo
B (1)
s =y =0
n=1
Prove that f is continuous on ] — 1, 4+o00[ and compute hT f(z) and
Tr—+00

li .
Jm (@)

4-2-16 | Study the pointwise and uniform convergence of the series of functions

e~ Nz foo e~ Nz
2714_”2. Let f(z) = Zil—knz’
n>0 n=0

Prove that f is of class C' on R7.

4-2-17 | Define the series of functions Z fn, where f,(x) = SIMREIRT L

n>1

2

n

Recall that 2sin kz sin k?z = cosk(k — 1)z — cos k(k + 1)z.

Prove that the series Z fn(x) converges uniformly on R.

n>1

In(1 + nfa?
4-2-18 | Let fo(z) = L:x); with « and 8 two positive numbers.

n

Under what conditions the series Z fn(x) and Z fl(z) are pointwise

n>1
convergent on R?7

n>1

4-2-19 | Define by induction the sequence of functions (f,(x)), on the interval

[0,1] by:

fole) =1 and fu(o) =1+ [ ot~ ).

(a) Prove that for each n € N, the function f,, is a polynomial and that

fu(@) + fu(1 — 2) is constant.

(b) Prove that for any n € N and any x € [0, 1]

0 < fol(@) = fa—1(z) <

x
nl

n

n



(¢) Deduce that the sequence (f,,), converges uniformly on [0,1] to a

function f of class C! on [0, 1] and fulfills f/(z) =

fla—a?).

4-2-20 | Consider the sequence of functions (f,), defined on 0, +oo[ by: f,(z) =
1

(nx+1)2°

(a) Prove that the series Z I, Z f} and Z /. are uniformly con-

“+o0

n>0

2

= % Compute F(1),
1

(c) Prove that F is C? on ]0,4o0[ and give the sign of F/ and F~ on

* and denote f(x

Z—nm

2 . . .
E ze” " * in the domains of convergence respective Dy

n>0 n>0
vergent on [a +oo[, with a > 0.
1
(b) Let F(x Z fa(z). Recall that Z =
F(1) and F(2 )
10, 400
(d) Determine lim F(z) and lim F(z).
T—+00 z—0t+
4-2-21 | Consider the series Z e and Z ze ™"
n>0 n>0
and g(z
andD,.

(a) Determine Dy and D,
(b)

i. Prove that f is decreasing on Dy.
ii. Give lim f(x).
$ﬁ0+f<)

(c) The function f is it continuous on Df?

defines a continuous function

(d) i. Compute supxe*”%.
x>0
+00 .
ii. The series Z xe” ™ * is it uniformly convergent on D47
n>0
e—nw
4-2-22| (a) Prove that the series "
(a) > (-1

n>0
on its domain of definition D.

(b) Prove that the series Z(—l)
n>0
C*° on its domain of convergence.

—nx

n €

nZ+1

defines a function g of class



4-2-23 | Let (f,,)n be the sequence of functions defined on R by: f,(z) = naze "

(a)
(b)
()
(d)

Study the pointwise convergence of the series Z fn-
n>0

Prove that the series Z frn is not normally convergent on R.
n>0

Prove that it is normally convergent on [a, +oo], for all a > 0.

) Let f(z Z fn(x). Prove that f is the derivative of a well known

function. Deduce the expression of f.

(a)
(b)

(c)

()

Prove that the series Z fn is pointwise convergent on R.
n>0

For a > 0, prove that the series Z fl converges normally on | —
n>0
00, —a] U [a, +oo].

The series Z f/ is it uniformly convergent on R?

n>0

Determine the set where the function F'(x Z fn(x) is differen-
tiable.

Prove that Vx,y € R%, W) = yn(@),
Let z € R, we set: fp(x )—33 n(n)

1
Prove that the series g fn(x) is convergent if and only if x < —.
e

n>1

1
i. Let a,b such that 0 <a <b< —.
e

Prove that the series Z fr is normally convergent on [a, b].
n>1

+oo
ii. Let f(z) be the sum of the series Z fo(). (f(z) = Z fn(x))

n>1 n=1

1
Deduce that f is continuous on |0, —[.
e



(d) Compare the function f the sum of the series an(x) with an

n>1
integral and prove that:
1 -1 In(z)
Vo €]0, - —_— < —
z €0, 6[7 1+1In(z) — @) = 1+ In(z)
1
The function f is it bounded on 0, —[?
e

" 1
4-2-26 | Consider the series of functions Z fn, with f(z) = (=1 for

|
"0 nt r+n
r € R.

(a) Give the domain of definition of f,,.

(b) Give the set D where the series Z fn 18 convergent.
n>0

(c) Denote for x € D, f(x an

+o0o
. . 1
i. Compute f(1) in term of e = Z o
n=0
ii. Prove that for any « € D, the function zf(x) — f(z + 1) is

constant. Give its value.

(d) Study the uniform convergence of the series Z f1, and Z f,: and
n>0 n>0
deduce that f is two times differentiable on D.

4-2-27 | Define the sequence (fy,), with fy,:]0,+0o[— R defined by: f,(z) =
(-1)™Inn

nl’

and set

= "Inn
1o =3 =

(a) i. Prove that the series Z 11 (z) converges normally on any closed
n>1
interval [a, b] C]1, +oo].

ii. Deduce that f is of class C* on |1, +o0].

(b) i. Prove that the series Z fl(z) converges uniformly on any in-
n>1
terval [a, +00], with a > 0.
ii. Deduce that f is of class C! on ]0, +o0].



(¢) Prove by the same method that the function f is of class C*° on

10, 4+-o00[.
72na:
4-2-28 | (a) i. Prove that the series Z 17 1 converges uniformly on [0, +oo].
n>1
too e~ 2nx
We set f(.f(:) - ngl m.
+oo 1
ii. Prove that Vz €]0 P|3e2 fz) — 1] < 3e™2® .
ii. Prove that Vx €]0, +-00[; [3e* f(x) — 1| < 3e 7;2471271

1
iii. Deduce that ~ e
iii. Deduce that f(z) 7 3¢

+oo e—(2n+1)m
L = N S——
®) Tt o) = 3 5

e —(2n+1)x
i. Prove that the series Z
n>2

10, +o0o[ and uniformly convergent on [a, +oo[ for any a > 0.

ii. Let a > 0. Prove that:

1 is pointwise convergent on
oM —

10 —(2n—3)a
e
Vx e [CL, +OO[ |63$g(x) — ].| S 6_1 E W

n=2
iti. Deduce that g(z) ~ e~ 3.
+oo

( Let u Ze—@n 1)1

i. Prove that the series Z e~ (n=D g pointwise convergent on

n>1
10, +o0[ and uniformly convergent on [a, +o00[, Va > 0.
1
ii. P that V 0 = .
ii. Prove that VYx €]0, +oo[, u(z) Y

(d) Let F(z) =e *f(z) and G(z)=e**g(x).
i. Prove that F' and G are differentiable on ]0, +oo[ and F'(z) =
—g(z) and G'(x) = —u(x).
dt

d
sinh ¢ an

+oo
ii. Let « €]0,+o00[. Compute the integral: /
xr

+oo 1 et_l
—In| ——)dt.
/x 2 n(ef+1>

(e) Deduce the values of g(x) and f(x).



4-2-29 | Let f be a continuous function on [0, 1]. Define the sequence of polyno-
mials (By,), called Bernstein polynomials associated to f,

Zc’f P - )R

(a) Let op(z,t) ZC’ e b (1—2)" k:ZC§<6%z)k(1fx)"7k.

Opn ?pp
i. Compute %(m,t) and 87(5'02 (z,t).
ii. Prove that

n

Z Crak(1 —2)" % =1,

k=0
Z ECFzF(1 — )% = na

and
Z E2CE2R (1 — 2)" % = na 4 n(n — 1)2°.

(b) Deduce that all 0 < a < 1,

k 1
kkl nk< kkl nk _ )2 < )
S ek N T

lz— %>

(c) Using the uniform continuity of f, prove that the sequence (By),
converges uniformly to f.

(d) Deduce that any continuous function on a interval [a, b] is uniform
limit of a sequence of polynomials.

3 Approximation Theorems

In this section, we prove the Weierstrass theorem on the density of the space
of polynomials on the space of continuous functions on the interval [a, b].



Definition 3.1.

A function f: [a,b] — R is called a step function if there exist a partition
o = (a;)o<j<n of [a,b] such that f is constant on any interval Ja;_1,a;[, for all
1<j<n.

A function f: [a,b] — R is called piecewise continuous function, if there exist
a partition ¢ = (a;j)o<j<n of [a,b] such that f is continuous on any interval
laj—1,a;[, for all 1 < j < mn and f has a finite limit at the right on any point of
[a,b] and a finite limit at the left on any point of |a, b].

Theorem 3.2.

Let f: [a,b] — R be a piecewise continuous function, then there exist a se-
quence of step functions on [a, b] which converges uniformly to f. (A regulated
function f is a uniform limit of a sequence of step function.)

Proof .

If f is continuous, it is uniformly continuous on [a,b], then V € > 0, Ja > 0
such that if |z — 2'| < a, |f(z) — f(2’)] < e. For all n € N, we consider the
uniform partition o,, = (ag, ... ,a,), with ax = a+ k:b*Ta forall 0 < k <n and
we consider the step functions f,, defined by: f,(z) = f(a), if = € [ak, ar+1]
and f(a,) = f(b). If n > =2 we have:

_ = 3 — <e.
o= Fll =z (_sup  1fulo) = f@)]) <
If f is piecewise continuous and o = (ao, ... ,a,) a partition associated to f,
i.e. fis continuous on Jaj,a;1[ for all 0 < j <mn — 1. Let f; be a continuous
function on [a;, a;41] such that f; = f on Ja;, aj+1[. For every f; there exist a
sequence of step functions (f, ;)» which converges uniformly to f on |a;, a;t1][.
Then the sequence (f,), defined by: f,(a;) = f(a;) and f,(x) = f, ;(x) for
x €laj,aj1], converges uniformly to f on [a, b]. a
Theorem 3.3. [Weierstrass Theorem]

Let f be a continuous function on an interval [a,b]. There exists a sequence of
polynomials (P,), which converges uniformly to f on [a,b]. (i.e. R[X] is dense
in C([a,b]) for the norm of uniform convergence.)

Proof .
Without loss of generality, we can assume that [a, b] = [0, 1].
Since f is continuous on [0, 1], it is uniformly continuous. Then Ve > 0, Ja >

0; if [z —y[ <o, [f(z) = f(y)| <e.
We consider the Bernstein polynomials sequence (B,,),, defined by:

Ba(x) = 3 CEF(D)ak (1 — ).
k=0



)= Bale) = [ CHSlo) - f(%))ack(l )Y

< ch f;)’ k(l_'r)nfk
= Z cky (z)‘xk(l—x)"_k
|w—7\<o¢
+ ). Cilf@) ( )zt (1 — )"
z—7|>a
< et2flle Y Cpat(l-a)"*

lz— %[ >o

1 n
Z Crak(1 — )"k < e Z Crak(1 — )" *(z — E)2

ja— k[0 k=0

= k 2z
ko k n—k 2 _ 2 ky..k n—k k1.2 k
E Crz"(1—x) (m—ﬁ) =a°— E Crkx™(1—x) - E Crk“a®(1—x)"~

k=0 "o
n
. k _k n—k _ . . . .
Since E Crz®(1—x) = 1, then by derivative with respect to = and if we

set h(x Z CFEak( "=k we have: h(z) = nz. We iterate this process,

we find:

iCﬁmk(l —z)"F - %)2 = M

n
Then

I & 1
o § Ck k 1— n—k _ 2\ < -
a? pors (L= 2)" (e n) ~ 4na?

The sequence (By,), converge uniformly to f on [0, 1].
We give another proof of this theorem in the chapter of Fourier series. We give
now another proof.



Theorem 3.4. Weierstrass Theorem
Let f be a continuous function on an interval I, there exist a sequence (f,)n
of polynomials which converges uniformly on any interval compact of I to f.

Proof .
Assume in the first case that f is continuous on R and equal to 0 on the
complement of the interval [—1, 1]. We set

Po(z) =cn(1 - x2)n,

1
with ¢, a constant such that / P, (z)dx = 1. We define the sequence
—1

+00 Foo
f@ =[Py = [ fe-pPa (@3
Lemma 3.5.

The functions f,, are polynomials and the sequence (f,), converges uniformly
to f on the interval [—1, 1].

Proof .

By the left side of (4.3), f is a polynomial and by the right side of (4.3) we
have for |z| < 3:

1

F(@) = fulz) = / (F(2) — f(z — ) Paly)dy. (4.4)

-1

Let € > 0, M the maximum of f on R and § > 0 such that |f(z)— f(z—y)| <e
if |y| < ¢. It results from the formula (4.4) that

F@ - fu@l < [ ePwdy+ [ M P,
lyl<é 6<]y|<1
We have to prove now that / P, (y)dy tends to 0 when n tends to infinity.
<lyl<1

Let 0 <r < 1.

1 1 r
— = / (1 —2*)"dx > / (1 —rH"dx = 2r(1 — r%)".

Cp, -1 —r
1

Then ¢,, < —————. Thus
2r(1 —r2)n

! Y sy = (="
/tiglyél Prluty = m/_1(1 o)y = r(l—r2)n’



The result is deduced if we take r < § and we tends n to infinity.

Proof of theorem (3.4).

If f is zeros on the complement of the interval [—s, s]|, the function F(z) =
f(2szx) is zeros on the complement of the interval [f%, %] By the previous
lemma there exist a sequence (f, ), of polynomials which converges uniformly
to F on the interval [—3,1]. The sequence of polynomials g,(z) = f,,(£)
converges uniformly to f on the interval [—s, s].

If now f is continuous on the interval I = (a,b). For all n € N such that
n > %, there exists a function ¢, continuous on I such that ¢, = 1 on
[a+L,b— 1] and zeros on the complement of the interval [a+ 5, b— 5-]. There
exists a polynomial f,, such that |f,(x) — p,(2)f(x)] < % on I. The sequence

(fn)n is a solution to the problem.
t

Corollary 3.6.

b
If f is a continuous function on the interval [a, b] such that / f(z)x"dz =0,
for all n € N, then f = 0. ‘

Proof .
b

It results that for all polynomial P, / f(z)P(x)dz = 0. Since f is a uniform

a
limit of sequence of polynomial (P,),, then

/ab f3(z)dz = lim /ab F(2)Po()dz = 0.

n—-+4oo
g

Remark 16 :
The previous result is wrong for the continuous functions on an unbounded

1
—x4

interval. For example, let f be the function defined by: f(x) =e sin(ac%),

+oo
for z € [0, 400[. Prove that / 2" f(x)dx =0, for all n € N.
0

Corollary 3.7.
Let f: [a,b] — C be a continuous function. There exist a sequence (Qn)n €
R[X] such that (@), converges uniformly to f on [a,b].



5 Power Series

1 Power Series

1.1 Abel’s Lemma

Definition 1.1.
Let (an,), be a sequence of real or complex numbers. The series Z an(x—z0)"
n>0
is called a power series centered at zg.
Let Z an(x—1x0)" be a power series, we look for its domain of convergence.

n>0
The series converges at least for x = x(. In which follows, we consider the series

centered at 0.
Proposition 1.2. (Abel’s lemma)

If the power series Z anxg is convergent for xg # 0, then
n>0

1. the series Z anx™ is absolutely convergent on the interval | — |xg|, |zo]],
n>0

2. for every r < |xg|, the power series E anx" is uniformly convergent on
n>0
[—r, 7]

Proof .

“+o0 —+o00 T
1. Let = €] — |xol, |zo]], Z lanz™| < Z|anx6‘||x—0|". Since the series

n=0 n=0
g anxy is convergent, the sequence (a,z{), is bounded. Moreover the
n>0
series E | —|™ is convergent, then the series E anx™ is absolutely con-
T
n>0 n>0
vergent on | — |zo], |zo][-

111



—+o0
2. Let r < |zo| and = € [—r, 7], |apz™| < |a,|r" and Z lan|r™ < 400, thus
n=0
the series Z apx™ is uniformly convergent on [—r, r].
n>0

O

Corollary 1.3.

If the power series Z apx( is divergent then it is divergent for every z such
n>0
that |z| > |xo].

1.2 Radius of Convergence of Power Series

Theorem 1.4.
For every power series Z anx™, there exists a unique R € [0, +0o0] such that:
n>0

1. For every |z| < R, the series Z anx™ is absolutely convergent.
n>0
2. For every |z| > R, the sequence (a,z™), is not bounded and then the
series Z anx™ is divergent.
n>0
The number R is called the radius of convergence of the power series and

]— R, R[={z € R; |z| < R} is called the open interval of convergence of
the power series.

Proof .
The uniqueness results from Abel’s lemma. We set
—+oo
R = sup{r > 1; Z |an|r™ < +o0}.
n=0

If |z| < R, the series Z anpx™ is absolutely convergent.

n>0
If there exists |z| > R such that the series Z |ayn|r™ is convergent. Then the
n>0
series Z |an|r™ is convergent for every R < r < |x| which is absurd. ad

n>0

Remark 17 :



From the proof of the theorem (1.4), we deduce that if R is the radius of

convergence of the series Z an,x™, then the series is uniformly convergent on
n>0

any interval [—r,r] with 0 < r < R.

Theorem 1.5. (Cauchy 1821, used by Hadamard) (Cauchy-Hadamard Rule)

Let Z anx™ be a power series with R its radius of convergence. Then

n>0

—+oo

1. R =sup{r > 0; Z |ap|r™ < 400} = sup{r > 0; the sequence (a,r"),is bounded }.
n=0

2. If lim \ " | =B € [0,+0oc], then R = 3.

n—-+oo An+1
1 —
3. R=—————. (With R =400 if limy, 400 V/|an| =0 and R =0

hmn—)Jroo 71\/ |an |

Theorem 1.6.
Let Z anx" be a power series with radius of convergence R > 0. Define f(z) =
n>0

E anx™. Then the power series E nanz" ! has R as radius of convergence
n>1

and the function f is differentiable on |— R, R[ and f'(x Z napz"

For the proof, we need the following lemma:
Lemma 1.7.
Let z € R and h € R such that 0 < |h| < r, then for any n € N

||2

(@ +h)" — 2™ —nha" | < - (la] +7)" (5.1)

and

Ltel +r)m + 12l (5.2)

’/l|:17|n71 S
r

Proof .
From the inequality (7.4)

|(x 4+ h)" — 2" —nha" | = Z CFpkgn=F — g™ —nha™ 1| = Fpkgn—F




n n
h2
< B Chlal M p= < IS gt
k=2 k=2
BT
< (a4 0)

We have: |(z +h)" — 2™ — nha" "t > nrlz|" ' — |z|* — (Jz| +7)™. From
the relation (7.4), we deduce:

nrle]" T < o™ 4 (o] + )" (@4 )" — 2™ = e < Jaf” 4+ 2(|a] + )"
O

Proof of the theorem (1.6).

We denote R’ the radius of convergence of the power series Z napz™ L. Tt is
n>1
obvious that R’ < R. Let r > 0 such that |z| +r < R. From the lemma (1.7);
1
we have: |na,z" ! < (2|an|(\x| + 7)™ + |ay||z[") and thus Znanm”_l is
n>1

absolutely convergent on | — R, R[. Thus the radius of convergence of the series
defining g is greater than R. Thus R = R'.

From the inequality (7.4) we have:

flz+h) = f(z) 1] <
JEEWZTD o)) < Zmn\ o]+ 7
This proves that when h tends to 0; f/'(z) = g(z); for any €] — R, R|. ad
Corollary 1.8.
If f(z Z anx™, then f is infinitely continuously differentiable on | — R, R|
n=0

) (g X (g

it R>0,a, = 0 and f(z) = Z fi()x”. (This series is called the
n! = n!

Taylor’s series of f at 0 or the Mac-Laurent series of F.)

Example 1.1 :
1. For z € R,

T = " —x = (71)”‘1'“
=X =
n=0 n=0
+oo 2n +oo 2n+1
T . x
coshx = Eow sinhz = Eom



+o0 2n +00 $2n+1

o =3 (W G s = O gy

n=0 n=0
2. For |z| < 1,
1 +o0 +oo ol
= " In(1 = -nH"
D DL RS e (it
too foo 2n-+1
1 T
_ —1)" 2n dt -1, _ —1)"
1+ 22 Z:O( J'a”" and tan"g Z( Ve
n= n=0
too  2n41
tanhflaczllnl—i_x: xi-
2 1-z = (2n+1)

3. Let a be a real number, a ¢ N and f(z) = (1 + x)* for x €] — 1,1].
f'(x) = a(l + 2) 1, then f satisfies the following differential equation

(1+2)y —ay=0. (5.3)

We look for a power series Z anx™ solution of the differential equation
n>0

(5.3).
—+o0
IfS= Z anx™ is a solution, we have:
n=0
—+o0 —+00
(1+x) Z na,z" ' — « Z anpx"™ =0,
n=0 n=0

then (n 4+ 1)ap4+1 + na, — aa, =0 <= ap41 = S—Ta, Vn > 0, which
yields that

Then

S(x) =ag(1+Y



By the uniqueness of the solution of the differential equation

(1—2x) Zanx for |z] < 1,
ala—1)... (e —n)
h n= .
where a 23... (n+1)
For a = ’71, we have:
—+oo +oo
1 02 ncn n+1
— = ™ V1 =1 —_
-z T;) o fe=ity Z nt 1
1 = Cénn 2n n 2n+1

[ — ",
'1 _]'2 n=0 4n n=0 4" 27’L+1

+00 ~p

; $2n+1 400 (_ )ncgl x2n+1
n n

™ . 1
I bl = .
2 <A o1 sinh '@ = 3 o 1

n= n=0



1.3 Exercises

Find the sums of the following series and compute their radius of conver-

gence:
+oo n 400 n
x x
1) Z ) 11) Z YRR
_ |
—2n—1 — (2n)!
) 3w £ sind(nf)
, 19) 3 S0 o
n=1 o n!
+0o0 o
n“+1 .
3) Z o T 13) Z(Qn +1)2",
n=0 n>0
4) e ——— too 3"
— (n+1)(n+3) 14) Zw’
5) +i:°o (_l)nx2n+1 n=0
— 4n2 -1 ’ I 9 x"
"= 15)  (n + 1)
) 2" oy !
6) 7; ? cosh(na),a >0 o,
oo 16) ) o,
7 ix”sinn@ ) ;3"@—1—1)
2n 7
n=1 too 2 n
- (41
8) Ji x™ cos b 17) Z(*l) BT
o non ) n=0
- oo .
+00 s 2 nr
nx™ sin“(nf) 18 S —
9 Y mr ) ) 2 5
n=1
too 2 too n..n
n°+1 . (-1)"x
RPNyl D ey

5-1-2| (a) Define the sequences (up)n>0 and (v, )n>0 by:
{uo =1 and {Un+1 = Uy, + 20,
vo =0 Un41 = Up + Up.
Determine the radius of convergence and the sum of the power series
Z Upx”.
n>0
(b) Determine the radius of convergence of the power series:
(="
2n—1)(2n+1)

g anz"; with ag, = 0 and ag,11 =
n>0



—+oo

Let f(x) = Z anx™, give a simple expression of the derivative f/(z)
n=1

in term of z and tan™! x.

Deduce f(x).
Say if the following affirmations are true or false.

(a) The series Z anz™ and Z(fl)"anx” have the same radius of con-

n>0 n>0
vergence.
(b) The series E anz™ and g |an|z™ have the same radius of conver-
n>0 n>0
gence.
(¢) The series E anz" and E (=1)"a,a™ have the same domain of
n>0 n>0
convergence.

(d) If the radius of convergence of the power series Z anx™ is infinite,
n>0
then the series is uniformly convergent on R.

e) If the radius of convergence of the power series apx™ is infinite
(e) g p

n>0
_ iy : o f@)
and if a,, are positives, then for any integer p, lim = +00,
z—+4oo P

+o0
with f(z) = Z anx”.
n=0
Give the expansion in power series in a neighborhood of 0 of the following

functions
In(1
(a) z+—> M
1+

(b) f(z) = (sin™'z)2. (We will be able to show that f fulfills a differen-
tial equation of order 2.)
© sin™!\/z '
Va(l—x)
(d) In(1 — 2z cos a + x2).
(e) e** cos .
x

Give the expansion in power series of the function f(x) =

1—z—22

Give the expansion in power series of the following functions in a neigh-
borhood of 0 and determine the corresponding radius of convergence:



1
(1—2)*
9 1
) (z —2)(z —3)’

3) In(1 +x + 2?)
4) sin® z,
5) sinh®z,

6) (z—1)In(x? — 5z +6),
7) zln(z + Va2 + 1),
T —2
) — <
) 3 —z2—x+1’
1
9 —

) 14z — 223’
1—2
10) ———=
) (14 22 — 22)2?’

11) tan=!(z + 1),
12) tan~(z ++/3),

s -1

Sin T
Define f(z) = S22
N

ZIn(t? — 3t 41
13)/ Mdt,
0 t

14) ((1 +z;)sinx)2,

2x 5
15) / et dt,
x

xr
16) 6_2“‘2/ 2 dt,
0

ew

17)

1—2’
2

ew

1
8) 1—2’

r -1
1) [Tty
t2
0

1+
20) 1n<2_x>

21) In\/1 — 2z cosha + a2,

(a) Prove that f has an expansion in power series in a neighborhood of
0 and precise the radius of convergence.

(b) Prove that f fulfills a differential equation.
Deduce the coefficients of the expansion in power series of f.

(c) Give the expansion in power series of (sin™')?(z).

Give the expansion in power series the following functions at the corre-

sponding point xq.

™

(a) f(z)=cosz, (xg = —),

4

N

(b) fla)=(1—2")"

; (0 =0),

Assume that the power series Z aspr” and Z asn+12” have radius of

convergence R and R’ respectively.

n>0

Determine the radius of convergence of the power series E anx".

n>0



5-1-10 | Let (a,)n be a decreasing sequence and lim a, = 0 and the series

n—-+oo
g a, diverges.
n>0

(a) Prove that the radius of convergence of the power series Z anx" is
n>0
1.

(b) Study the convergence for |z| = 1.

5-1-11| (a) Let (an)n be a sequence of real numbers such that the series Z an,
n>0

is convergent.

We claim to prove that the power series Z anx™ is uniformly con-

n>0
vergent on [0, 1].
—+oo n
Define R,, = Z ar and S,, = Zakxk.
k=n+1 k=0
i. Prove that for p > n; S,(z) — S,(z) = R,z"™ — RyaP +
p—1
Z ($k+1 _ Jfk)Rk.
k=n-+1
ii. Deduce that the series Z anz"” fulfills the Cauchy criterion for
n>0

the uniform convergence on [0, 1].

(b) Let Z bnx"™ be a power series of radius of convergence R and let
n>0
f(z) its sum. Let zy € R such that |xg] = R # 0. Assume that the

series E bpx{y is convergent.

n>0
—+o0
i. Prove that %131}% f(z) = Z by ([0,20] = {txo, t € [0,1]}).
z€[0,z0] n=0
S
ii. Deduce the value of the following sum Z —.
n=1 n

5-1-12 | For each of the following power series, determine the interval of conver-
gence of this series and prove that its sum is a solution of the suitable
differential equation.



F@) =Y o ¥ =y

flay=>" (ZI)Q, wy +y —y=0

n=0

+oo (_1)n22nx2n

fl@)y=>" @)

n=0
5-1-13 | (a) Prove that there exists a solution as power series of the following
differential equation

.y +4y=0

a(z— 1)y +3zy +y=0.
(b) Determine the radius of convergence of the obtained series.

5-1-14 | For any A € R, consider the following differential equation

"

y () = 2ay(z) + 2xy(x) = 0 (5.4)
(a) Prove that the equation (6.6) has a unique even solution Py as a
power series on R and fulfills P5(0) = 1.

(b) Prove that (6.6) has a unique odd solution @), as a power series on
R and fulfills @4 (0) = 1.

(c) Determine all the values of A for that the equation (6.6) has a non
vanishing polynomial solution.

5-1-15| (a) Find the solutions as power series of the following differential equa-
tions:
iy —22y=0;y(0)=1
iy +a2y+y=0
iii. 4oy +2y —y=0, >0

22 T2
(b) Give the expansion in power series the function f(z) = e™ / e dt.
0

n

x
-1- =(-1)""—— > 2.
5-1-16 | Define u,(z) = (-1) Y for n > 2
(a) Determine the interval of convergence of the series Z( n" o
v v -
& n(n—1)

n>2
and study this series to the endpoints of this interval.



(b) Study the series Z u,(x) and the series Z u, ().
n>2 n>2

(c) Deduce the sum of the series Z U ().

n>2

5-1-17| (a) Consider the sequence (a,) defined by: ap = 1,01 = 2,442 —
Tap+1 + 12a, = 0.

+oo

i. Compute F(x) = Z anx"”.
n=0

ii. Deduce the expression of a,,.

(b) Consider the sequence (a,) defined by: a9 = 1l,a1 = 2,an42 —
Tan+1 + 12a, = n.
Compute the expression of a,,.

(¢) Consider the sequence (ay), defined by: ao = 1,01 = 2,an42 —
8an+1 + 16a, = 0.
Find the expression of a,,.

5-1-18 | Let (an)n € R* be a convergent sequence of real numbers and let a =

lim a,.
n—-+oo
apx"
(a) Find the radius of convergence of the power series Z - '
=
+oo a
— nan
Define f(t) = i for t €R.
n=0

. —t
(b) Compute tggrlooe f(@).

5-1-19 | Prove that the equation 3zy’ + (2 — 5z)y = = has a solution as a power
series in a neighborhood of 0 and give its radius of convergence.

5-1-20 | Consider the following differential equation

22y +ay — (2*+z+1y=0. (5.5)
+oo

(a) Find a solution of the equation (6.1) ¢(x) = Z apx™ with aq = 1.
n=0

1
(b) Prove that, for n > 1, |a,| < W and deduce the radius of
n—1)!
convergence of the power series Z anx".
n>0



—T

(¢) Solve the equation (6.1) in putting y = < .

5-1-21 | We claim to prove that the following differential equation

has no solution as sum of a power series.
—+oo
Assume that this equation has a solution y = E anx™.

n=0
(a) Give the values of ag,a; and as?

(b) Give the relation between a1 and a, for n > 2.

(¢) Prove that the relations stated in 1) and 2) give the uniqueness of

the power series Z anx™. Compute its coefficients and prove that
n>0
it diverges.






6 Fourier Series

In this chapter, we consider the locally Riemann integrable functions. The
reader can always take the piecewise continuous functions.

The aim of this chapter is the study the expansion of function (in physics we
said a signal) of one real variable then of the synthase or reconstitution of this
function has from of the its composite elements.

1 Fourier Series Expansion

1.1 Preliminary

1. Let f: R — C be a locally Riemann-integrable function and T—periodic
with 7" > 0, then

a+T T
/ f(t)dtz/ f(t)dt YaeR.
a 0
Indeed, / " f(t)dt = Of(t)dltJr / ' f(t)dt+ / " f(t)dt. Taking the

0 T

change of variable u = { — T in the last integral, we get the result. This
means that the integral of a T—periodic function on an interval of length
T does not depends of the chosen interval.

2. For n,m € Z,

I 0 if n#0
2 Jy € dt_{l it =0

1

2m
7/ sin(mt) cos(nt) dt
T Jo

0,

1 2 0 if n#m
;/O cos(mt) cos(nt) dt_{l f n=m#0

125



— / sin(mt)sin(nt) dt =<¢1 if n=m#0
™ Jo 0 if n=m=0

Definition 1.1.
We consider the space & of continuous functions 2m-periodic defined on R
with complex values. The map defined on E x E by:

1 a+7r

(F.0) =5 [ riga =

a—T

is a inner product. It defines a norm called the Euclidean norm denoted by

2

Remark 18 :
The system {1,cos(nt),sin(nt), n € N} is an orthogonal system. Also the
system {e™, n € Z} is orthogonal.

1.2 Bessel Inequality
Definition 1.2.

1. A trigonometric polynomial of degree < N is a complex linear combina-
tion of {1,cos(kx),sin(kz), 1 <k < N}, i.e. a trigonometric polyno-
mial P of degree < N has the form

N
ag
5 Z an cos(nz) + by, sin(nx)), (6.1)

with a,,b, € C. In particular a trigonometric polynomial is a function
of class C*° and 27-periodic.

2. A trigonometric series is a series of functions in the form
a
?0 + Z:l(an cos(nx) + by, sin(nx)),
n=z

with a,, and b,, € C.

Remark 19 :

Let P(x) = % + Z(an cos(nz) + by, sin(nx)) a trigonometric polynomial of

n=1

degree < N, then



N N
agp inz/dn . bn —ina 9n 3 bn in,
n=1 n=1 n=—N
with b b
an _ .On = (I 2
Cn_<7_1?)a Cfn_(2+12)

for n > 1 and Cy = %. This form is called the exponential form of P, and the

form (6.1) is called trigonometric form of P.
If P is a trigonometric polynomial of degree < N in the form (6.1) or (6.1),

then
1 27

Cp=— P(t)e™™™ dt, ¥n € Z,
2T 0
1 27
ap = — P(t) cos(nt) dt, Yn € NU {0},
T Jo
1 27
by, = f/ P(t)sin(nt) dt, ¥n € N.
T Jo

Theorem 1.3.
Let f: [0,27r] — C be a Riemann-integrable function. define

1 27 .
Cp=— fe ™ dt, nelZ
21 0
N
Sn(z) = Z Cpe™, N e NU{0}.
n=—N

Then:

1. For any trigonometric polynomial P of degree < N,
2m 2m
/ |f(t) = Sn(t)* dt < / [f(t) = P()]* dt. (6.3)
0 0

2. The series E |C,|? is convergent and
nez

400 21
1

g |G, |2 < 2—/ |f(t)]? dt (Bessel Inequality). (6.4)
T Jo

n=-—oo



The property (6.3) shows that Sy realized the best approximation in quadratic
mean of f by a trigonometric polynomial of degree < N.

Proof .
1. Let Pz Z dpe™
n=—N
) o 2 —
[T -Pora = - / OF =52 ), T rpw
1 27
1 _ L 2
27T p( Vf(O)dt+o— [ [P(E)]dt.
1 2m - N -1 2 t
1 HP{E)dt = T e dt = @nCn.
2 | FOP® _ZNQWO ZC
Thus
e ch L7 P - Z"”Z
o o ™ 2w 0 .
Then
) o 1 2 N ol
- ty—Pt))? dt = — t)[* dt— ol dn=Ci*.
5 | 1ro-PoRa =5 [ POCIED oTREY

If the polynomial P is the polynomial Sy, we have:

1 27

L [T io-swor a- £ [Tiopa- Y o
2m Jo N T or 0 M o

this yields the result.

N

1 27 ) 1 27 ) )
2 50 [ 1O =POP =5 [T 1OF dt= 3 (G2 s

2w
n=—N

Z |C)? < o / |£(1)]? dt and we take the limit when N — +oc.

n=—N



Corollary 1.4.
If f:1]0,27] — C is a Riemann-integrable function, then

2m 27
nll)rfoo ; f(t)cos(nt) dt =0 and nEToo | f(t)sin(nt) dt = 0.
Proof . )
1 ™
As the series Z |C,y|? converges, then 1i_{n |Cp|? = 0. If weset a, = — f(t) cos(nt) dt
n—o00 7 Jo
nez

2m

1
and b, = f/ f(t)sin(nt) dt, for n € N we have: a, = C, + C_,, and
™

0
b, =1i(C, — C_,,), and we have the result.
(]

Theorem 1.5. (Riemam-Lebesgue Lemma)
Let f: [a,b] — C be a Riemann-integrable function, then

b
lim /f(t)cos()\t) dt =0 and lim /f sin(At)

A—+o0 J, A——+o0

Proof . .
As / f(t)cos(At) dt = /Ref(t)cos()\t) dt+/ Im f(t) cos(At) dt, it

suffices to prove the theorem for f real .
o If f = X[q,5) is the characteristic function of an interval [a, 3], we have:

B . ,
/ "ty cos(he) di = / cos(\t) dt = Sm(;a) _SID(AAB) .

A——+o0

e If f is a step function on [a, ], there exists a partition o = {xg =a < 21 <
. < xp = b} of [a,b] such that f = ¢; on |z;,z;41[. In this case

j+1
/ f(t) cos(At)dt = Zc]/ cos(At)d

Thus

2 n—1
o < . . .
) cos()\t)dt‘ <3 ;0 esl = 0



In the general case: as f is Riemann-integrable on [a, b], for £ > 0, there exists

b
a step function f. such that f. < f and / (f(t) — fe(t)) dt <e. Then

b b b
/ f(t) cos(\t) dt = / (f(t) — f=(¢¥)) cos(At) dt +/ fe(t) cos(At) dt.

We deduce that

— f(t) ) cos(At) dt|.

) cos(At) dt‘

As f. is a step function, hm \/ fe(t)cos(At) dt|] = 0 and the result is
deduced. ad

1.3 Fourier Series

1. Let f be a complex 2r—periodic function, Riemann-integrable on [0, 27].

We set
1 27 .
n i dt, Z,

= [ s ne

1 27

ap = — f(t) cos(nt) dt, n € Ny,
™ Jo
1 27
b, = — f(t)sin(nt) dt, neN

™ Jo

The coefficients (Cy,),, will be called the exponential Fourier coefficients
of f and a,, and b,, will be called the trigonometric Fourier coefficients of
f. We recall that:

ap =2Cy, a,=C,+C_,, b,=i(C,—C_,), Vn > 1.

N
:50 Zancosnx ) + by, sin(nzx) ZC’@

n=1



“+o0
lim Sy(z) = 7+Z (an, cos(nz) + by, sin(nx) Z Cpe™

n—-+o0o
n=1 n=-—o00

. ine __ Q0 . .
The series Z Cpe™ = 3 + Z(an cos(nx) + by, sin(nz)) will be called
ne”Z n>1 ~
the Fourier series of f. We will denote formally f(x) the sum of this
series.

We say that the Fourier series of f converges at xy € R if the sequence
N

(SN)N, Sn(z) = Z CnLe™ converges at x.
n=—N

2. If f is T—periodic, the function g(z) = f(;f) is 2m-periodic on R. More-

over the function f is locally Riemann integrable on R, we associate to f
the Fourier coefficients defined from the Fourier coefficients of g by:

1 T —in2T¢
= — fe Tt dt, VYn € Z,
T Jo
2 [T 27
ap, = f/o f(t) cos ?nt dt, Vn € N,

2 (T 2
:T/o f(t)sin%ntdt,nEN.

The exponential Fourier series of f is

2 C e—ln 2"t

ne”Z

and the trigonometric Fourier series is

2 2
?0 + ;(an cos %nw + by, sin %nx)

Definition 1.6.

Let f: R — C be a 2w —periodic function and Riemann-integrable on [0, 27].
Develop f in Fourier series, means that find Fourier trigonometric or exponen-
tial series of f, study the convergence of the series f of f and give its value.



Examples 8 :

1. f(z) =|z| if || < 7 and f 2w—periodic. The curve of f on [—27, 27 has
the following form:

Yy

El e R -

—27 — 21

We have:

1 [7 1 (7 2
== t| dt = Y= — ' Hdt = ——((—=1)"=1), n>1.
do= 2 [ Idt=m o= [ ftlcostut)at = —((-1"-1), nz

—Tr —T
As f is even b, = 0. The Fourier series of f converges uniformly on R.

2. Let f(x) = sinz, for x € [0, 7] even and 27m-periodic. Thus b, = 0 and

2 —4
anp = - ; sinz cos(nz) dx. agpy+1 = 0 and ag, = m The
Fourier series of f converges uniformly on R.
3. Let « € C\ (iZ), f(x) = e** on | — m, 7| and 2w —periodic.
(—1)"sinh ar - sinh ra €2 elne
Chn=——""+", = -1 -
' (o — in) /(@) T Z( ) a—in
“+o0
4. Let f(2) = Z anz" be a power series (z € C) of radius of convergence
n=0
R > 0. For r € [0, R[, the map @ R f(rel?) is 2m—periodic and we
have:
. +m .
f(re?) = Z(anr”)e‘"9 (6.5)
n=0

and the trigonometric series converges uniformly on R.



2 +00 2w

1 . . .
Thus — f(re®)e P0d0 =Y " (a,r" / el (=)0 gp.
2 0 ( ) 7;) ) 0

2m
The series (6.5) is the Fourier series of f. Moreover a,, = o / f(re®)e P?dp,
T Jo

then |a,| < MY) with M(r) = sup|, |, | f(2)]-

)
r

1
If we take the function f(z) = 1%2’ we know that for |z| < 1, — =
—z
S 1 = .
Zzn_ Thus for any 6 € R and any r € [0, 1], T8 = Zrnemo and

n=0 n=0
in taking the real part of each member we get:

1—rcosf 7+OO " 0
1472 —2rcosf ZT cos(nf).
n=0

1.4 The Dirichlet Theorem

The natural question in Fourier analysis is: "In what condition the Fourier
series of a function f is convergent and the relation between the limit and the
function f.

Definition 1.7. [Dirichlet Kernel]

The Dirichlet kernel of degree N € Ny is the trigonometric polynomial Dy
defined by:

sin(N + 3)z
sin ’

27

The function Dy is even and — Dy (t)dt = 1.
T Jo

Theorem 1.8. (Dirichlet Theorem)

Let f: R — C be a 2m-periodic function and Riemann-integrable on [0, 27].

Let z € R such that f(z+) = lim f(¢t) and f(z—) = lim f(¢) exist
t—x, t>x t—z, t<x

in C. We assume also that there exists ¢, > 0 (depends of z) and M, > 0
(depends of x) such that: Vi, 0 < |t| < d,,:
fa+0)+ f@ =) = flat) = @)l _ 66)
] - '

flat) + f(z—)
2

then the Fourier series of f at x converges to , i.e.



Ja+) + fa=)

. (6.7)

N
NLHEOO 5 Z ay, cos(nx) + by, sin(nz)) =

The condition (6.6) is called the Dirichlet condition at .

Proof .
Let C,, be the Fourier exponential coefficients of f, with n € Z.

N N 1 2
_ inx __ —int inx
Sn () = Z Cpe™® = Z %/0 f@e e dt
n=—N n=—N
1 27
= o f@&)Dn(t — ) dt.
e L 2ﬂf( +2)Dy(u) du
= . u x N
If we denote y = w we have:
1 s

@)=y = o | =)+ S = 2) D)

AL/“f@quf@+wff@H—f@—)u . (2N+1)u

u sin 5 2

The function ¢ defined on 0, 7] by:
fle—uw) + fletu) = flzt+) = fla—) u

in &
u Sln2

p(u) =

is Riemann-integrable on |0, 7]. Moreover V u €]0, 0, [, we have: ¢(u)[ < M.

2 t
(= < % < 1, vt € [0,%]) and by the Riemman-Lebesgue lemma (1.5),

T
: " . _ _ fl) + fa)
NEIEOO/O o(u) sin(N + i)u du = 0. Thus EIEWS N(x) = —
g
Theorem 1.9.

flz+1t) = flzt)

— ! —
1. Let « € Rsuch that f(z+), f(x—), f'(z+) m ;

flz—=1t) = flz=)

t—0, >0 t

and f'(z—)=

, exist in C. Then the Dirichlet condition is re-

alized at x and the Fourier series of f at x converges to %



2. If f is also continuous at x, then the Fourier series of f at x converges to

f(@).

3. If f is 2m—periodic and of class piecewise continuously differentiable
[0, 27], then V2 € R

fl@) = 3 04 Z ap, cos(nz) + by, sin(nz) Z Cpe”

n=1 n=-—oo

Examples 9 :

1. Let f be the function defined by: f(z) = |z|if z € [—7, 7] and 2r—periodic.
f is continuous at the left of = and at the right of —x, by parity and pe-
riodicity, f is continuous at m and at —x. f is continuously differentiable
on [—m, 7], thus by Dirichlet theorem, the Fourier series of f coincides
with f at any point € R. Thus for |z| < m, we have:

cos(2k + 1)z
] = 7_72 (2k + 1)2

For x = 0, we have:

MJr

P 2k+1

The Fourier series of f converges uniformly to f on R.

2. Let f be the function defined by: f(x) =z on]—m, 7| and 2r—periodic.
(we associate an arbitrary value at 7). f is continuously differentiable on
] — 7, 7| and has a derivative at the left and at the right at any point on
R. By Dirichlet theorem, we have for any z € R\ {(2k + 1)7, k € Z},

n+1

=2 Z sin(nx).

In particular for r = 3




1.5 The Parseval Theorem

Definition 1.10. (The Cesaro Summation)
Let (U,)n be a sequence of complex numbers. We define the sequence Sy =
N

Z Ui. We say that the series > -, U, is Cesaro summable if the sequence

k=0

So+...8
Ty = ().7\/'—1—7—4—1]\[ converges in C.

Examples 10 :
1. If Un = (—1)”, Sgp =1 and 52p+1 = O7 Tzn = ﬁ ﬁ,
thus the series Z U, is Cesaro summable and has % as sum, but the
n>0
series Z U,, diverges.
n>0

and T2n+1 =

2. If the series Z U,, converges to ¢, then it is Cesaro summable and has ¢

n>0
as sui.

Definition 1.11. [Fejer Kernel]

For N € Ny, we set Fiy(x Z Dy(z), x € R, with Dy the Dirichlet kernel.
Fy is a polynomial trlgonometrlc called the Fejer kernel of degree V.

Fy is even function and — / N(t)dt = N + 1.

Notations

Let f: R — R be a Riemann-integrable function on [0, 27] and 27 —periodic.
Let (an)n and (by,), its trigonometric Fourier coefficients. We define for all
N €Ny

N
=%
Sn(z) = 5 nz::l ap, cos(nx) + by sin(nz)),
and
So(x) +...8
w(fom) = o(x) N(z)

N+1 ’

then as in the proof of Dirichlet theorem, we have:

1 2m 1 2m
Sn(@)==— [ f(z+u)Dy(u) du=—

5 5 f(x —u)Dy(u) du.



1 27 1 27
flz+u)Fy(u) du =
27

WD, flz—u)Fn(u) du.

W e

The real expression of Fly is

S x

qn2 T
sin”

2 N4l
Fn(z) = 2

Theorem 1.12.
Let f: R — C be a Riemann-integrable function on [0, 27] and 27 —periodic.
1. Let « € R such that f(z+) and f(x—) exist, then
: fla+) + flz—)
1 A =" 7
NHHEOO N(f7 J?) 2
2. The sequence (Ay)n converges uniformly on any compact K on which f
is continuous.
Proof .
1 27

1. We know that AN(f, l') = m
™ 0

f(z+u)Fy(u) du.

1 2
Let y be a constant, as m/o Fxn(u) du =1, we have:

An(fix)—y = 27T(]\}_Fl)/oﬂ(f(ars—i—u)—y)FN(u) du

We take y = % Let € > 0, 36, > 0 such that Yu €]0,d,],
If(z4+u) — flz+)| < % and |f(x —u) — f(z—)] < g There it results
that

Oz
An(fiz) -yl < C+z é/o Fy(u) du

2 2)27r(N+ 1)

1 s
+ 277(N+1)/5$ If(x +u)+ f(x —u) — 2y|Fn(u) du

1

+
y 27(N + 1) sin? 8, /2

/OW o +u) + flo—u) — 2] du.



f is bounded on R, then there exists Ny € Ny such that for any N > Ny

1
27(N 4 1) sin? 8, /2

/W|f(il?+U)+f($—u)—2y|duge.
0

2. We take § > 0 which does not depends on z € K. (This is possibly,
because f is uniformly continuous on K.)

O

Corollary 1.13.
Let f: R — C be a continuous function and 2w—periodic. If the sequence
(Sn)n converges, then its limit is f.

Proof .

Let g = Nhril Sn. The sequence (Ay)n converges uniformly to f, then g = f.
—+00

O

Corollary 1.14.
Let f: R — C be a continuous function and 2w —periodic, then Ve > 0, there
exists a trigonometric polynomial P. such that

sup |f(z) — Pe(z)| <e.
R

Otherwise a continuous function 27 —periodic is limit uniform of trigonometric
polynomials.

1.6 The Parseval Identity

Let f be a 2r—periodic function, Riemann-integrable on [0, 27]. If

1 27 .
Cp = o, f®)e "t dt, for n € Z.

For N € Ny,we posed

N N

inz So+ ...+ Sn(x ikx
SN(.T): Z Crpe™*, and AN(fvx): : N+1N( ): Z ,ykek ’
n=—N k=—N

— _ _N _ N _ N—p+1 _ N-—p+1
Yo = 007 "= N+1 Cb V-1 = N+1C717 Tp = N+1 Cp and Y—p = N+1 Cfpv

V p > 2. Then

N
K|

An(fie)= Y (1- NLH)Ckeikx~
k=—N



Theorem 1.15. (Parseval Identity)
Let f be a 2mr—periodic function and piecewise continuous on [0, 27|, then:

Ve |2—1/2w|f(t)l2dt ol LS 0,2 4 )
o 4 24"

Lemma 1.16. With the same notations

2m 2m
[ Av(fa) de = [ I
N—+o00 [ 0
Proof .
Let 20 =0 < x1 < ... < zy = 27 such that f is continuous on |z;, ziy1[ Vi €
{0, ..., s—1}, thus (AN(f )N converges uniformly to f on I,, = [z;+n, Ti41—7)],
for any n > 0, n €]0, (ziy1 — xz)/2[
1
M = sup |f(x)|, where (|AN(f, IR converges uniformly to |f|? on I,, and
z€[0,27]

then

Tit1 Ti41

lim AN (f,2)|? doz = / |f(2)|? dx because for € > 0,
N—+o0 =

T4

Tit1 Tite
/ IAn(f, ) — 1f (@) de = / A (fo )2 — | f(@)[?] de

i i

" / AN )P — | @) de

ite

* / A2 @) de

Ti+1—€
2 fTE 2 2
< el [ AP - f@)P] do
Ii+€
Ti41—€
lim AN (£, 2)] = |f(2)?| dz = 0.
N—+oo T;+e
t
Proof of the theoreme (1.15).
N N

1 o 2 _ |k| 2 2
3 | el d= 3 a-gEpek< 3 (Gl

k=—N k=—N



1 2m +oo
2—/ AN (f, ) dz < Z |Cx|? and the Bessel inequality yields that
™ Jo

k=—o00

27 1
3 | v do < Z Gl < 5= [ 15@)Pas.

O

Corollary 1.17.
Let f be a piecewise continuous function on R and 2w —periodic. We assume
that

(f, ") = f( e "dx =0, Vn € Z,

or J_
then f is zero at all its points of continuity and ||f||]2 = 0.
Remark 20 :

If f and g are two piecewise continuous functions and 2w —periodic. Let C),
(respectively D,,) be the Fourier coefficients of f (respectively g). As the series

E |Cp|? and E |D,|* converge, then the series E CpnD,, converges abso-
nez nez neL

lutely. We consider the map h(x) =5 / f(t)g(t + z)dt. In using the Fubini
T

formula we prove — / h(z)e " dz = C,D,,.

It results that the Fourler serles of h converges uniformly and at any point x

of continuity of h, h(x Z CnD,e"

1.7 Weierstrass Theorem

Proposition 1.18.
Let f: [a,b] — C be a continuous function. There exists a sequence of poly-
nomials (@), € C[X] such that (Q,), converges uniformly to f on [a,b].

Proof .

First case: We assume that a = 0, b = 27 and f(0) = f(27). In this case
f can be extended to a continuous function on R and 2w —periodic. From the
corollary (1.14) Ve > 0, there exists P. a trigonometric polynomial such that

sup |f(z) — P.(z)] < e.

z€[0,27]



Z’ﬂ
Moreover, we know that the series Z — converges uniformly on any compact
n!
n>0
to the function e*. Thus for any —N < n < N, there exists d,, > 0 such that

d .
. i PP
sup ‘61711 _ § : (ln) € ‘ < €

N .
z€(0,27] p=0 p' Zn:—N ‘Oén|

(in)PaP o
' and Hy = Z an R, (x). Hy is a polynomial.
p!

—-N

dn
We set R, (z) = Z
p=0

sup |f(z) — Hy(z)| < sup |[f(x) = Pe(x)[+ sup [Pe(x) — Hy(z)|
z€[0,27] z€[0,27] z€[0,27]

N

sup |P:(z) — Hyn(z)| < Z sup |, €™ — a, R, (2)| < €.
z€[0,27] n——_ N *€[0,27]

Thus sup |f(x) — Hn(z)| < 2¢ and the corollary is proved in this case.
z€[0,27]
General Case: A from of f one constructed a function which verifies the

conditions of the first case. ;

Define the continuous function g on [a, b] by: g(z) = f(x)—w(a:—
a), g(a) = f(a) = g(b) and let h be the function defined on [0,27] by: h(x) =
g(z.%:% 4+ a). h is continuous on [0,27] and h(0) = h(27). Let € > 0, by the
first case, there exists K. € C[z] such that sup |h(z) — K.(x)| < €, thus

z€[0,27]
2m
sup |g(y) — Ke(s——(y —a))| <e.

z€Ja,b] b—a

We set Q. (y) = K.(2= (y — a)). This is a polynomial and gives an answer to
the corollary.

Other Proof

Theorem 1.19. (Weierstrass Theorem)

Let f be a continuous function on an interval I, there exists a sequence (f,)n
of polynomials which converges uniformly on any closed and bounded interval
Ito f.



Proof .

We assume in the first case that f is continuous on R and identically zero on

the complement of the interval [—1, 1]. In this case we set

P (z) = cp(1 — z?)"

1
where ¢, is chosen such that / P, (xz)dx = 1. We define the sequence
-1

+oo —+oo
= [ 1P -wi= [ fe-pPwd. (©8)
g
Lemma 1.20.
The functions f, are polynomials and converge uniformly to f on the interval
[_%’ %]
Proof .

From the left side of the formula (6.8), f is a polynomial. From the right side
of the formula (6.8), we have for |z| < 1

1
ﬂmfn@ra[jm—wm@m/ (6.9)

Let € > 0, M the maximum of f on R and § > 0 such that |f(z)— f(z—y)| <e
if ly| < 4. It results from the formula (6.9) that

d%@ﬂy+/ M Py (y)dy.

o<|yl<1

Iﬂ@—hmﬂg/

lyl<o

We intend to prove that / P, (y)dy tends to 0 when n tends to infinity.
d<ly|<1
Let 0 <r < 1.

1 1 s
= / (1 —z*)"dx > / (1 —7r?)"de = 2r(1 — )"
n —1 —r
1

Thus Cp, S m and

1 1 (1 _ 62)71
P, déi/ 1—6)dy = ——7 .
/5§|yS1 W)y 2r(1 —r2)" —1( )y r(l1—r2)"

The result is deduced if we take r < § and tends n to infinity.
Proof of the theorem



If f is zero outside the interval [—s,s], the function F(x) = f(2sx) is zero
outside the interval [—%, %] From the previous lemma there exists a sequence
. . . . 11
(fn)n of polynomials which converges uniformly to F' on the interval [—3, 5].
The sequence of polynomials g,(z) = f,(55) converges uniformly to f on the
interval [—s, s].
If f is continuous on the interval I = (a,b). For any n € Ny and n > p—t
—a
there exists a continuous function ¢, on I such that ¢, =1 on [a + %, b— %]

and zero outside [a + ﬁ,b — ﬁ] There exists a polynomial f,, such that

1

| fn(x) —on(z)f(x)] < —on I. The sequence (fy), is a solution of the problem.
n

t



1.8 Exercises
Let t € R\ Z and f(z) = costz, for —m < 2 < 7 and 2r—periodic.

(a) Give the Fourier series of f.

t —-1)"2 t
(b) Deduce that costz = sin i —|—Z cos(nx)|, for = €

[—m, 7).

(¢) Show that

sin tm t2 —
n=1
1 o 2
1. wecotanmt = 7 + Z PR
n=1
2 +oo

s 1
i, —— = —_—

sin? 7t ; (t+mn)?

Let 6 €]0, 5] and let f be the even function 27-periodic defined by:

0 20

M(1-Z) if0<x<20
0 f20<e<m

(a) Give the Fourier series the function f and prove that this series
converges uniformly to f on R.

X sin?ns X sint né
(b) Compute Z 3 and Z e

n=1 n=1

Let f be a continuous function on R and 27 —periodic.
Prove that if the Fourier series of f is convergent, then f is the sum of

its Fourier series.

6-1-4| (a) Prove the following formulas which gives an expansion in trigono-
metric series of the function f(z) = z in divers intervals, in looking
in each case, the periodic function ¢(z) whose expansion in Fourier
series yields the given result.

©= sin(nzx)
=7r—2 —— po 0<z<2m.
x=m Z - pour T <27

n=1

——QZ smnx) pour —w<x<T.



+
T 4 os(2n + 1)x
S ik Sl e 0<a<
z=3 Wz:% n 1) pour 0<z<m
4 X (~1)"sin(2n + 1 -
r=— (=1) sm(n:— ) for —nggz.
T (2ntl) 2 2
+oo +oo
T 2 cos(2n + 1)z (—1)"*+ sin(nx)
T2 for 0<z<
T i (2n+1)2 nzl n or UeEsT
(b) Deduce
=— : — =
o+l 4 o (2n+1) 8
) DI S TR
—mn? 6 ’ —(2n+1)t 96

(¢) i. In use of the formulas of the question 1) to compute the sum
sin(2n + 1)7wx

(2n+1)3

ii. Verify the result in compute the Fourler coefficients of g.

g(x) of the trigonometric series Z

1 if ze [Og[

Let f be the even function, 27 periodic defined by: f(z) = T
1 if ze {5, w[

(a) Determine the Fourier coefficients of f.
1)
2n+1°

(b) Deduce the value of the sum Z

6-1-6 | (a) Does there exists a locally Riemann integrable function f such that

Sll’l nrT
its Fourier series is E )?

n>1 f

(b) Same question for the series Z sin(n x)

n
n>1

(a) Determine, for a > 0 the expansion in Fourier series of the function
1

J@) = cosh(a) — cos(x)”
dx

2m
b) Deduce the value of .
(b) Deduce the value o /0 cosh(a) — cos(z)



6-1-8| (a) Compute the Fourier series of the following 27-periodic functions on
R given by:
i fx)=m—a if0<z<2m.
ii. g(z)=m—z if0<z<m,geven.
(b) Deduce that the Fourier series of the 2m—periodic odd function A
defined by: h(x) = x(7 — %) for 0 <z <m.

Let ¢ be the 2r-periodic function on R defined on | — 7, | by ¢(x) = 7.

(a) Compute its Fourier coefficients.
(b) Prove that:

i 1 mwcoshm +sinh7
14+n2 2sinh 7 '
n=0

6-1-10 | (a) Find the Fourier series of the 27-periodic function

fy= [0 i —m<w<0
T2 if 0<ax<nm
(b) Use the first question to compute the following sums:
+o0 “+oo _ —+o0
1 (—1)n—1 1
n?’ D (2n— 1)
1 n=1

n= n=1

6-1-11 | Let g be the odd 27-periodic function such that:

g(z) =z(mr —x), for 0 <z <.

(a) Give the Fourier series of g.

(b) Use the Parseval identity to compute

+oo 1
7;) (2n+1)8°
(a) Compute the sum of the following series Z r" cosnf, for 0 <r < 1.
n>1
(b) Deduce the following equality : )
1—r? = = .
Q-(9) = [ ——— 1+ QZT" cosnf = Zr‘”leme.

n=1 —o00



(¢) Using the theory of Fourier series, deduce the following value of the
integral:

27
L(r) = /0 cos nb

—————df.
1—2rcosf + r?
6-1-13 | Let h be the function defined by:

x? —1

h(x):xz—élx—l—l'

(a) 1. Give the power series of h in a neighborhood of 0.
ii. Compute the radius of convergence of the obtained series.

Let a and z be two complex numbers, such that |a| # |z| and az # 0.

Recall that:
1

a
- L < |z|.
2
= T
z—a -1 z
— =) if >
e G i >

(b) Prove that there exists a sequence of real numbers (A,)n<1, such
that Vz € C such that (|z| €]2 — /3,2 + v/3]):

+o00 A +o00
h(z) = Z Z—Z - Z An 2"
n=1 n=1

in(¢
Let f be the 2m-periodic function on R defined by: f(t) = ﬂ
2 — cos(t)

(c) Prove that h(el') = —if(t), VteR.

(d) Deduce the expansion of f in Fourier series.

. T gin?a
(e) Deduce the value of the following integral —dx.
0o 2—cosz

Let F be the 2m-periodic function defined by: F(t) = In(2 — cost).
(f) Say why F can has an expansion in Fourier series.
(g) Compute F’(t) and deduce, without compute the Fourier coefficients
of F' that the Fourier series of F' converges normally to F'.

(h) Deduce the value of the integral / In(2 — cos x)dz.
0

1
6-1-14 | Define the sequence (f,)n by: fn(z) = PR and a > 0.
v



(a) Prove that the series Z fn converges normally on any interval
n>1
[-A4,A] CR.
fa(t)

a

(b) i. Prove that for any n > 1 and any t € R, |f} (t)] <

+oo
ii. Deduce that the series Z f converges normally on any interval
n=1

[-4,A] CR.
(¢) Deduce that the function

+o00 1
@)= 2

is even, 2m-periodic and equal in each point to its Fourier series on
R.

(d) i. For any k € Z compute the integral

+o0 k
Ii(a) = / COshT

Z.
2 2
~ a €z

27
ii. Prove that (z) cos kxdx = Ii(a).
0
iii. Give the expression of f.



7 Lebesgue Integral

In this chapter, we present the Lebesgue measure theory and compare it with
the Riemann integral.

1 Classes of Subsets of R

1.1 Algebra and o—Algebra
Definition 1.1.

1. A non empty collection of subsets A of R is called an algebra or a field if:

(a) If A€ A, then A° € A,
(b) If A,B € A, then ANB € A.

2. An algebra &7 in Z(R) is called a o—algebra if every countable intersec-
tion of a collection of elements of &7 is again in o/. That is if (A4;); is a
sequence in &7 then ﬂ;r:o‘f Ajed.

If of is a o—algebra. The pair (R, o) is called a measurable space,
and the elements of &7 are called measurable subsets.

Properties 1.2.
Let A be an algebra, then

1. O,R € A;

2. A is closed under finite union and finite intersection.
(ie. if Ay, ..., A, € o, then (], A; € & and U;_, 4; € o).

“+o0
3. Let o be a o—algebra then: if (4;); is a sequence in o7, then U Ajed.
j=1

Proof .

149



1. Since A is non empty there exists A € A. So A° € A, hence ) = ANA° €
Aand R=0°€ A.

2. Let A,B € A, then A¢, B¢ € A and A°N B¢ € A. Since (AU B)¢ = AN
B¢ € A then AU B € A. By induction we prove that if 4;, ... ,4, € A
then | J A; € Aand N_, 4; € A.

j=1
+oo ¢
3. We have A € & and ﬂ Af§ € o/, hence ( jﬁA;) = ;r:‘XfAj €.
j=1
g
Example 1.1 :

1. o ={0,R} is a c—algebra in Z(R).

2. The power set Z(R) is a o—algebra in Z(R).

3. Let {A, B,C} be a partition of R. The set A = {(,R, 4, B,C, A¢, B¢,C¢}
is an algebra. (AUB =C° AUC =B, BUC = A°.)

4. Let A be the collection of subsets A of R such that either A or A° is
finite. A is an algebra. but not a o-algebra.

5. Let o be the collection of subsets A of R such that either A or A¢ is count-
able or (). o7 is a o—algebra. Indeed: let (A;); be a sequence of elements
of o . If there exists p such that A, is countable, then ﬂ;':cfoj CApis
countable and ﬂj':oi’ A; € o/ If the sets A; are all not countable, then the
sets A§ are countable. The set Uj':of Aj is countable and ﬂj':oj’ Ajed.

Theorem 1.3.

Any intersection of algebras (resp o— algebra) is an algebra (resp o— algebra)

i.e. if (A;)jes is a family of algebras (resp o— algebra) on R, then ﬂ A; is an

JjeJ

algebra (resp o— algebra).

Proof .
Consider the case where A; are algebra.

R € A forall j € J, then R € [] Aj.

jeJ

If A€ esAj,as A€ Ajforall j € J, then A° € (), A;.
Let Ay, ..., A, in m A;, then Ay, ..., A, are in A; for all j € J. Thus

JjeJ

Mee1 Ak € Njes Aj-



Now, if &/; are o— algebra.
If (A,), is a sequence in m o;, then (A,), € «; for all j € J. Thus

jeJ
“+o0
n=1 A” € ﬂjeJ %
g
Theorem 1.4.
Let (27) e be a family of o—algebras on R, then ﬂ of; is a o— algebra.
jeJ
Proof .
ﬂ </; is an algebra. Let (A,), be a sequence in ﬂ of;. Since each &7 is a
jeJ jeJ
+oo +oo
o— algebra then m A, € o for all j € J. Thus ﬂ A, € ﬂ ;. a
n=1 n=1 jedJ

Definition 1.5.

Let B C #(R). The intersection of the algebras (resp o— algebra) on R that
contain B is the smallest algebra (resp o— algebra) denoted by A(B) (rep o(B))
that contain B. This algebra (resp o— algebra) is called the algebra (resp the
o— algebra) generated by B.

Example 1.2 :

Let o7 be the o— algebra of subsets A C R such that either A or A¢ is countable.
o/ is the o-algebra generated by the singleton sets S = {{z} : z € R}.

It is evident that if A or A€ is countable then A € o(S). Then &7 C o(S). The
other inclusion is evident.

Exercise 1.4 :
Let A and B two family of subsets of R.

Prove that
VAe A, Ae€o(B)
o(A)=0(B) < &
VBeB, Beoa(A
Solution:

Il suffices to prove that o(A) C 0(B) <= A€ o(B), VA< A.

Assume that o(A) C o(B). If A € A, then A€ AC o(A) C o(B).

Assume that A € o(B), VA € A. Then A C o(B). Since o(A) is the smallest
o— algebra that contain A, then o(A) C o(B).

1.2 The Borelian o—Algebra
Definition 1.6. [The Borelian c—Algebra on R]



Let %g be the o—algebra generated by the family {[a,b[: (a,b) € R?}. This
o—algebra is called the Borel o—algebra on R. The elements of %y are called
Borel subsets of R.

We have the following theorem:
Theorem 1.7.

1.
2.

The open and the closed subsets of R are Borel subsets;

PBr is generated by the family of open subsets in R;

. Pr is generated by the family of closed subsets in R;

Pr is generated by {|a, +oo[: a € R},

. PBr is generated by {] — c0,a] : a € R}.

Proof .
For the proof we use the exercises (1.1).

1.

As any open subset of R is countable union of open intervals. It suffices
to prove that the open intervals are Borel sets. We have Ja, b[= U2 [a +

l, b[. Then Ja,bl€ Pr.
n

1
. Since [a,b[= N12]a — =, b], then %y is generated by the family of open
n

subsets in R;

1 1
Since [a, b[= U [a,b— —] and [a,b] = N> [a,b+ —[, then P is gener-
n n
ated by the family of closed subsets in R;
The o—Algebra generated by the family {]Ja, +oo[: a € R} is a subset of
the o—Algebra generated by open sets. To prove that %y is generated

by {]a,+oo[: a € R}, it suffices to prove that any open interval |a, b] is
in the o—Algebra generated by the family {]a,+oo[: a € R}.

1

We have ]a, b] =]a, +oo[N(]b, +00[)¢ and ]a, b[= U >]a,b— —]. Then %
n

is generated by {]a, +oo[: a € R}.

With the same arguments as in the previous property, g is generated
by {] —o0,a]: a € R}.

O



1.3 Exercises

Find all o—algebras that contain three elements in Z(R).
Find all o—algebras that contain four elements in & (R).

Let f: R — R be a function. Prove that the set & = {A C R :
FY(f(A)) = A} is a o—algebra in Z(R).

Let f: R — R be a bijective function.
Prove that the set

o ={ACX: f(A)C A& f~1(A) C A}.

is a o—algebra.

Let E be a non empty subset of R.

Find all the o—algebras generated by the set € = {F : £ C F C R}.

Let E be infinite subset of R and S = {{z}: z € E}.
Find the o—algebra generated by S. (Discuss the case of E countable
and not countable)

Let A be non-empty subset of R.

(a) Find the o—algebra generated by the set € = {B C R: A C B}.
(b) In which case this c—algebra is equal to Z(R)?

2 The Lebesgue Measure on R

2.1 Lebesgue Outer Measure

Definition 2.1.
A set function p*: Z(R) — [0,00] is called an outer measure or exterior
measure on R if:

L p*(0) = 0;
2. p* is increasing (i.e. u*(A) < p*(B) if A C B);

+oo “+oo
3w ( U Ap) < Z pw*(Ay), for any sequence (A,), of subsets of R.
n=1 n=1

We give an example of an outer measure on R which helps us to construct
the Lebesgue measure on R.



Proposition 2.2.
Let A C Z(R) be a family of subsets of R such that )R € A. Consider a
function p: A — [0, +00] such that p(@) = 0. For all subset A C R, define

“+o0
pH(A) =inf{> p(An): A, € A, ACUNA,Y} (7.1)

n=1
The function p* is an outer measure on R.

Proof .

For each subset A C R, there exists a sequence (A,), € A such that A C
Ut A,. (We can take A, = R). So the function u* is well-defined.

It is obvious that p*(0) = 0 and that u*(A4) < u*(B) if it was A C B.

Let (A,), be a sequence in Z(R) such that A C US> A,,.

“+oo
If there exists A,, such that p(A,) = 400, then p*(A) < Z,u*(Ak) = +o0.
k=1

Now assume that p(A,,) < 400 for every n € N,
For € > 0, and for each n € N, there is a sequence (A, )r in A such that
A, C U;;"iAn’k and

+oo

% g
D o(Ank) < pf(An) + o
k=1

—+o00 —+oo

We have A C Uz7?co:1An,k and Z p(Ani) < Z w (A,) +e. O

n,k=1 n=1
Remark 21 :
If we take Z is the family of open intervals in R and the function p(I) = Z(I),
where £(I) is the length of I.
In this case, we denote the outer measure defined by this function by A*. It is
called a the Lebesgue outer measure.

+o00
N (A) =inf{)_L(I,): I, €T, ACUNI,}.
n=1

This outer measure fulfills the following properties:
Lemma 2.3.
For any interval I in R, \*(I) = Z(I).

Proof .
The result is obvious if the interval is not bounded, and if the interval is
bounded I and a and b are its limits, then for any € > 0, I Cla —¢,b+ ¢[.



Then A*(I) < .Z(I) 4 2¢ and \*(I) < Z(I).
Inversely if (1)), is open covering of I, then [a +¢,b — €] C U2 I). As the in-
terval [a+¢, b—e] is compact, there is a finite covering (Ix)1<k<n of [a+¢€,b—¢].

n +o0
Therefore b — a — 2e < Z.Z(Ik) < Z.i”(lk). Then b — a — 2¢ < \*(I) for
k=1 k=1

every £ > 0. Therefore \*(I) = £ (I).
t

Lemma 2.4.
Let 2 be an open subset of R and let (I,),, the connected components of ).
Then

+oo
A(Q) =) 2(I).

Proof .
Using the definition of the outer measure A*, we have \*(Q) < 327°% 2(1I,).

Inversely, let (Ji)x be a covering of by open intervals. As I, = Uz:wl JeN1,,
then

+oo +oo +oo +oo +oo
N L)< Y LI ) =) > L0 Jy).
n=1 n=1k=1 k=1n=1
On the other hand, since the intervals (I,), are disjoint, then U (JxyNI,) C
. +Oon:1
Jy for every m. Therefore Z.Z(Jk NI, < %(Jg) and Ziﬂ([n NJg) <
n=1 n=1
+oo +oo
> Z(Ji). Hence > .Z(I,) < A\*(Q) and therefore \*(Q) = Y7 Z(I,). O
k=1 n=1

Theorem 2.5.
For any subset A C R, A*(A) = Oign(g A*(0), where O 4 the collection of open
A

sets that contain the subset A.

Proof .

Let (I,,), be any countable covering of A C R formed by open intervals. If

w =2 I, then \*(4) < \*(w) < 32729 2(I,,). Then X\*(A) < b A*(0).
€0a

n=1 n=1

The converse inequality is evident if A*(A) = +o0.

Assume that A*(A4) < 4+o00. For € > 0, there exist a countable covering (I,),
+oo

of A by open intervals so that Z Z(I,) < A*(A) + €. The open interval Q =

n=1



U2 I, contains A and A\*(2 Z.i” ) < A*(A) +¢e. Then Oign(f) A*(0) <
A

A*(A). ad
Corollary 2.6.
If A is countable subset of R, then A*(A) = 0.

As X\ {a} = Z([a,a]) = 0, thenif A = {a, : n € N}, \*(A) <372 N\ {a,} =

Corollary 2.7.
R and any interval [a, b] are not countable, for a # b.

Theorem 2.8.
Let A C R and r € R, then \*(4 4 r) = A*(A4) and \*(r4) = |[r|A\*(A4).

Proof .

If A= (a,b), then A+r = (a+r,b+r)andifr >0, rA = (ra,rb) and if r <0,
rA = (rb,ra). Therefore \*(A+r) =b—a = A*(A) and \*(r4) = |r|(b—a) =
[r|A*(A).

If A is an open subset, then A = U7> (a;,b;) with (a;,b;) N (ax,b) = 0 for
every j # k and )\*(A) = U2 (b; — a;). Therefore \*(A +r) = A\*(A) and
A (rA) = |r|A*(A).

In the general case since, for any subset A C R, \*(A) = Oign(gA A*(0), where
O4 is the collection of open subsets that contain A, then \*(A + r) = \*(A)
and A*(rA) = |r|A\*(A4). O

2.2 The Lebesgue o—algebra

Definition 2.9.
Let p* be an outer measure on R. We say that a subset A of R is measurable
with respect to the outer measure p* If

VX CR:  pf(X) = p* (X NA) + " (X N A%).

Theorem 2.10.
The set & of measurable subsets in R with respect to the outer measure p* is
a o—Algebra.

Proof .

L As " (X N @) + p*(X N0 = p*(0) + p"(X) = p*(X) for any subset X
in R, then ) is measurable.

2. Let A € A, the for any subset X in R, p*(X) = p* (X NA)+p* (X NA°).
This definition is symmetric with respect to A and A°. Then A€ is also
measurable.



3. Let A, B € # and X a subset in R. As A is measurable

p(XN(AUB))

Then

p (XN(AUB))+p" (XN(AUB)®)

p (XN(AUB)NA)+u" (XN(AUB)NAS)
= p(XNA)+p* (X NnBNAS.

+* (X NA°NBC)
p(XNA) + p*(XNAS)
= p(X).

We deduce that A U B is measurable.

w(XNA)+p* (XNBNA®)

4. Let Ay, As be two disjoint measurable sets and X a subset in R. Let
B=XnN(A1UAs). As BN (A; UAs)° =0, then

©*(B)

p (BN (A1 UAg)) 4+ p* (BN (A1 U Ay)°)
p* (BN Ay + p* (BN AY)
pr(X NAD)+p (X NAs).

Therefore p* (X N (A1 U Az)) = p*(X N Ap) + p*(X N Ag).
Let (A,), be disjoint sequence in & and X C R.

Then

p*(X)

vV

Y

v

(X0 JA4) -+ (xn 4,9

j=1 j=1

n +oo
prxn Ja)+er@xnJa)”)
Jj=1 j=1
n +o0
Sow (X0 A +urx 0 4.
400 Foo
S (X0 A + (X0 (| 40)9)
n=1 n=1
+oo +oo

pH(Xn U Ap) +p (XN (U An)©).

n=1 n=1

(7.2)



The inverse inequality results from the outer measure property.

So that to complete the proof, consider a sequence (B,), in #. We
n—1

define the sequence (A,,), as follows: A1 = By, A, = By, \ U B;. Hence

j=1
400 +oo
U A, = U B,,.
n=1 n=1
“+o00o “+o00
Since U A, € & then U B,, € # Therefore # o—algebra.
n=1 n=1

O

Theorem 2.11.
The Borel sets are measurable with respect to the outer measure \*, i.e. %Br C

AB.

Proof .
It suffice to prove that Ja, +oo[€ £ for any a € R.
Let X be a subset in R, We want to prove that:

N (X) = A (XN]a, +oo]) + A (XN] — 00, a)).

As \* is an outer measure
(X)) < N (XN]a, +oo]) + A*(XN] — 00, d]).

For the inverse inequality, the result is evident if A*(X) = +oo.

Suppose that A*(X) < +o00. So for any € > 0, there exists an open set 2. such
that X C Q. and A" () < A*(X) +e.

Assume first that a ¢ Q..

NQ) =D 2D = Y 2N+ Y, L),
IeC IeCn]a,+oof IeCn)—oo,a]
where C is the set of component connected of €2.. Then
A(Q) = N(Q:NJa,+o0]) + A*(QeN] — 00, al)
> M (X Nla,+oo]) + A*(XN] — o0, al).
Therefore A*(X) > A*(X N [a, +o0]) + A*(XN] — 00, al).

If a € Q., we use the first case, by considering the open set Q. = Q. \ {a}
instead of Q.. (A\*(QL) = M*(Q%).) ad

Exercise 2.1 :



We say that a subset A C R is a zero set with respect to outer measure \* if
there exists a measurable subset B so that A C B and A*(B) = 0.

Prove that each zero set is measurable.

Solution

If A is a zero set, there is B € % such that A C B and \*(B) =0. If X is a
subset of R, then A*(X N A) =0 and

A (X) > M (X NA%) = M (X NA)+ A\ (X N A°).

The inverse inequality results from the definition of the outer measure A*. So
the set A is measurable.

2.3 The Lebesgue Measure

2.3.1 Measure Theory

Definition 2.12.
Let o/ be a o—algebra on R. We say that a function p: & — [0,00] is a
measure (positive measure) on & if the following conditions are satisfied:

L p(®) =0,
2. For any disjoint sequence (A,), € <, u(U>5A,) Z (A

The set (R, o7, ) is called a measure space.
Examples 11 :

1. If o = Z(R) and p(A) = #A (number of elements of A if A is finite
and +oo otherwise). The function p is a measure on 27. This measure is
called a the counting measure on R.

2. LetaeRand §,(A) =1ifac Aand 0 if a & A.
dq is a measure called a point measure at a or the Dirac measure at a.

3. Let p be the function defined on Z(R) as follows: p(A) = 0 if the set A
is finite and p(A) = 400 if the set A is infinite.
The function g is not a measure since N = U {n}, but u(N) = 4oc0 #

T
S ({n}) = 0.

Theorem 2.13.
Let o7 be a o—algebra on R and p a measure on /. The measure u satisfies
the following properties:



IfAq, ... A, € & are disjoint, then

pUj—145) =D u(4y).

.If A,B € o and A C B, then u(A) < u(B). (u is increasing)
 If (Ap)n € & and A = U > A, then

+oo
p(A) <3 p(An).

If (A,), is increasing sequence in & and A = UZgAn, then

n(A) = lim p(Ay).

n—-+oo

.If A, Be o and A C B and pu(B) < 400, then pu(B\ A) = u(B) — p(A)

(The result remains true if u(A4) < o).

. If (A)n is a decreasing sequence in & and A = ﬂ;ﬁ’iAn = lim A,. If

n—-+oo

p(Ar) < oo, then p(A) = lim  pu(An).

Proof .

1.
2.
3.

We prove this property by induction.
Since B = AU (B\ A), then u(B) = u(A) + u(B\ A) > u(A).

Let By = Ay, and B, = A, \ U?;llBj, for every n > 2. The sets (By)n
are disjoint and A = U2 B,, = U2 A,,. Therefore

+oo “+oo
p(A) = u(Bn) < p(An).

. Let (Bn)n the sequence defined previously. As Uj_; A; = Uj_; B;, then

wA) = wUrZAL) = u(Uy2By)
—+oo n
= Zlu(Bn) = 7}13;02;#(39')
n= j=

= lim p(Uj_,Bj) = nlgngo w(Uj=145) = lim p(Ay).

n—oo n—oo



5. w(B\ A) + pu(A) = u(B). If p(A) < oo, then u(B\ A) = u(B) — u(A).
6. We apply property (3) to the sequence (A1 \ 4,)n.

O

Example 2.1 :
Let & be a o—algebra on R and p: &/ — [0, +0o0] a function on &/. p is a
measure if and only if:

1 u@ =0
2. wW(AUB) = u(A)+u(B),if AnB=1.

3. If (A,,), is an increasing sequence in 27, then ,u(U:flAn) = lirf w(Ay).
n——+0oo
If 11 is a measure, it fulfills the properties (1) and (2).
Let (A,), be an increasing sequence in /. Define By = A; and B, = A, \
U;-leAj for every n € N. The sequence (B,), is disjoint and U5 A, =
Ut B,,. Then

“+o0o n
+oo _ _ : .
p(UpiA,) = z;u(Bn)—ngrfwz;u(B;)
n= J=
= Jlm p(UjBj) = lim p(An)

Inversely, if 4 is a function satisfying the properties (1), (2) and (3). If (A,)n
is a disjoint sequence of measurable sets. So the sequence (Bn = U;‘ZIAJ»)” is
increasing and U;'> A,, = U2 B,,. Therefore

n——+oo n——+00 4

n —+o0
,LL(U:SA”) = lim pu(B,)= lim ZU(AJ') = Z p(An)-
Jj=1 n=1

2.3.2 The Uniqueness Theorem

Theorem 2.14.
Let p and v two measure on the measurable space (R, #g). Assume that there
exists a class € C g that satisfies the following properties:

1. Re¥F andif A,Be ¥, then ANBe€®
2. € generates the c—algebra Bg. (0(¥€) = HBr)

3. u(C) =v(C) < +o¢ for every C € €.



Then p = wv.

Remarks 22 :

Let u and v two measures that fulfill the hypotheses of the theorem (2.14).
Define the family % = {4 € Br : p(A) = v(A)}. The class F verifies the
following properties:

1. If A e #, then A° € Z.
This is because p(A°) = u(R) — u(A) = v(R) — v(A) = v(A°).

2. If AABe.% and A C B, then BN A¢ € .%:
w(B) = p(A) + p(BnN A% = v(B) = v(A) + v(B N A°). Therefore
uw(BNA®) =v(BnN A°)

3. If (A,), is a monotone sequence in %, then lim A, € Z.
n—-+4o0o

Theorem 2.15. B
Let A€ F,theset : A={Bec PBr: AUB,BNA ANB° € F}is a
o—algebra.

Proof .

We have § € A. Moreover from the definition of A, wehave B€ A < A € B.
Also if A€ .Z and B € A, then AN B € .%. Therefore A C .Z.

We want to prove first that R € A. We have

H(RU A) = u(R) = v(R) = v(RU A), u(R N A°) = pu(A°) = o(A°) = p(R N A°)
and p(R°NA) = (@) = v(0) =0 =v(R°N A). Then R € A.

In this step we want to prove that A¢ € A.

AU A%) = pR) = v(R) = v(AU A%, u(An (A°)°) = u(A) = v(A) =
v(AN(A%°), u(A°N A°) = pu(A°) = v(A°) = v(A° N A°). Then A° € A.

Let B € A. We want to prove that B¢ € A

n(AU B°)

1 ((ANB)UB®) = u(AN B) + u(B°)
v(ANB) +v(B°) =v(AU B°)

w(BeN A°) = u(AU B)® = v(BUA). Since B € A, then AN B € .Z. Then
Be e A.

If (By), is an increasing sequence in A and B = liIJIrl B,,, the sequences
n—-+0oo

(BpUA), and (B, N A°), are increasing, so AU B and BN A° are elements of
F. But the sequence (AN BS), is decreasing and since p(R) = v(R) < +o0,
then AN B¢ e Z. ad

Corollary 2.16.
For every A € €, A = $Br.



Proof .

If A, B € ¢, then ANB € €. Therefore 1(ANB)=v(ANB). On the other hand,
since pu(A)=v(A), then u(AN B°)=v(AN B°) and so u(A°N B)=v(A°N B).
Therefore (AU B)=v(AU B). Since A is a o—algebra and since it contains

% then A = @R- (]
Proof of the theorem (2.14).
If A € PR, then A € R. Therefore A € .%. a

Theorem 2.17.
Let p and v be two measures on the measurable space (R, %gr) and suppose
there is a class € of measurable sets verifying the following properties:

1. f A, B€%,then ANB€%.
2. ¥ generates the o—algebra %p.

3. w(C) =v(C) < 400 for every C € G.

4. There is an increasing sequence (X,,), in € such that R = liT X,.
n——+0o0o
Then p = v.
Proof .

Define p,, and v, the measures By as follows: p,(A) = p(ANX,,) and v, (A) =
v(AN X,). We deduce from the theorem (2.14) that u, = v, and since the
measures (in), and (v,), are increasing, then p = v, where u and v are the
limits respectively of (un)n and (v )n. ad

2.3.3 The Lebesgue Measure

Theorem 2.18.

The restriction of the outer measure \* on the oc—algebra % is a measure.
We denote this measure by A and called the Lebesgue measure on R.

A is the unique measure on By which verifies the following properties:

1. A([0,1]) =1

2. M(A+z) = A(A), for all z € R and for all A € %g. (we say that A is
invariant by translation)

Proof .

The restriction of the outer measure A* on the o—algebra % is a measure
results from the inequality (7.2) if we take the set X = U} A,,.

The uniqueness: Suppose there are two measures y and v on By that they
achieve the proof.



As [0, L[< L then v{0} = 0 and any finite or countable set is a zero set. Also
the intervals [a, b], ]a,b], [a, b] and ]a, b] has the same measure b — a.

Let € be set of finite union of intervals [a, b[, where a,b € R.

The set € closed under finite intersection and R = (J>[~n,n[. Then u = v
on ¢ and using the theorem (2.17), we have u = v on Hg. O

Remark 23 :
The Lebesgue measure A can be defined on the o—algebra #* = U4, where
A is the set null sets. We proved that Br C B C B*.

2.4 Measurable Functions

In which follow, ) is a measurable set in R.

Definition 2.19.

We say that a function f: Q — R is measurable if f~1(A) € # for any Borel
set A, (A € Br).

The of measurable functions on Q will be denoted by .#(Q2) and the set of non
negative measurable functions on Q will be denoted by .#* ().

Theorem 2.20.
Let f: 2 — R be a function. The following properties are equivalent:

1. The function f is measurable, 4. f~Y—o00,a] € B, for every a€R,
2. f~a,+ocfe & for every a€R, 5. f~Ya,ble A, for every a,b € R,
3. f7l]—o0,afe B, for everyac R, 6. f~la,ble B, for every a,b € R.

This theorem results from the definition of the Borel o—algebra %r which
generated by any of the following family of sets:

L. {[a,+o0: a € R}, 5. {Ja,b[: a,b € R},
2. {Ja,+[: a € R}, 6. {la,b[: a,be R},
3. {] —o0,al: a€R}, 7. {la,b] : a,b € R},
4. {] —0,a] : a € R}, 8. {[la,b]: a,b e R}.
t
Remark 24 :

Let © be an open set. Any continuous function f: 0 — R is measurable.
Theorem 2.21.

1. If f € #(Q2), then the function |f| € .# ().



2. If (fn)n is a sequence in .Z (1), then the following functions are measur-
able

(a) g = sup fna (b) h= mn—H—oofn;

neN
(©) k=1, _fy

Proof .

1. Ifa<0,then Q={z € Q: |f(x)] >a}
If > 0, then

{xeQ: |f(x)|>a} {zeQ: f(z)>alU{ze: f(r)<—a}

= f'(a,4o0]) U f7H(foo,—a) € 2.

2. h(z)= igg(jgg fi(®))

{zeQ: glx)>a} =U,eniz € Q: fulz) >a} € BBB,

+oo oo

{zr eQ: h(z)>a}= ﬂ U{xEQ: fi(x) >a} € A
n=1j=n
3. k(x) = sup(inf f;(x))
+oo o
{zeq: k(z)>a}=J ﬂ{er; fi(x)>al e B

Corollary 2.22.

1. If f € # (), then the functions f+ = sup(f,0) and f~ = inf(f,0) are
measurable.

2. If (fn)n is a pointwise convergent sequence of measurable functions. The
limit function f, is measurable.

3. Let (fn)n be a sequence of measurable functions. The set C' of points
x € Q where the sequence (fy,)n(x) has a limit in R is measurable.

Proof .

1. The proof results from the theorem (2.21).



2. The function f = lim, ,, f, is measurable.

3. Let g = lim, ,, fn and h = limy, 4 oo frn. The set D = C° ={z € Q:
lim, . fu(z) < lim,, 1 oo fn(z)}. For every number 7, the set

D, ={zxeQ: g(z)<r<h(x)}={g(z) <r}n{h(z) >r}

is measurable, so the set D = UTGQ D, is also measurable.



2.5 Exercises

Let p be a measure on (R, %g). Prove that
u(4) + p(B) = (AU B) + u(A N B)

for every A, B € $x.
Give an example of measure p on (R, %g) and a decreasing sequence
(A,)n such that lirf w(Ay) # u( liI}rl Ay).
n—-+0o0o n—r—+00

Let € > 0. Give a dense open subset of R and its measure is less than e.

Let A be a measurable set in R of finite measure.
Prove that the function f(z) = A(AN] — oo, z]) is continuous.

Prove that for each increasing function f: R — R is measurable.

Let f: R — R be a measurable function.
Prove that the set {x € R: f(x) # 0} is measurable.

Let (R, 2, A\) be the measure space where A is the Lebesgue measure and
% the Lebesgue o—algebra.
For every measurable set A, we define the function p as follows:

p4) = [ .

Prove that p is a measure.

Let f be an integrable function on the measure space (R, Zg, \).
Prove that the set {z € R: f(x) = too} is a null set.

Let f be an integrable function such that / f(z)du(xz) =0 for all mea-
B

surable set F.
Prove that f =0 a.e.

7-2-10 | Prove that the two functions sin(z?) and cos(z?) are not integrable on
[0, +o00].



3 The Lebesgue Integration

3.1 Simple Functions

Definition 3.1.
A function f: @ — R is called simple if it is measurable and takes a infinite
number of values.

If f: Q — R is a simple function and if {ci, ... ,c,, } are the different values of
f, then f = chXA]., where A; = f~!{c;} and the function f is measurable

j=1
if and only if the sets A; are measurable for each j =1, ... ,m.

Theorem 3.27.
Let f: Q2 — R

1. If f is a bounded measurable function, there exists a sequence of simple
functions which converges uniformly on 2 to f.

2. If f is a non-negative measurable function, there exists a sequence of
non-negative simple functions which increases to f.

Proof .

1. Let M > 0 such that |f(x)| < M for every x € Q. For (n,k) € Ny x Z
and —2" < k < 2™ — 1, consider the measurable subsets

kM (k+1)M
App={ze: on < flz) < T}
kM
and the measurable functions f,, = Z S XA where Ng = NU{0}.
k=—2n
For any zog € €, there exists ko such that xg € A, ,. Then f,(zo) =

Mk M
no and |f(zo) — fu(zo)] < on Hence, the sequence (f,), converges
uniformly on € to f.
2. For n € N, the function g, = inf(f,n) — % is bounded and measurable,
then from the first case there exists a sequence (fy,, ) of simple functions
1
such that ||fn — gnlleo < on- Therefore

npe S = Bt o = Lip i) = J-



1 1

1 . 1 1 .
In < gnton me(f,n)—**'z*n < lnf(f7”+1)—m+2nﬁ < fotr-
1 1 1 1
(It suffices to prove that for n big enough —— + on <o 1 + St 2

So the sequence (f, ), increasing.

3.2 The Lebesgue Integration

To define the Lebesgue integral of measurable functions, we first define the
integral of non negative positive simple functions. Then we define the integral
of non-negative measurable functions using the increasing limit. For arbitrary
measurable functions f, we use the decomposition f = fT— f~ as the difference
of two non-negative measurable functions and we extend the definition of the
integral to the measurable functions only if one of the integral of f* or f~ is
finite.

Definition 3.3.
N

If f= Z CkX{f=cy} 1S @ nON negative simple function, we define the integral

k=1
of the function f as follows:

| rare Zcm F=ab. (73)
fA={zecQ: f(z) =0} and N(A) =F+0orif A={xcQ: f(z) =400}
and A\(A) = 0, we assume that 0.co = 0.

Theorem 3.4.
Let & be the set of non negative simple functions defined on €. The integral
defined on &7 fulfills the following properties:

1. / a f(x)dMz) = a/ f(x)d \(x) for every o € RT and for each f € &.
Q o
/ (f +9)(z /f Yd Az / g(x)d\(x) for every f,ge&T.

/ f(x)d Xz / g(x)d X(z) for every f,g € & such that f < g.

4. If (fn)n is an increasing sequence in &% and if lim f, = f € &, then

n—+00
/f YdA(z) = lim /fn Yd
n——+00



Proof .
It is obvious that if « > 0 and f and g are in &' then af € & and f+g € &™.

1. The first property is evident.

2. Let f and g be two elements of &T and let F (resp G) be the set of values
of f (resp of g). We have:

f = Z axX{f=a}> 9= ZbX{g:b]w

acF beG

{f:a}:U{fza,gzb}, VaeF

beG

{g=by=J{f=ag=0b}, VbeG

acF

[ronw =Y ai-a- ¥ ar-ag-b

acF (a,b)EF timesG

[s@ira = aMg=ty= ¥ nMr=ag=b)

beG (a,b)EF timesG

| r@ax@ + [ g@ara = X @ hMs=ag=b)

(a,b)eFXG
{f +9=u}t =Uperxcatb=ulfl =a g ="b}. Therefore

Mf+g=u}= > Mf=a,g=0}.

(a,b)EFXG,a+b=u

Then

[ r@ax@)+ [ s

Q

> uMf+g=u}

/kf+gxmdxmy
Q



3. If/ﬂf(x)d)\(x) = 400, then /Qg(ac)d)\(:r) = +o00.

The result is evident if/ f(z)d A\(z) < 400 and the / g(x)d A(z) = 00
Q o
Suppose that / f(x)dA(z) < 400 and / g(x)d A(z) < 4o0.

Q Q
So the sets {x € Q : f(x) = +oo} and {z € Q : g(x) = +oo} are
zero sets. Let {a1, ... ,a,} and {by, ..., by} the sets of finite values of
f respectively of g.

Zajx{xeg Fla)= a]}andngij{er g(x)=b;}- Therefore/ f(x)dA(z) =
j=1

/f YA \(z and/ /g(m)d/\(x) and h=g— fed&t.
We deduce from 2. that ¢

/ /fd)\ /hd)\ /fd)\

Lemma 3.5.
Let (fn)n be an increasing sequence in &T. if there exists g € & such that

g <lim, oo fn, then/ g(z)dA(zx) < hm /fn Yd Az
Q

O

Proof .
Let By, = {x € Q: g(z) = y} for every y € g(©2). To prove the lemma it
therefore suffices to prove that for all y € g(X)

/ﬂg(x)XEy (@)dA(z) = yA(Ey) < lim [ fu(x)xe,(@)dA(z).

n—-4oo Q
The result is obvious if y = 0.
Now suppose that y > 0, for every 0 < ¢ < y, define the sets A, = E, N {x €
Q: fulz) > 1),

The sequence (4,,), is increasing and measurable and F, = lim A, because
n—-+o0o

for x € E,, fn(x) > t for every n big enough.

tME,N{z e Q: f,(z)>t}}

/Q X By iacts 1 (oo (2)dA(z)

/ In(@)xE, (v)d A(x).
Q

IN



IA(E,) < lim / ful@)xE, (2)AA(@).
This is for every 0 < t < y. Therefore
B < Tim [ flax, (@0,

n—-+oo

To prove (4), we define the function g = lim f,.

n—-+o0o

fn < g, for n € N and the sequence /fn x)d)\(a:)) is increasing and
Q

bounded above by the number / g(x) A(x).

Q
To prove the other inequality, we apply the lemma (3.5). a

Definition 3.6.
Let f be a non negative measurable function, we define the integral of f by:

/f Yd Xz —sup{/ ):g< [, geé&}
This is a non negative real number or +oco.

Remark 25 :
If f is a non negative measurable function, by theorem (3.2) there exists an
increasing sequence (fy,), in & which converges to f. We conclude from

which above that lirf / fa(@)dA(z) < / f(z)dA(z). On the other hand,

according to the lemma (3.5) for any function g € & such that g < f =

lim,, 4o frn, we have / gx)dA(z) < liIJIrl / fn(z)d A(x). So by definition
Q n—-+0oo Q

(3.6) /Q F@)dA(z) < lim / Fu(@)dA(z). Therefore

n—-+oo Q

/Qf(x)d)\ :nll)r_{loo/fn )d A(x

. This result is not related to the sequence (f,,), in &t which converges to f.

Theorem 3.7.
If f and g are in .#7(Q) and o > 0, then

1. /Qaf(x)d)\(x):a/gf(x)d)\(m)
2. /Q (f + 9)(@)d\(z) = /Q f@)d @) + /Q 9(x))dA(z)



3. If f <g, then /Qf(x)d)\(x) < /Qg(:r)d)\(x).

Proof .
For proof, it suffices to take two increasing sequences (f,,), and (g,), in &
which converge respectively to f and g, and we apply the theorem (3.4). O

Definition 3.8.

Let f,g two functions. We say that f = g outside a zero set or f = g a.e. If
the set {zx € Q: f(z) # g(x)} is a null set.

Let A be a measurable set. The function x4 = 0 a.e. if and only if A\(A) = 0.

Definition 3.9.
We say that a function f is defined a.e. on €, if there exists a null set N so
that the function f is defined on 2\ N.

Definition 3.10.
We say that sequence of functions (f,,), on Q is convergent a.e. if there exists
a function f such that {z € Q: f,(x) /= f(x)} is a null set.

Theorem 3.11.
Let f, g be two functions in .Z*(Q).

1. / f(z)dA(z) =01If and only if f =0 a.e.
Q

2. If f =g a.e then /Qf(x)d)\(a:) = /Qg(:v))\(x)

Proof .

1. Suppose that /f(x)d)\ x) = 0. Then for every n € N, the subsets
Q
>

(
A, ={z €Q: f(z) > 1} are measurable and x4, < nf. Then

/ X, (@)dAz) = A(Ay) < n / f@)dA(z) = 0
Q Q

and A(A,,) =0, for every n € N. Therefore {z: f(z) #0} = U:z A, is
a null set.

If f=0ae, theset A ={z € Q: f(xr)# 0} is a null set and the
function g = co.x4 is a simple and f < g. As / g(z)dA\(z) = 0, then
Q

/ fl@)dX(z) =0.
Q



2. suppose that f < g. the function h = g — f is defined a.e and equal to 0
If/ f@)dX(z) = / g(x)d A(x) = 400, the result is correct.

If/f )dA(z) < 400, and/ g(x)d A(z) < 400, then

Oz/Qh(x)d/\(x):/ /f YA A(z

The function A = inf(f, g) is non negative and measurable and h = f = ¢

a.e. As h < f then /f(x)d)\(x) = /f(x)d)\(m) Also as h < g,
Q Q
then [ h(z)d\(z) = / g(x)d A(z). We conclude that [ f(x)dA(z) =
Q Q Q

g(@)d A(z).
Q

O

Definition 3.12.

We say that a function f:  — R is integrable if the functions f and f~ are
integrable, where f* = sup(f,0) and f~ = sup(—f,0). In this case we define
the integral of f as:

/fd/\ /f+ YA A(z /f 2)d \(z

Also if the function f is measurable and/ fT(@)d\(z) < oo or/ f(@)dX(z) <
oo We define the integral of the function f on 2 by:

/fd)\ /f+ YA A(z /f 2)d Nz

The set of integrable functions on € is denoted by £1(2).

Theorem 3.13.

The set £1(€2) is a vector space on R and the map f — / f(x)d \(z) is linear
Q

on the space £1(Q) and

’/f YA A(z /|f )|d M)

for every f € L1(Q).



Proof .
As |f +g| < |f| +lgl, for every f,g € 4 (), then

[11@ +s@lare) < [ [f@laxe + [ low)] axe)

If f+ge LY.
fr9=U+ " =(f+9) =f"—f+g"—g".
Then (f+g)* +f~+9- =(f+9)~ +f" +g*, and

[+or@ + [ F@ixa / “(2) dA(@)
= [Gro @@+ [ 1@ dr

—I—/Qg (z)d A(z)

and

|+ @iaw) - / (f +9)"(x) dA(x)
- /f+ Az /f
+ [ g @are) - [ o @irw

/f YA / )\ ().

The other properties are evident. O
Corollary 3.14.

1. If the function is f measurable and a < f < b and A(Q2) < 400, then
feL£YQ) and a\(Q) < / f(x) dX(z) < bA(RQ).
Q

/ (f + 9)(@)d Ax)
Q

2. If f < g, where f € #(Q) and g € L'(Q), then /f(x)d/\(x) <
Q

/Q 9()d \(a).

3. If F is a measurable null set, / f(z)dA(z) = 0 for every measurable
E

function f.



Remarks 26 :

1. If f is an integrable function, then the set {x € Q : f(x) = +oo} is a
null set.

2. We introduce the equivalence relation ~ on £1(X, .o, u) by setting f ~
g <= f = ga.e. Thus we may consider the quotient space L'(X, ./, u) =
LY(X, o, 1)/ ~. This space is often abbreviated to L (u).

3.3 The Monotone Convergence Theorem

Theorem 3.15. [Monotone Convergence Theorem|
(The theorem is called also the Beppo-Levi’s Theorem)
Let (fn)n be an increasing sequence of non-negative measurable functions on

Q, then
| n = 1 n(z)d Nz
/Wufoo fu(@)dN(z) = Tim / Il

Proof .
For every n € N, there exists a non-negative increasing sequence (¢, ;); in &+

which converge to f,. For every j, define the function ¢; = sup ¢, ;. The
1<n<j

sequence (1);); € &7 is increasing because

Y= sup @n; < SUDPnjt1 < Sup  @Pnjt1 =Yg

1<n<yj 1<n<j 1<n<j+1
for every j > n, ¢n; < 1j, therefore f,, = lim ¢, ; < lim ;. Then
Jj—+oo Jj—+oo
f= lim f, < lim ;. on the other side inequalities ¢, ; < f, < f prove
n—-+00 Jj—+oo

that ¢; < f and 41i£1 ¥; < f. The sequence (1;); is increasing in & with
j—+oo

limit f. Then / f@)dX(z) = _lir+n /wj(a:)d)\(x). Moreover 1; < f;, then
Q I J0
jEIfoo/Q%(x)d/\ <J£I4I‘100\/fj ) dX\(= /f Yd A(x

Corollary 3.16.
Let (fn)n € 41 (2) be a sequence, then

/an YA (z Z/fn YA (x



Corollary 3.17.
Let f € .#7(Q), then for every A € %, the function

H(A) = /Q F(@)xa@)dA(z)

is a measure on .

Proof .
Let (A,), be a disjoint sequence of measurable sets (A; N Ay = @ for every

+oo
j# k). Then fxu,a, = 3 fxa, and

n=1

1% (U An)

n

/ £ (@) X0, 4, (D)AN(@)
Q

+00
/Q 3 f(@)xa, (@)dA(@)

+oo
T /Q F@)xa, (@)dA(@).

The second part of the result is true if the function f is the characteristic
function of a measurable set, and therefore is true for every simple function. So
if f is a non negative measurable function, there exists an increasing sequence
of simple functions which increases to f. We get the result using the monotone
convergence theorem. a

3.4 Fatou’s Lemma

Lemma 3.18. [Fatou’s Lemmal

If (fn)n € A#T(Q), then
o fu@)dNE) Sy [ Fa@)dA @),
Q Q

Proof .

lim, , . o fn =lim, o (inf;>, f;). Therefore /Q Jlrzlfl fi(x)dA(z) < ]1r21£ /Q fi(z)dM(x)
and we get the result using the monotone convergence theorem.

Example 3.1 :

Let f, = nQX[O7%], /Rliimn_woofn(x)d/\(az) =0 and liimn_woo/kfn(x)d/\(x) =

+00



3.5 Dominate Convergence Theorem

Theorem 3.19. [Dominate Convergence Theorem or Lebesgue’s theorem)]
Let (fn)n € #(82) such that

1. (fn)n converges a.e. to a function f defined a.e.

2. There exists a non negative integrable function g so that: |f,| < g a.e.
for every n.
Then the sequence (f,), and the function f is integrable and

/Q f@) dA(z) = lim /Q Fa(@)dA(@).

n—-+o0o

Theorem 3.20.
Let (fn)n € #(£2). Assume that there is a non negative integrable function g
such that for every n, |f,| < ¢ a.e. Then

/ lim ,, (@)d A(z) < lim / ful@)d A(a) (7.4)
Q Q

/ Fmfpd A(z) > T / fu(2)d A\ (z) (75)
Q Q

If the sequence (fy,), converges a.e. on {2 and its limit is a measurable function
f defined a.e., then f € L'() and

/ F@)dA(z) = lim / Fa@)d A (2). (7.6)

Q n—+oo Jo

Proof .

As the function g is Integral, the set {z € Q : |f(x)] = +oo} is a null set.

So we can be substitute the function g by the function gx(s. g(z)<+4oc}- This

substitution does not change anything about the inequality: |f,| < g a.e..

The sequence (f,), can also be substituted by the sequence fX{|f,|<g}- This

substitution does not change the value of the integral / fn(z)d M) and not in

Q

the limit liIJIrl fn a.e. So we can assume that |f,| < g on . So the functions
n—-+oo

limf, and limf, are integrable on 2. Using Fatou’s lemma on the sequence

fn+ g, we get

[ s + @A) <l [ (fa+ 9@} A).
Q Q

As himnﬁ+oo(fn +g) = (himn—wroofn ) +g on Q7 then



[t ful@)dA ) <lim, o [ 0N @)
Q Q
and using Fatou’s lemma on the sequence (—f, + ¢)n, we get

[t (CE)@N) <l [ fa@)d @),
Q Q

Then
/mn_>+oofn(x)d)\(x) zmn%oo/ fo(@)d A(x).
Q Q

Example 3.2 :
Let f be an Integrable function on [0, +oo[. We want to prove that

+o0 R

lim e "SI £ (1) dr = 0.

n—-+oo 0

Consider the sequence (f,,), defined on [0, 00] by: fn(z) = e~ "50° 7 f(z).
Let A = {x: f(z) = £oo} UNy. For every z ¢ A, ll)&l fn(z) = 0 and

|fn] < |f] and the function f is Integrable. Then

+oo

li —nsin?z dr = 0.
S, O S



3.6 Exercises

Find the following limits:
(a) lim / VrInz(l )"dx

n—>-4oo
. | sinz|=
1 L
(b) n—1>n—i1-oo R 1422 de,
Foo dx
i —_
(c)  lim g P
o0
(d)  lim eI f () da, f € L0, +oo]),

n——+oo 0

+oo +oo
(e) lim hf(a:)2 dr,and lim / hf(z) >dx, Where f is an
0

h—ot J, h¥P+x h—0+ h?+x
integrable function on the interval [0, +o00[ and continuous at 0 and
a>0.
+oo 3 T
() lim sin(e®)

n—+oo /g 14+ nx2
n
(g) lim (1+ f)_" cos xdx,
n——+00 0 n
n

() lim [ 1+ Z)me2dy,

n—-+oo 0 n
M tm [ (-5 et
n—+o0 /g n ’
" 1
G) tm [ (1=l o,
n—+oo /g n° n+x
(k) 1 +oo(1 + I’)nQ 7nl’d
W [, ()T

Prove that

3

/+°° e 2%y B f (-1
0 1+e® = 3
and find the value of the series.

7-3-3| (a) Let f € L'(R) and o > 0.

Prove that lim f(nz)

n—+oo N

=0 ae. z € R (We can integrate the

series Z % on R.)



(b) Let f: R — C be a measurable function and T—periodic and
T
/ F(0)] dt < +oo.
0

f(nz)

i. Prove that lim =0 a.e.

n—-+o0o n2

ii. Prove that lim (]cosnz )% =1 a.e. (We can use the function

n—-+oo
(In | cosz|)?.)

Consider the sequence (I,), defined on |1, +o00[ as follows:

oot
In(m):/gc (D)

Prove that the sequence (I,,), is well defined and find its limit.

—ax

Let f(x):lx_ew,witha>03ndb>0.

“+o0
Prove that the function f is integrable on [0, +oo[ and / flx)dx =
0

Z a + b
2

z
Consider the sequence (I,,), where I, = / tan"(z) dx.
0

Find the limit of the sequence (I,,),, and deduce the sum of the following
(1) and U, = 7(_1) .
2n+1 n

sequence: U, =

4 Riemann Integral and Lebesgue Integral

4.1 The Riemann and Lebesgue Integral

Let A be the Lebesgue measure to on the o—algebra % of measurable functions

on the interval [a, b].
b

If f: [a,b] — R is a Riemann integrable function, then / f(z)dz symbolizes
the Riemann integral of f on the interval [a, b], and if the afunction is Lebesgue

integrable on [a, b], then / f(z)d A(z) symbolizes the Lebesgue integral of f

[a,b]

on the interval [a, b].



Theorem 4.1.
Let f: [a,b] — R be a Riemann integrable function, then f Lebesgue inte-
grable on [a, b] and

b
f@)dN@) = [ fa)da.

[a,b]
Proof .
As the function f is Riemann integrable on [a, b], there exists a sequence (o, =
{zo=a,...,xp, =0b}), of partitions of [a, b] such that

U(f)= Tlim Ulon, f)=L(f)= lim L(on,f).

n—-+oo n—-+4oo
We define two sequences (g ), and (hy,), of simple functions as follows:

gn(z) = {mk = infte[wk,wkﬂ[ f(t) T < T < Ty

gn(b) = f(b>

hn(z) = {Mk = SUDte(zy ap [ S(B) Tk ST < Thpa
hn(b) = f(b)
The sequence (g ), is increasing and the sequence (hy,), is decreasing. Let

g= lim g, and h= lim h,. Then
n—-+oo n—+o0o

b
Ulon, f) :/ hn(m)dx/[ ) b (2)d A(z).

b
Lo, f) = / () = /[ @A)

Since the functions g and h are measurable, using the monotone convergence
theorem, we get

b

Jim [ gu@)is = 1) = /[a,b] o(2)d\(x) (7.7)
. b
ngr}rloo ’ hp(x)de =U(f) = /[a’b] h(z)d M\ x). (7.8)

De deduce from (7.7) and (7.8) that / h(z)d\(z) = / g(x)dA(z).
[a,b] la,b]

Then / (h(z) — g(x))dA(z) = 0. and since the function h — ¢ is non negative
[a,b]



and integrable, then h = g a.e. and f = g a.e. So the function f is measurable
and

b
/ f@yde = [ f@)dA@).
a [a,b]

Theorem 4.2.
Let f be a bounded function on an interval [a, b].

1. The function f is Riemann integral on [a, b] if and only if the set of points
where the function f is not continuous is a null set.

2. Inversely, if the set of points where the function f is not continuous is a
null set, f is integrable and

b
@@ = / f(z)dz.

For the proof, we keep the same notations as in theorem (4.1) and we need
the following lemma:;:

Lemma 4.3.

+oo

For every = € [a,b] \ <U 0n>7 g(x) = h(x) if and only if the function f is
n=1

continuous at x.

Proof .

Let z € [a,b] \ (U}2{0,) and 6, = ||o,||. If the function f is continuous at z,
for each € > 0, there exists n > 0 such that |f(z) — f(¢)| < ¢ for every ¢ € [a, b]
and |t — x| < n. Since the sequence (J,), converges to 0, there exists ng such
that d,, < n for every n > ng.

For each partition o, with n > ng, there exists k € {0,...,p, — 1} such that
T < T < Thy1-

Then |f(z) — f(t)| < ¢ for every t € [xg,xk41]. Therefore hy,(z) = M) <
flx)+e, gn(z) =mg > f(z) — € and hy(z) — gn(z) < e. and since this is for
each n > ng then h(x) — g(z) < e for every € > 0. Then g(x) = h(z).
Inversely: let = ¢ (U,—; 0,), where g(z) = h(z). as g(z) < f(z) < h(z), then
f(x) = g(x) = h(z). So the two sequences (g, (z)), and (h,(z)), converge and
have the same limit f(z).

Let € > 0, there exists ng € N such that 0 < f(z) — gn(z) < € and 0 <
hn(z) — f(x) < €, for every n > ng. Since o, is a partition of the interval
[a, b], there exists k € {0,...,pn, — 1} such that © € [z}, xx41[ and

hing () — e < f(x) < gno(x) + €.



On the other hend hy,(z) = sup  f(¢) and gn,(z) = inf  f(¢). Then

tE[Ik,:vk+1] te[wk,$k+1]
ft)—e < f(z) < f(t)+e for every t €]ay, xr41[- So the function f is continuous
at x. O

Proof of Theorem (4.2).
1. The function f is Riemann integral if and only if U(f) = L(f) and this

is equivalent to h = g a.e and we deduce the result from the previous
lemma.

The function f is Riemann integral if and only if h = ¢ a.e and this is
equivalent to the set {x : h(z) # g(z)} U (U,—, o) is a null set, which
is equivalent to the function f is continuous a.e on the interval [a, b].
2. If the set where f is not continuous is a null set, then lirf gn(z) =
n—-+0oo
lirf hn(x) = f(z) at each point of continuity of the function f. So the
n—-+oo

function f is measurable and we can deduce the result from the dominated
convergence theorem.

lim gn(x)dA(2) = f(x)dA(z
n ] (z)dA(z) o] (z)dA(z)
lim hp(x)d\(x) = z)d\(x).
" i) (z)dA(z) [a,b]f( )dA(z)

So the function f is Riemann integrable and

b
z)dNz) = x)dx.
@ /af()

We now give another proof of the following theorem:

Theorem 4.4.
Let f: [a,b] — R be a bounded function. The function f is Riemann integral
if and only if f is continuous a.e. on the interval [a, b].

Proof .
1. Assume that the function f is Riemann integral. For any x € [a, b], define

the functions

xr) =su inf = lim inf ,
o@)=swp il ()= limint f(y)



h(z) = inf sup f(y) = limsup f(y).
020 yelab],ly—r|<s y—a
The function f is continuous at z if and only if g(x) = h(z). We have
g < f < h. If 0 is a partition of interval [a, ], then U(o,g) < U(o, f) <
U(o,h) and L(o,g) < s(o, f) < s( sigma, h). But U(o, f) = U(o, h) and
L(o,g) = s(o, f). Because for every open interval |c, d[C [a, b],

inf g(z)= inf f(z), sup f(z)= sup h(z).
z€le,d| z€le,d| z€le,d| z€le,d|

Therefore

L(f)=L(g) <U(g) <U(f), L(f) < L(h) <U(h) =U(f).
As the function f is Riemann integrable, the two functions g and h are
b
Riemann integrable, and their integral is f(x)dx.

If the functions g and h are Lebesgue integ[;able and have the same inte-
gral. But g < h, therefore ¢ = h a.e. As the function f is continuous at
every point where the two functions g and h are equal, the function f is
continuous a.e.

. Assume that the function f is continuous a.e.then for every n € N, let o,
be the uniform partition of the interval [a, b] and the number of points of
op is 27,

Let

hn(z) = sup f(y), gn(z)= inf f(y).
y€le,d] y€le,d|

If there is an open interval |, d[ of the partition ¢,, and contains the point

x and hy,(x) = gn(x) = f(z) if € 0,,. So the sequences (g,,)n and (hy,)n
are respectively increasing and decreasing and

b b
Lon, f) z/ gn(x)dx Ulon, f) z/ hy(x)dz.

lim,, 00 gn(x) = lim, o hn(x) = f(x) at every point & where the func-
tion f is continuous, so



Using the dominated convergence theorem

b b
lim gn(:c)dx:/ flz)dr = lim [ hy(z)de.

n—oo a n— oo

and this proves that L(f) > fab f(x)dz > U(f). So the function f is
Riemann integrable.

O

4.2 Improper Integral and Lebesgue Integral

Theorem 4.5.

Let f: ]a,b[— R be a function Lebesgue integrable on every closed and
bounded interval of ]a, b[.

The function f is Lebesgue integrable on ]a, b if and only if the iproper integral

b
| f(z)|dz is convergent. In this case, the Lebesgue and the Riemann integral

of f are equal:
b
| fayia = [ @@,

Proof . .
Suppose that the integral / |f(x)|dz is convergent. Let (ay), and (by), two

a
sequences in Ja, b[ so that the sequence (a,,), is decreasing and tends to a and
the sequence (by,), is increasing and tends to b. We define the sequence of
functions (F,,), as follows:

Fo(z) = [£(®)X(an,bn)-

. The sequence (F, ), is increasing, measurable. Its limit isthe function | f|x)q,s[-
So the function f is measurable and by using the dominate convergence theorem
we get:

lim F,(z)d\z) = / |f(z)|d A(z).

n—+o0o Jp Jab]

bn
On the other hand, using the previous theorem / F.(z)d\(z) = / |f(x)|dx.
R An

Using the previous definition, we get:

b
lim [ F(2)dA(z) = / 1 (2)|da.

n—-+oo R



So the function f is Lebesgue integrable. To prove that the two integrals are
equal, we define the sequence of functions (g, ), as follows: g, = fX/a, .- The
sequence (gn)n is convergent and its limit is the function fxjq 4. The functions
gn are integrable and |g,| < [f[X[q,5)- Using the dominate convergence theorem

lim gn(x)d M) = flx) dX(x).
Jm [ e@a@= [ sw o

Inversely: If the function f is Lebesgue integrable on the interval ]a, b[, the
the function |f| is also Lebesgue integrable on the interval ]a, b|.

Let (an)n and (b,), two sequences in |a, b as previous. Using the dominate
convergence theorem

lim F,(z)d\(z) = / |f(2)|d A(z) < +o0.
00 Jla,b] Ja,b]
b brn
On the other hand / F,(x)d\(z) = / | f(x)|dx, So the limit Erf |f(x)|dx
Ja,b] an n X Jan

b
inRand/ |f(z)|dx < 4o0. O



4.3 Exercises

7-4-1| (a) Calculate the integral of the following functions on [0, 1].

1 .
f(x) = —= + xo(x) g(x) =sinz; 2 €Q
Ve : g(x) =cosz; z € R\ Q

(b) Find whether the following functions are integrable on |0, +-00[?

sinx 1

f(z) = - h(z) = m
g(z) =

1

(14 22)4/|sinz|

Calculate the following integrals:

(a) / e~1ld\(x), Where [2] is the entire part of the real number
[0,400[
x.

(b) f(z)d\(x), where f(x) =sinz if € QN[0, 7] and f(x) = cosx
O[Ec)ﬁgrwise.

(©) /[ e



Solutions of Exercises

4.4 Solutions of Exercises on Chapter 1
1-1-1

. b*anl ! ’ ! 1 2 2
Jim 83 @) @) = [ @) @)de = 570 - ).

=0
1
1-1-2| (a) Let f(z) T the interval [0,1]. The Riemann sum of f is
x
R |
Z f(i) = L’ then
e

n

1
li =In2.

(b) Let f(x) = 2% on the interval [0, 1].

1 k2
—E —, then
n n

k=1

The Riemann sum of f is

) 1<~ k?2 1
LD B Ak i

(t) = sin(xt) on the interval [0,1]. The Riemann sum of f is
k

— sin(—ﬂv)7 then

n n




1
(e) Let f(t) = o2 ™ the interval [0,1]. The Riemann sum of f is

12”: 1 n "
— = en
=EE AT

n ™
ngn-il-ockz n2+k2 o Z

1
f) Let f(t) = ———= on the interval [0, 1]. The Riemann sum of f is
() Let f(8) = ——— 0.1 f
i# then
2R
o~ 1 I
(2) Let f(t) = x*sin(rx) on the interval [0,1]. The Riemann sum of f
1 ¢ km
is 3 2 E%sin(— - ), then
im 5> k) = [Catngrae = L2
L im 2 sin = Oxsmwx T=—-—
2n .
(h) Let S, = — [[(n*+ k%)% and T, D In(1+4
k=1
then
1
lim T, _2/ In(1+ 42?)dz = 2In5 — 4 + 2tan~' 2
n—>-+o0o 0
"1 km !
(i) limy,— 400 Z — cos (n) = /0 cos(mx)dx =0

on

2m
1
) B _ 37 _
() limy, 400 g 24n = n~>+oo E —/ dx = 1




=
<
3
|
=
I
S—_
8
—
[
T
8
=
IS
8
|
|
S—_
—
I
—
[
8
I
—
Y
U
8

(a) i The function  — = is decreasing, then on the interval [, j+1],

1 1 1 1 /J’“ dr 1
— < —< - and - < — < -
j+1 "z j j+1 j T J
ii. We deduce that
kn I+ dr kntl go |
S L=, X e
: j €T n+1 € . J
j=n+1"J + j=n+1
and
kn—1 kn kn—1 H
1 1 I dy ke dg
R O EUCED oY A
= +1 Plamerttl) = Ji T n T
Then

kn+1 kn
[T s [
n+1 € n €

(b) lim S,(k) =Ink.

n——+00



(¢) The sequence (T),), is not convergent, because it is not a Cauchy

sequence. lim Ty, — T, =1n2.
n—-+oo

1
The function ¢: [0,4o00[ defined by ¢(z) = 1

+x

is continuous, then

pof= + is Riemann-Integrable.

/1+f /dx— aHj%deLbf(x)dz_O.Thean%—

b
/dm—(b—a.

T u=sin sin x 1.
1-1-5| 1) / sin® ¢ cos tdt ‘ / uddu = = sin* x
0 0 4

ul= s 42
/t2x/1+t3dt L’ 91+x)3—7\[.
1
T tdt =(u-1)? /1+ﬁ2(u1)3 2 s 3
) [ 1 . 20+ Va3

VT)? 4+ 3(1+ Va) —In(1 + V) — %.

4)
T2t +1 v 1
/gdt _ /t+7dt
0o Ll+t+t? 0 1+t +¢2
r 4
= t4+ ———dt
| 30+ (ZE)
2 1,2z +1 1, 1
= z+ —(tan — tan —
Tttan ™ (C) — tan”! ()
_ x+ltan—1(2x+l)_L
V3 V3 3v3
5) /” dsc. t=ta;(”2”)/+oo 2dt2:2
o l+sinz o (1+1)
6)
T dx 3 dx
— — 92 —_—
o l4+sin“x o l4+sin“x

t:ta:n(:c) 9 /+oo dt 7T\/§
0



ISl

/I sin(2z)(1 — cos(?z))d
x
0

sin® z cos x
S TCOST g =
/0 1+ cos?(2x) 1+ 0052 (2x)

1

4

t=cos(2x) 1
-8

1
(-0, 1
—In2
/0 AU TG
8)
/7r dx /’2‘ dx
- - 2 -
o 3+ cos(2x) o 3+ cos(2z)
t=tan(x) /+°° a w
B 0o 2+t2 22
9)

/4 In(1 + tan z) dx /4 ln(\/ﬁcos(g —z))dx — /4 In(cos x)dx
0 0 0

u=%—x /
0

ISE]

In(v/2 cos(u))du — /Z In(cos x)dx
0

_ mln2
= T
10) /2 e’dx e =1+4u? /‘621 2du — tan-( 62—1)_
1 (34+e%)Ver —1 B Vo1 A+u? 2

Ve—1

tan™!( 5 ).

11) cosh(3z) — coshz = coshx cosh(2z) + 2sinh® z coshx — coshz =
4 coshzsinh® z.

/ dx B / dx
cosh(3r) —coshz 4 cosh z sinh? z

1 / coshx
= = ) . 19 dx
4 J sinh®z(1 + sinh” z)

1 / cosh x cosh
= = .2 ) €
4 ) sinh“z 1+sinh“z

1 1
= “Ienhz + Ztan (sinhz) + C.




12)

/ dx et / ddt
sinh®z + cosh®z —1 (t—=1)2((t+1)*+2)

- /(_9(t471)+3(t31)2+§t2?:;_t3;3)dt
= —gln|t—1|—ﬁﬂ-gln(ﬂﬂ-?tﬂ-?ﬂ
+%tam’1(%)+0
= —%ln|e“"—1|—ﬁ—&—gln(emﬁ%-?e“’—kii)
+%tan_l(em\g1)+0
13)
/ dx' t=e? / dt
5coshx + 3sinhx + 4 (2t +1)2
1
- _2(2ew+1)+0'
14)

/(1 — 2?1 —a2de TR /cos4 0do
1
= Z/(;082(29) + 1+ 2cos(26)do
1
= 3 / cos(40) + 3 + 4 cos(20)do

= 3% sin(40) + 29 + isin(QG) +C
/1 — 2
= %(5—2x2)+281n_1x+0

15)
dx z=t% 6t5 9 6
—_— = ———dt = [ 6t° —6t+6 — ——dt
/\/E+€/:E /t3+t2 / + 1+t
= 282 -3t2 +6t—6In(1+1t)+C
= 2z —-3Yr+6Yz—6In(1+ Jz)+C.




16)

o

1—xz e =t? 5 3 11—z
\— = [ fdt=—%+C=-3 :
/ 14+ 1—1—13 / 3jL 3(1+x)

1-1-6 | (a) Ip = %, I = 1 and for n > 2, by integration by parts I,, = / cos” (x)dx
0
we have nl, = (n — 1)I,,_s. Then

5= 2n! w I _(2mnl)?
T (2rnl)2 20 T n 1)

Jn = I, by change of variable z = § —t.

By the change of variable = = sint,

+1 T
K, = / (:r2—1)”dx:/ (=1)" cos®™ ! tat

1 z

oyl 2
= (1) Loy = 2(1)”%.

“ dt
Ln_ = S
! A (14 ¢2)n—1
by parts x /"L t2
= ——— +2(n—-1 —_—
D= Gkl M cpweym
x
= W + 2(” — l)Ln_l — 2(7’l — 1)L7L
2n—1 T
L, = Ly_
2n—1) " T 2 (A2
ii.
o1+t 1 5 x
I = dt = =-1I
/0 CERE S Te N s R T )
15 1 ox x




(x —a)(x — D) o Jé; 5y )
(x —c)?(x — d)? zfc+(xfc)2 xfd—i_(:zrfd)Q7

(c—d)(2¢c—a—b) —2(c—a)(c—D) — 5
(c—dy’ '
(-a(z-b)

(= 02— dp
and only if (¢ —d)(2c—a—b) —2(c—a)(c—b) =

where oo =

Then the primitives of x —— are rational functions if

1-1-8| (a) /67290 cos(2z)dx = %e*%(— cos(2z) + sin(2z)). Then

1 ﬂ
K= / T cos(2z)dx = 5(675 +1)
PSP L
0 2

L 1, & 1
I-J= / e %" cos(2z)dr = 5(6_7 +1). Then I = 3 and J =
0

2
0 1
/ sf@ds "5 = [0 =00 =0 = [ (1= a)f@)ds. Then

/10(1t)f(1t)dt;(/lef(a:)d:v+/ of(x /f

1-1-10| If <0, F(x) = / (t —x)sintdt = — 2.
0

Ifo<a<m,

x T

F(m):/ (x—t)sintdt—l—/ (t —z)sintdt =z —sinx +71 —z —sinx =
0

T —2sinz. ’

If x >, F(m):/ (x —t)sintdt = 2z — 7.
0

F' is continuous.



1-1-11| (a) The function = — / f(t)dt is continuous, then f is continuous.
0

Assume that f is C*. The function z — /aw f(t)dt is CF*+1, which
yields that f is C'*°. ’
f(z) = af(ax). Assume that f(z) = o™ fa"x).
Fr (@) = a5 et f (a"e) = a5 aaf (0" ) = f(a"a).
(b) f(0) =0 and f () (0) = 0 for all n € N. By the Taylor formula at

order n at 0, there exists ¢, between 0 and z such that

(n+1)(n+2)
a 2

n+1
J@) = 2o I ().
(n+ 1!
|z|"™ enein L,
Then |f(z)| < (n+t 1)'a = |f(a"Tte,x)].
n+1 n n
Since |a] < 1, lim il — +2)|f(am'1cnﬂc)\ = 0 which

n—+oo (n + 1)!
| |n+1 ) ) \:c|”+1
= O since the series ), ~ 57

proves that f(x) = 0. (nﬂrfoo (n+1)!

converges.)

1-1-12
cos®z sin®
F(z) = / cos™ I Vtdt + / sin~! Vtdt.
0 0

(a) The functions t — cos™ '/t and t — sin~'+/f are continuous
n [0,1] and the functions z +—— cos?x and = — sin®z are C>
with values on the interval [0, 1], then F is differentiable on R and
F'(xz) = —xsin(2x) + xsin(2z) = 0 for z € [0, 7).
(b) i. Since the functions 2 — cos? x and = — sin® x are even and 7-
periodic, then F' is even w-periodic on R. Moreover F'is constant
on [0, 7], then F' is constant on R.
1 1
1
u) = — +
) VI—u?2 V1 —u?

=0on]—1,1],

ii i(cos_ u + sin~
" du
then Vu € [—1,1]

—1

_ . _ T
cosTu+sintu=cos 0=~

Nl=

iii. F(z) = F( ):/ cos ! VisinT Vidt = —
0



[1-1-13] /f /faxaxdx—/f (k—g(z))dz

/Of( )dx—/f (z)g(x)dz. Then

a k a
| rosa =35 [ s

sinz
b) Let = —
(b) Let f(x) 1+ cos2a "

x) + g(x) = 7, then

d ga) = x. f(r —x) = f(z) and g(r —

™ . 2
/0 1jcrb;%dsc = g(tan_l(cos 0) — tan™!(cos 7)) = %

1
1-1-14 / (x —a)*f(z)dr = a®> — 2a®> + a*> = 0. Then f = 0 on [0, 1], which

0
is impossible. Then there is no continuous function which fulfills theses

conditions.

(151515 Let f(t) = (1+sin2t)7 = et MOI+I020 for ¢ €] — 7 T\ [0}, f is contin-
uous and hm f(t) = €%, then it can be extended to a continuous function
On}—z,z[ Wlthf( ) = e2.

x 1 x
If F(z) = / (14sin2t)7dt, then lim — [ (1+4sin2t)*dt = F'(0) = 2.
0 x—0 0
1-1-16| (a) 0< I, <In"2 then lim I, =0.
n—>—4oo

(n+1)In"(1+ z)
x+1

(b) By integration by parts u = In""!(z + 1), v’ = )
V=1 v=x+1.
L1 =2W" ™2 — (n+1)I,.

(¢) I, = 21n”2—n[n 1

ln" k2n' e
n*QZ )k R + (=)™ 2n!(2In2 — 1).

1 . 1 .
sin 2 2
1-1-17 | U,, = / z". 51211 a: de, V,= n/ z" S 2T dx.
0 T4 —2 0 2

1
1
(a) |Un|§/ x"dr = ——, then hm U, =0.
0 n+1



(b) n+1

n/oa " f(x)dx

Then lim n/ 2" f(z)dx = 0.

n—-> 00 0

a n+1
na
< n/ 2"dr = .
0

1
(c) It is obvious to prove that V,, = n | z"(f(x) — f(1))dx — L(l)

n+1
Let € > 0 and a € [0, 1] such that |f(gc) — f(1)] < e forall z € [a,1].
Thus
. e nf(1)
Vomn [ 2@ = )zt n [ a(f@) - rar+ 225,
2 < [ar - sy + o [t - s
< o [ an(@) = r0)de] +

It results that lim V, = f(1).
n—>+00

1-1-18| (a) lim /2 (—sinz)"dx
0

< : i (D n __ .
. lim 2(sm(2 e)t=0

n—>-+o0o

Bl g—e
lim / (—=sinz)"dz| <  lim |sin” z|dx
n——+oo 0 n——+oo 0
B
+ lim | sin” z|dz.

n——+oo [ x
5—€

™

Then lim ’ (—sinz)"dz = 0.
n—> 0o 0
(b) i. By the Mean Value Theorem sinaz = xcosc, where ¢ €]0, 7].
Then sinz < 2. Moreover on the interval [0, 7] the function
x — g(x) = sinz is concave and g(0) = 1 and g(§) = 1, then
the graph of g is aver the chord h(z) = 2z. (We can also study
the variation of the function x — sinz — %x

3 .
/ (sinrax).e”" 5" dx
0

s

2 e 1—e"
< / e rde=m .
0

ii.
2r

™

2 .
Then lim (sinrz).e” """ ¥z = 0.
r—> 400 0



(¢) i. By the Taylor Formula cosz = 1 — “—22 cosc, where ¢ € R, then
2

VxEO,costl—%.

2x 2x 2z
1 t t dt
ii./ (f—f)dtgh(:c):/ ﬁdtg/ @ — 2. lim h(z) =

In 2.

1-1-19| (a) 1i. Since f is continuous, F is C! on R.

ii. F'(z) = zf(2). il_%Fix) = aljli%f(ac) = f(0). Then F"(0) =
f(0).

(b) If f is even, (resp odd), F is even (resp odd).
(c) / ttan~! tdt
0
2

e b ts 2 1
/ t2 tan™ ! tdt y@rbx—tanflx—x—+éln(l+x2).

1

by parts 22 T
yp: —tanfleiJritan* x.

 tan~'t by parts tan"lz 1 1 T
——5dt T = ———— — —tan~ T TCRR A
/0 1+ 12)2 di+22) 4™ TTiato
ot b t
/ 5—dt YR tanha — In(cosh(x)).
o cosh”t

1 1
1-1-20 | The integration by parts u = f, v’ = f', v =1, v = 5(95 —a)+ 5(3: -b)
gets

b (3-a+ -0 e

[ =" @ v s0p - [ (3

a

17 1 1
The integration by parts uw = f/, v = f, v = 5(3; —a)+ 5(3: —b),

v= %(x—a)(x —b) gets

-/ (5004 3o -0) Fpe =3 [ - e - Bf (@)

Then




1

1-1-21| I,, = / 2" In(1 + 2¥)dr < "'In2 and J, = / 2" In(1 + 2?)dr <
0 0

In2 . Then lim [I,= Ilm J,=0.
n+1 n——4oo n—>+00

1 1— cn+1

Moreover J, = I, + / 2" In(1 + 2%)dx > I,, + (In(1 + ¢?) 1 ).
I, < (n+ 1)cntt
Jp = In(1+c2)(1 — )’

I
Then lim = =0
n——%+a>Jﬁ

b
o) = / f(z —t)(1 + ¢ +sint)dt
e F@)(1+ (2 = u)? +sin(z — u))du

r—a
= / fu)(1422 —2zu+u?+sin  cos u—cos  sin u)du
z—b

r—a

Li;af(u)du+x2 /x_af(u)du—Zx/ wf (u)du

z—b r—b

+/$—a u? f(u)du + sinx/x_a f(u) cos udu

—b z—b

r—a
—cos T / f(u) sin udu.

—b

Then ¢ is differentiable and

Ha) = fa-a)-fe-v+20 [ fder (- a) - fo - b)
) /H wf(u)du — 22((z — a) f(z — a) — (& — b) f(x — b))
r—b
+2((x — a)*f(x —a) — (x = b)*f(x — b)) + cosx/_b f(u) cosudu

+sinz(f(z — a) cos(x — a) — f(x — b) cos(x — b)).



s

u=sin 1 . 2 .
1-1-23| (a) / coszsin” zdr “"=" —— then lim n/ cosrsin” zdr =
0

SE]

0 n+1 n—s—+o0
1.
(b) i lim nsin"a= lim ne?mERa) =g,
n—-4oo n—s—4o0o

ii. Since g is bounded set |g| < M,

lim n / coszsin” zg(z)de| < M lim n/ sin” zdx
n—->—+o0o 0 n—->-+o0o 0
< M lim nsin"a=0.
n——4oo
(c) Let £ = HI(D) g(x). For e > 0, there exists a € [0, 5[, such that
z— (%)~
lg(z) — €] <€, for all x € [a, T].
e . nt ¢ .
n cos z(sinz)"g(x)dx — = n [ cosz(sinz)"(g(x) — £)dzx
0 n+1 0

+n/§ cosz(sinz)"(g(x) — £)dx

lim n/ cosz(sinz)"(g(x) — £)dz = 0 and
0

n—-—+oo
pis

n/§ cosz(sinz)" (g(x) — £)dx

ne

< T Then

n —+

lim n/2 cosx(sinz)"g(z)dx = L.
0

n—-4oo

b

1-1-24| (a) Assume that/ g(x)dx =0

a
x

Since g is non negative and continuous, the function G(z) = / g(t)dt

is increasing and G(a) = G(b) =0. Then G=0and G' =g Zo.
b
It is obvious that if g = 0, / g(x)dz = 0.

a

(b) The polynomial

b b b b
PO = / (F(2)-Ag(a)2de = X2 / ¢ () dz—2) / f(@)g(x)da+ / F2()dx



is non negative and of degree 2. Then its discriminant is non nega-
tive. Thus

b b 1 b 1
[ @@ dol < ([ 15@F do)* ([ lg(o)? do)?.

If we have the equality, the polynomial P has a root, then there
b
exists A € R such that / (f(z) — Ag(x))?dz = 0, then f = \g.

a

Let f: [a,b] — R be a function of class C! such that f(a) = 0.
i f(z) = / f'(t)dt, by the previous question (The Cauchy Schwarz
inequalit;)
T b
F@P <@=-a) [ 1f@F < @-a) [ 170Pd

ii. We integrate the previous inequality, we have

b 2 b
b—a
[ 1s@par < E5E [ pas,
iii. It is obvious that if f s constant, we have the equality.
b T
If we have1&mzequahty,then‘/~|f%tﬂdt = (z f¢ﬁl/‘|f%tﬂzdt

b
Then by the previous question f’ = X is constant. But / |f (z)Pdx <
a

(b—a)?
2

b
/ |f(z)|>dz yields that A = 0 and f is constant.



In a neighborhood of 1, the function is equivalent to

1 1
L —1 Vi—1
1 1

which is integrable and in a neighborhood of 400 <

) t"+lm — ¢n+l

which is integrable.

o0 d
By the change of variable t — 1 = 22, I,, = 2 / ( * By inte-
0

Ar a2t
2 1 2271 | 2
gration by parts, I, = %In—l with Iy = 5. Then I, = ﬂ(2n(—:—ll))!'

1 N 1
VD=~ i1 m>’
which is integrable and in a neighborhood of +o0, W ~ ot

oo dt

1 AWtE=1D(t—2x)

1 1
If z = 1, In a neighborhood of 1, ~ which is not

tt—12 t—=1

Let z € [—1, 1[. In aneighborhood of 1,

Then the integral f(x) = converges.

integrable.

1
The function £ — ———————— is continuous on the interval [—1, 1].
tt—1)(t —x)
Let a € [-1,1] and @ > 0 such that a + @« < 1. For ¢t > 1 and = €
1 1

[_17 CL-l—CV], <

V=1t —2) ~ Jtt—-1)({t—a—a)
then by the Dominate Convergence Theorem, f is continuous at a and
then continuous on the interval [—1,1].

, which is integrable,

2x
1-2-3| (a) If g is decreasing, 2*"*g(2z) S/ tg(t)dt < x(2x)%g(x). More-
1 § 2z
over since the integral / x%g(x)dx converges, hm / “g(t)dt =
0, then lim x*T'g(z) = 0.
z—0+
The same result if g is increasing.
1 ! 1
(b) By the change of variable x = T the integral / 727 %h(=)dz con-
0 X

1
verges. Then lim = *"'h(=) = 0, which is equivalent to lim z*"'h(z) =
0 z—0t x T—+00

The function f(x) = sin(2?) is continuous on [1,+oo[ and the integral

“+oo
/ f(z)dz converges, but lim f(z) does not exists. (We prove that
1 T—+00



the integral converges by integration by parts).

1-2-5| (a) The integral /+OO __dr
& 1 (14 M)

is continuous and in a neighborhood of 400,

is convergent the function z ——

1

1l —_— &

o (1+ra) z(1 + Az)

JUTEsE which is integrable.
xOé

The same result for J(A).

ot [T dz too dx B ! dzx
(b) I(A)=A /0 17 _I(A)_/O (0 1 A7) __/0 (01 Aa)

Since 0 < a < 1, the function A — / 736 is continuous
(1 + Ax)
+oo d d

on [0, +oo[ and then lim I(\) — /\O‘_l/ L &

A=+ o z¥(l+x) 0 T
1
1—a’
I ighborhood of ! ~ 1 hich
(¢) In a neighborhood of +oo, FAT 0100~ daeth whic
+o0 d
is integrable. Then the integral /1 POT xf:;(l ) is con-

vergent. By the Monotone Convergence Theorem lim+ K(\) =
A—=0

/+°° dx
1 2P (1 + o)

Foo s
By Abel Theorem the integral S Tz BT e s convergent. Then the
0
. teo sing ) .
nature of the integral ————dx is the same as the integral
0 VT +sinz
400 . .
sinz sinz
integral — dz.
mesra /0 (\/EJrsin;z: \/E) v
sinx sin x sin? 1 cos(2x)

Vi Jitsinz z(yztsinz) 2yz(yVz+sinz) 2vz(V/z +sing)’

The last integral is convergent by Abel Theorem and the first is divergent

1
since it is equivalent in a neighborhood of +o00 to o Then the improper
T
T sing

0 \/E +sinx
(a) Since sin(m — t) = sint, / xf(sinz)dr = / (m — ) f(sinz)dz.
0 0

Then

integral dzx diverges.



/Oﬂxf sin z)d. / f(sinzx)d

(b) By the change of variable z = 7—t, / In(sinx)dz = 2 / ’ In(sint)dt
0

0
and by the change of variable x = § — ¢, we have

3 3
/ In(sinz)dz = / In(cos x)dx
0 0
1 (%
= f/ In(sin x cos z)dx
2 Jo
1/g1 (sin(2z))da — ~In2
= = n(sin ——In
2 )y Ty
1/ﬁ1 (sinz)dz — —In2
= = n(sin ——1In
1]/, sinz)dz — o
1 ki
= 5/02 In(sin x)dx — %lnz
z ™ T 2
Then/ In(sinz)dr = ——1In2 and/ tln(sinz)der = ——In2.
0 2 0 2
2a
223
1-2-8| (a) ——dr = V8 at — a* = V7d?.
a ‘t—q
2a 2 z
a dx z=asec t a 3 sect dt
a Vat—at 0 V1+sec?t
5
= a —
/0 V14 cos?t
1
u=tan(%) /% dt
o  V1+u?
aln3

N
-

2a
a? + 223 aln3
——_dz =Td® + )
/a x4 — gt \/?

= av/2cosh™(

7




(b)

1 1 2
) ) xlnzx 2?=1—¢2 1 In(1 — ¢%)
Bylntegratlonbyparts/o mdm: = 5/0 Tdt:
—1In2.

1 1 2
1 z=1— In(1—1¢
/ L 1:t22/ Mdtzglenz
o (I1-=)2 0 t

[ME]

By integration by parts / sin 2z In(tanz)de = sin’ In(tanz) +
0

ks
2

Z=0.

In(cos z)]

T T
cosz In(tan z)dx = / cos x In(tan z)dx — / sin z In(tan z)dx.
0 0 0
Integration by parts yields

s sy d
/4 cosz In(tanz)dx = 7/4 i —1In(1 +V2).
0 0

COS T

B =
—/ sinzln(tanz)de = [(cosz —1)In(sinz) + In(1 + cosx)]g
0
2
= —%1112—11124—111(14—\/5).
Then
H 2
/ coszIn(tanz)dxr = —% In2—1n2.
0
e at+1 11 011 z+1
f dx = st ———42—)dx =
()/1 23 (x+1)(1 + 22) v /1 (a? x2+x3 ac—i—lJr 1—1—552) .
r_1
2 2
()/+°° de  pioiger [T 20%d1 _/+°°( 1 L.
& | raizee Sy o L 2r—1 2+
1 12141 ]
dt = -1 = —tan™'(21%
)t = g Gy g 29
+oo
(h)/ x"e” "dx = n!
0



Inz

1-2-9| (a) In a neighborhood of 0, 1— .2 ~ Inz, which is integrable and in
1 1
a neighborhood of 1, e~ , which is integrable. Then
1—a? 1+
/1 Inz gt
— nverges.
T2 converges
. ln2t 2 . ..
(b) In a neighborhood of 0, 112 ~ In” z, which is integrable. Then
/1 I’z dx converges
— Vi .
0 1 + 562 g
(¢) In a neighborhood of 0 < ! hich is integrable
n a nei r , —————— < ——, which is integr
& Jz(1+|Inz]) = vz &
d 1 . oo then [ da di
nd lim z—— = n ——————— diverges.
M R g - O [ YR+ [ma]) O
1

In a neighborhood of 0,

lim 22 = 0, then

T—+00

1
Vil + %)

Vil +2%)

1
~ ﬁ’ which is integrable and
oo dx

o Vr(l+2?)

converges.

rsinx T b T rsing
(e) 1+22)| = T +a2) then ; mdm converges.
+oo
(f) fa <0, lim _Co8%T | _ 1, then the integral / _CosST .
diverges.

If @ > 0, the function x —

+oo
then by Abel Theorem, the integral / {a
0

1
(I+z*)

decreases to 0 when x — 400,

cosx
———dx converges.
+ %)

—+o0
cos(az) < , the the integral / cos(az) dx converges.
1+e” 1+e” 0 14
. T gingx
By Abel Theorem, the integral NG dx converges. Moreover
0 X

sinx sinx

sinx cos x

Vi Vitceost iz tcosa) Vit JTtcosa)

sinx cos x

1

Since

V(o + cosz)(v/T + v/ + cosx) = V(v = 1) (Vr +Vz —1)



sin x

VI 4+ cosx

+oo
for z > 2, the integral / dx converges.
0

1
. dx -1 ™
i — =sin" (1) = —.
0) [ = =) =5
. . Inx S .
(j) In a neighborhood of 0, ﬁ ~ Inz which is integrable, and in
— X (03
1
a neighborhood of 1, (11173:)(} ~ —(1 — ) =* which is integrable
—x
U g
if and only if & < 2. Then the integral / Wdz converges if
0 — X

and only if o < 2.

a—1
In a neighborhood of 0, TT ~ %! which is integrable if and
x
a—1
only if & > 0. In a neighborhood of +o0, T ~ 272 which is
x

+oo a—1

integrable if and only if @ < 1. Then the integral / er dx
0 x

converges if and only if 0 < o < 1.

x

In a neighborhood of 0, x%e™" & x® which is integrable if and only

r— 400
converges if and only if o > —1.

+oo
if « > —1 and since lim 2%"2e~% = 0, the integral / x%e " dx
0

The function z — %7 is decreasing and tends to 0 when z — +o0

and since | f: sinzdx| < 2, then by the Abel Theorem the integral

oo rsinz
—— 5 dx converges.

too 9 T sing
; sin(z%)dx = /0 mda@. The integral converges by the
Abel Theorem.

0 9tan—ly — +° 9tan—1(L
/ de = f/ L("’”)dx. In a neighborhood
0 Ve 0 VT
2tan"1(1) ™ S : .
of 0, ————%~ ~ — which is integrable, and in a neighborhood

N



2tan1(1) 2 S :
of 400, - which is integrable. Then the integral

Vi Ve

T 9tan~ty —7w |
———————dx is convergent.
0

Jz

tan—!
In a neighborhood of 0, the function S —} is bounded

x 2(1+2)

t 71
and in a neighborhood of +o0, an — 2(111_) ~ 2:5(171 p
—+00 —1
t
which is integrable. Then the integral / ( a T T )dw
0 x 2(1+2)

8

is convergent.

1

In a neighborhood of 0, the function sin(x)sin(—) is bounded and
x

1

in a neighborhood of +oo, the function sin(+) is non negative de-

b
creasing and tends to 0, the function sinx fulfills |/ sinzdx| < 2,
a

+o0
1
then by the Abel Lemma, the integral / sin(x) sin(—)dz is con-
0 xr

vergent.

1 1 1
In a neighborhood of 0, the function —=|sin [ x + — | | < —= which
NG x

is integrable.

Since 0 < sin(1) < ' forz > 1, the integral | sin(1)
mce —= SIn( — or x , the integra —= SIn( —
VT x’ T /T - & 1 VToooz

M 1 . +1 1 . (1) 1| (1+
converges. Moreover — [sin ( # + — | — —=sin(—)| = 2—=| cos(~
& NG x Vroz N x

z 1 1 1 too
=] sin(=—) < 2—— sin(=—) f > 1. Then the integral 51
2)| 51n(2x) SV 51n(2x) orx > en the integra /0 sin (x +

converges.

For 0 < a < 7, / tan zdr = Insec(ar) — +o0o. Then the integral
0 a=3g

2
/ tan xdx diverges.
0

In a neighborhood of g, Vianr & 24— ~ —= Then the inte-

Vcosz —z
3
gral / Vtanzdz is convergent.
0

p




sin x

sinx
(&

1 oo
(u) > —, then the integral / dx diverges.
1

x €T

1
(v) The function — (ei — COoS ) is non negative and equivalent in a
x x
. 1 , Al AV 1
neighborhood of +00 to —;, then the integral —|er —cos— | dx
x Tz x
converges. (e% ~ 1+ — and cos — ~# 1 — — in a neighborhood of
T x 222
+00).

¢ dx - 3 sint 3 sint
(w) lim [ ———— "7 Jip Zldt = / 2= dt and this
0

-1
a1 Jo cosTlw a=1 Jooo-14 ¢

last integral converges, then the integral / converges.

o cosTlx
1-210| (a) i For s < 0, t*"![cosz| < ¢*~1, which is integrable. Then the

+oo
integral / t*~1 cos zdx is absolutely convergent for s < 0.
1

+00 +oo
ii. By integration by parts, / t® sin tdt = cos 1+s/ t57 1 cos xd.
1 1

NG

+o0 1 +oo
(b) With the change of variable z = t2, Visin(t?)dt = = / x~ 4 sin(x)dz.
1

2
1
This integral is well defined.

1-2-11| (a) If £ # 0 say £ > 0, there exists A > 0 such that f(z) > £ for x > A,

+o00o
then / f(z)dz > +o00. Thus £ = 0.
A
+oo
(b) 1. The integral / sin(z?)dzr exists, but lim g(z) does not
0 T—>+00
exists.

1

ii. The same result if g is non negative. Take g(x) = .5 on the in-

+oo
terval [n—1,n+1] forn > 2 and g = 0 elsewhere. / g(x)dx
0

converges but () does not exists.
x

LN

sin x

is bounded and continu-

1-2-12| (a) In a neighborhood of 0, the function

ous.



(b)

(a)

)

(1)

(b)

For x > 1, the function x — % is decreasing and tends to 0 when

b
x — 400 and \/ sinzdz| < 2 for all a,b € R, then by the Abel

+oo
Theorem, the integral / ——dx is convergent.
0 X

| sin x| sin? 1 —cos2z 1 cos 2x

F > 1 > = = — — . Th
TE=H T =T 2z 2x 2x ¢

T s convergent. Then for all a,b € R,

Riemann integral of

/ COZS 2z dzx is bounded, but / — is not bounded. Then the in-

o0 Isint| .
tegral " dt is not convergent.
1

1

In a neighborhood of a the function ——————= is equivalent
(x —a)(b—x)
1
to ——=—————=—=——= which is integrable. The same result in a neigh-
(x—a)(b—a)

borhood of b.
—a)sin(2t) 7

/«/m—a (b— 1) / (b2 —a?)sin(2t) b+a’

—t

i. In a neighborhood of 0, the function t*~!e
t*~1 which is integrable for 2 > 0.

is equivalent to

ii. By integration by parts, I'(z + 1) = 2T'(z).
i. In use of the Holder inequality, we prove F(f_,_ﬂ) < T(z)YPT(y) 1
p g
1 1
forp>1and -4+ - =1.
p g

ii. m(T)(£ + %) < Inl(2)"/? + InT(y)"/7, then InT is a convex

function.
In(1 4t~
In a neighborhood of 0, % ~ t* P which is integrable if
and only if « — 8 > —1.
In(1 + ¢
In a neighborhood of +o0, % is integrable if and only if
T In(1 + >
B > 1. Then the integral / %dt is convergent if and
0
onlyifl < f<a+1.
t
In a neighborhood of 0, Sl? R prasl which is integrable if and

only if a < 3.



sin®t
tOt
sin? ¢

+oo
In a neighborhood of 400, the integral / dt is convergent
1

+oo
if and only if @ > 1. Then the integral / dt is convergent
0

if and only if 1 < a < 3.

2 dt
i. The integral / ———— is convergent if and only if o #
0

1+ cosacost
m+ 2km, k € Z.

2 1 dt T
i, Set = tan(4), I(a) = ~ Zsina
ii. Set x an(z), I(a) 1+cosa/0 1+ 22tan?(2) 2sina

Let f(u) =In2+Inw, f is differentiable and f'(u) =
is increasing and f(3 =0, then Vu € [1,1], —Inu < In2.

Inu u—1 1—u
In a neighborhood of 1, u < 1, ~ = —y/——
& V1—u? V1—u? 1+u

1

1
which is integrable, then the integral / %

a
2
1

U

du is convergent.

z
With the change of variable u = sin 6, / ——du = / sin 0)dl
8 vV 1 - u2 E
I x
and with the change of variable u = cos 0, &du . In(cos 6)db.

V1 —u? 0

3 3
Then the integrals / In(sin 0)d# and / In(cos 8)df are conver-
0 0
gent and have the same value.

s

2
The integral / In(sin 6)d# is convergent and by the change of vari-
0

able t = 7 — 6, the integral / In(sin #)df is also convergent and

™
2
™

/ In(sin 6)dd = /2 In(sint)dt. Then
z 0

/ In(sin 0)dd = 2/2 In(sin 0)d6.
0

0



/2 ln(siné’)dé‘—i—/2 In(cos 9)d9>
0 0

I
N =
7N

[ME)

1
= f/ In(sin 0 cos 6)df
2.Jo
I EI
= f/ In(sin(26)) — In 2d0
2.Jo
1/771 (sin0)d0 — = In2
= = n(sin ——In
1), "¢ 4
1 T

Then I = —% In 2.

Int ' olnt
1-2-17| (a) tl_igl— \/% = 0, then the integral /0 \/%dt is convergent.

1

Int
With the change of variable 1 — ¢ = 52, dt =2 [ In(1-
V31— 0
2)ds and by integration by part llntdt /1 d
5%)ds an integration arts; s =
y g Yy P -1 o 1—s
2In2 — 2.
sin? ¢ sin? t 1
(b) i. In a neighborhood of 0, 5 ~ 1 and for ¢ > 1, <
) teo sm2 t
Then the integral dt is convergent.
0
ii. By I’'Hopital rule
1-— 1-—
limﬂ:() and lim STOE
e—0 £ e——+o0 £
iii. By integration by parts
bsint 1—c0sb 1—cosa bl—cost
—dt = 5

b
1 —cosb l—cosa
b

2511175

B 1—cosb 1—cosa /bZ



sint
——dt is convergent and

+o00
Then the integral /
0

+oo o

t
/ sin g —
0

+oo 1.2
sin“t
/ d.
t 0 12
is equivalent to Int¢ in a neighborhood of 0 and Int is

Int
T+t2
t t
2 = ﬁ\[t? which is integrable on [A, +oo[

1-2-18 | The function
In

int ble. For ¢ 1 _—
integrable. For t large T

T Int
Then / g converges.
0 1+ 2
Int T Int
ki Then/ g =0
o 1+1¢2

/*‘” Int | s=1 /1
——dt = —
1 1+4¢2 o 1+12



™

(a) T A /2 51n((2n + 1)37)_ Sln((2n — 1) )d(E

0 sin
0, then the sequence (I,),, is constant and I, = Iy =

i Ly—J, = / Fpcos(@n+ 3)a)sin(z)z ) am / ! 27605((4" LU
0 0

3
/ 2 cos(2nz)dx =
/o

sin x cost
2K,,. Since hm K, =0, then hm Jn _r
n—s-+o00 n—s~+o0 2
2 sin2nz —sin2(n — 1 2
(b) i Jp = Jp1 = / sin 2n ém (n )xdx = 2/ cos(2n —
0 sinx 0
2(—1) !
1)xd _
Jads 2n— 1

k 1

n
ii. J, E
k=1

(1! -

i dim (1= g gt ) = i 2
(a) i Let € > 0, there exists A > 0 such that |f(z) — ¢| < ¢ for all
x> A.
1A 1 ("
F(:U)—Ez—/ (f(t)—ﬁ)dt—i—f/ (f(t)—£)dt.
Z Jo T JA
I 1/A(f(t)—€)dt—0 dl/m(f(t)—ﬁ)dt <cTh
JAm i =0Oand — . < e. Then
lim F(z) ="«
r—>+00

1 [ i
ii. F(z) = 7/ costdt = 2o lim F(z) =0,but lim cosz
T Jo

X r—+0o0 r—>+00
does not exist.

iii. i) Since lim wu, = ¢, then for £ > 0, there exists N € N such

n—> oo
that for n > N, |u, — ¢| < e. Thus for z > N, there exists
n > N such that x € [n,n + 1], f(z) = u, and |f(x) — {] < e.
Which proves that lini flz) =

k+1 n—1
/f t)dt = Z/ Zuk Slnce:cgrﬂooF()

k=0
{, then
. Ug +uUp + ...+ Uy
lim = /.
n—-4oo n
and
. Ug+ur + ...+ U1
lim = /.

n—>—+oo n



(b) Since f is continuous at 0, for € > 0, there exists o > 0 such that
for z < a, |f(z) — f(0)] <e.
Forz < a, |f(z)—f(0)] < L [51f(t)—f(0)|dt < e. Then li_r)r%)F(m) =
x
f(0) and F can be extended as a continuous function on [0, 1].

(c) Since f is continuous, F is differentiable on ]0,1] and F'(z) =
FG | J@)

x T
(d) Assume that F = \f.

i. Since F is differentiable on ]0, 1], then f is differentiable on |0, 1]
and (A —1)f(z) + Mz f'(z) = 0.

ii. The solution of the differential equation (A — 1)y + Azy’ = 0
fulfills In|y| = % In|z|. Then f is a polynomial if and only if:

1—-A
— € N.
1 t
(e) Let t €]0,1[ such that F(t) = sup f(x) = ¢, then ;/ (f(x) —
2€[0,1] 0
O)dr = 0. But f(z) — ¢ <0 for all z € [0,¢], then f is constant on
[0,¢].

(f) If f is differentiable at 0, then f(t) = f(0) + tf'(0) + te(t), where
lim;_,pe(t) = 0. Then

F(0) = f0)+50'0) + 1 [ ac(a)da,

It results that F is differentiable at 0 and F’(0) = %f’(()).

Problem-1-3| (a) Let @ € Rand r > 0, for x € [a — r,a + r]; |F(z) — F(a)| =

x

|/ f@®)dt| < |z —a|l sup |f(t)|, which proves that F is con-
a t€la—r,a+r]

tinuous at a.



G(y) = F(zo+y) — F(y — z0)
ro+y Y—2xo
= /0 f(t)dt —/0 f(t)dt

_ /Oyf(t)dt+/:o+yf(t)dt—/Oyf(t)dt—/yyEO oy
- " i [0 fas

=ty / f(u+ y)du + / f(y — v)do
) / F(u)du = 2£(y)F (o).

(¢c) Since Fis continuous and G(y) = F(xo+y)—F(y—xo) = 2f(y)F(z0),
f is continuous, which yields that F is C! and then f is C*. The
result is obtained by induction.

(d) For z fixed in R, we set H(y) = f(z +y) + f(z —y) = 2f(2) f(y).

i. H'(0) = f'(z) — f'(x) =0=2f(x)f(0). If we take = such that
f(z) # 0, we deduce that f/(0) = 0.

ii. H'(0) = 2f(x)f"(0) = 2f"(x), which yields that f"(z) =

fO)f(x),VzeR.
(e) i. Usingi) with z =y = 0 we have f(0) = f2(0), then f(0) =0 or

f(0)=1.
ii. If £(0) =0, then f* = 0. Then f(z) = ax. The relation i) gives
that f = 0.

ili. Since F' is not the 0 function, then f(0) = 1.

o= [ 4

o cosh™t

Problem-1-4

(a) Since cosht is C* and positive and even, f,, is C*° and odd. f} (z) =

and f;;(x) _ _ _nsinhz

COShn T cosh™t1 g
r 1 . z 1
(b) fi(z) = / i 67tdt = 2tan” " (e”), fg(x)/ o tdt = tanh(x),
0 0
A1 = mggloo fi(x) =7 and Ay = IETOO fa(z) =1.

(¢) fulz) = /090 _dt < fi(x) < 7 for x € [0, +o0.

cosh"t —



(d) f» is bounded and increasing on the interval [0, +-o00[, then liI+n fnlx) =
Tr—+00

A, exists in R.
1 1
e) By integration by parts (u = ———— and v = ———), we find
(e) By & v P ( cosh" 2t cosh? t)

. .12 .
sinh x sinh” ¢ sinh x

ﬁxx>=—un—2yéz L= ST 9 h (@) - (=2 fu(a).

cosh" !z cosh” ¢ cosh" 1z

(n = 1) fn(@) = (n—2)frale) + —2DT sy

(coshz)n—1’

(f) From the previous formula, we have (n — 1)\, = (n — 2) A\, _2.

2n! 22n=2(pn — 1)12
Agnt1 = 92np12 T, Aoy = —(2n 1)
. . n+1
Problem-1-5| (a) By integration by parts, we have W, 1o = mWn
@) 7 227 (nl)?
b) Wy =Z, Wy =1, then Wy, = d Wopy1 = ————.
(b) Wo =3, Wi =1, then Wan = 551w 5 and Wonss = 5oy,
(c) nW,W,,_1 = n—Wn 20— 1Wn,3 = (n — 2)W,,—oW,_3. Since
2WoWy = W1Wy = %, then the sequence (nW,,W,,_1),, is constant

equal to 7.

Wy
(d) Since 0 < cosx < 1, then W, 11 < W,, < W,,_1. Moreover —ntl

n—1
< < 1. Th 1 =1
n+17— Wn,1 - on nirJIrlooW
2 Wn 1
W, W1 =nW; = —. Then hm VW, =
W, 2
Vo
(©) Lm:/ (-)%N“”J/’ 27 .
0
ii. For the change of variable u = sin v, \f/ cos?" M vdv.

T t2
(f) For x > 0, define A, (z) = / (14 —)~"dt, for n € N.
0 n

i A,(x) = /ﬁ(l +u?) " du.
0

and

An( )u tan v \/>/ 2n 2Ud’U.



Problem-1-6 | (a)

ii.

ii.

It is obvious that lim A, (z) = v/nWa,_2,then lim lim A, (z)

T—+00 n—+00 r—+00
™
lim nWay,_o = L
n—-+4oo 2

By the Taylor Formula, ¥ =1+ y + %ec, where ¢ between 0
2

and y, then Vy e R, e¥ > 14+ yand In(1+y) <y. (14 x—)" =
n

z2 2
enln(l—‘,— =) < et

2
In the same way for 0 < z < 1, In(1—z) < —z, then (lfw—)" =
n

e in(=55) <e ™ Vxe [0,+/n].

Vvn t2 Vi 2 v t2
B, =/ (1——)"dt </ e "dt < / (14—)""dt, then
0 0 0

n n

\/E 2
lim B, < lim e dr< lim lim A,(x).

n—-+oo n—-+o0o 0 n—-+oo r——+oo

Then

i

ii.

1il.

ii.

v
ﬁ = lim e ®dr= lim lim A ().
2 n—+oco Jo n—+00 T—+00

22 3 4
For x > 0, e* —1+x+?+g+ﬂe For = 1 and since

C
246 >0, Wehave§<e

1 1
/ In(1+¢)dt =2In2—-1= 1né and ln(/ (1+t)dt) = ln;
0 € 0
1 1
Since § < e, then / In(1 + ¢)dt < ln(/ (14 t)dt).
0 0

If flz) =In(1+2)—z, f'(z)= ﬁ < 0. f is decreasing and
f(0) =0, then In(1 + v) < v, for v > —1.

1 1
. / Inu(t)dt < / u(t) — 1dt = 0. The equality done if and only
0

0
ifu=1.

Let u(t) = S

" 1 1
) / u(t)dt =1 and then / Inwu(t)dt <0,
Jo £() 0
which yields that

/ n f(#)dt < In / o), (7.9)
0 0



1< k
Since the function In i In( ) > =y 1 —
(c¢) Since the function In is concave, In( Zf - Z n(f(
foralln € N. f and lnof are Contmuous then

1

tm (- > (5 = [ p(oyan)

k=1 0

and

which gives the proof.

Problem-1-7| (a) The function ¢ — f(t) = (n+t e 18 O n [0, +oo[ By =

k+ E+1
((tzr(n)’“”) 1FB)| < (nk+2) and the series Z )k+2 is con-

n>1
vergent, then ¢ is C* on [0, +o00[ and , 11r+n P(t) =
—+00

(b) 1. As the sequence ((n+t)(n+t+1)), is decreasing, then for any
t>0andn>1

1 1 1
< <

n+t)n+t+1) = n+t)2 = (n+t)(n+t—1)
1 1 1 1
= - and =
n+t)n+t+1) n+t n+t+1 (nttntt—1)
1 1 1 1
, th < YPt) < =, f t d
nri=1 pap then g s vl s g forany £ >0, an
that ¢(t) = ¢; (t = +00).

ii.

1 1 o 1 1 s +°°( 1
111. = — since —
(n+t)2 m+t)2n+t+1) n+t n+t+17 ntt
1 1
= th
nria 1) T T then

1
v - :nz::l m+t2n+t+1)

1
(¢) 1i. Since the function x — ———— is decreasing,

@+ 0P

1 Ly 1
7§/ < —. Then for any ¢ > 0
(n+t+1)3 n 4z T (n+1t)3




2 /+°° da <§’:° 1
2+t Sy (t+a)pP T A (1)

n=1
+oo
1 1

- < -

vt t+1 —; (n+1t)3
- /+°° de 2
= )y Grep P
Then ) )

n
) —— =2
() t+1 2’
1
ii. Since ¥(t) — 1512 0 and the function ¢ — % is integrable,
+o0 1

then /0 (w(t) — m)dt is convergent.

1
n+t)2(n+t+1)

(d) Since the series Z ( converges uniformly on [0, +o00],
n>1
oo 1 =01 n+1
| w0 - 5= Y6 - w2,

n




™

(a) T A /2 51n((2n + 1)37)_ Sln((2n — 1) )d(E

0 sin
0, then the sequence (I,),, is constant and I, = Iy =

i Ly—J, = / Fpcos(@n+ 3)a)sin(z)z ) am / ! 27605((4" LU
0 0

3
/ 2 cos(2nz)dx =
/o

sin x cost
2K,,. Since hm K, =0, then hm Jn _r
n—s-+o00 n—s~+o0 2
2 sin2nz —sin2(n — 1 2
(b) i Jp = Jp1 = / sin 2n ém (n )xdx = 2/ cos(2n —
0 sinx 0
2(—1) !
1)xd _
Jads 2n— 1

k 1

n
ii. J, E
k=1

(1! -

i dim (1= g gt ) = i 2
(a) i Let € > 0, there exists A > 0 such that |f(z) — ¢| < ¢ for all
x> A.
1A 1 ("
F(:U)—Ez—/ (f(t)—ﬁ)dt—i—f/ (f(t)—£)dt.
Z Jo T JA
I 1/A(f(t)—€)dt—0 dl/m(f(t)—ﬁ)dt <cTh
JAm i =0Oand — . < e. Then
lim F(z) ="«
r—>+00

1 [ i
ii. F(z) = 7/ costdt = 2o lim F(z) =0,but lim cosz
T Jo

X r—+0o0 r—>+00
does not exist.

iii. i) Since lim wu, = ¢, then for £ > 0, there exists N € N such

n—> oo
that for n > N, |u, — ¢| < e. Thus for z > N, there exists
n > N such that x € [n,n + 1], f(z) = u, and |f(x) — {] < e.
Which proves that lini flz) =

k+1 n—1
/f t)dt = Z/ Zuk Slnce:cgrﬂooF()

k=0
{, then
. Ug +uUp + ...+ Uy
lim = /.
n—-4oo n
and
. Ug+ur + ...+ U1
lim = /.

n—>—+oo n



(b) Since f is continuous at 0, for € > 0, there exists o > 0 such that
for z < a, |f(z) — f(0)] <e.
Forz < a, |f(z)—f(0)] < L [51f(t)—f(0)|dt < e. Then li_r)r%)F(m) =
x
f(0) and F can be extended as a continuous function on [0, 1].

(c) Since f is continuous, F is differentiable on ]0,1] and F'(z) =
FG | J@)

x T
(d) Assume that F = \f.

i. Since F is differentiable on ]0, 1], then f is differentiable on |0, 1]
and (A —1)f(z) + Mz f'(z) = 0.

ii. The solution of the differential equation (A — 1)y + Azy’ = 0
fulfills In|y| = % In|z|. Then f is a polynomial if and only if:

1—-A
— € N.
1 t
(e) Let t €]0,1[ such that F(t) = sup f(x) = ¢, then ;/ (f(x) —
2€[0,1] 0
O)dr = 0. But f(z) — ¢ <0 for all z € [0,¢], then f is constant on
[0,¢].

(f) If f is differentiable at 0, then f(t) = f(0) + tf'(0) + te(t), where
lim;_,pe(t) = 0. Then

F(0) = f0)+50'0) + 1 [ ac(a)da,

It results that F is differentiable at 0 and F’(0) = %f’(()).

Problem-1-3| (a) Let @ € Rand r > 0, for x € [a — r,a + r]; |F(z) — F(a)| =

x

|/ f@®)dt| < |z —a|l sup |f(t)|, which proves that F is con-
a t€la—r,a+r]

tinuous at a.



G(y) = F(zo+y) — F(y — z0)
ro+y Y—2xo
= /0 f(t)dt —/0 f(t)dt

_ /Oyf(t)dt+/:o+yf(t)dt—/Oyf(t)dt—/yyEO oy
- " i [0 fas

=ty / f(u+ y)du + / f(y — v)do
) / F(u)du = 2£(y)F (o).

(¢c) Since Fis continuous and G(y) = F(xo+y)—F(y—xo) = 2f(y)F(z0),
f is continuous, which yields that F is C! and then f is C*. The
result is obtained by induction.

(d) For z fixed in R, we set H(y) = f(z +y) + f(z —y) = 2f(2) f(y).

i. H'(0) = f'(z) — f'(x) =0=2f(x)f(0). If we take = such that
f(z) # 0, we deduce that f/(0) = 0.

ii. H'(0) = 2f(x)f"(0) = 2f"(x), which yields that f"(z) =

fO)f(x),VzeR.
(e) i. Usingi) with z =y = 0 we have f(0) = f2(0), then f(0) =0 or

f(0)=1.
ii. If £(0) =0, then f* = 0. Then f(z) = ax. The relation i) gives
that f = 0.

ili. Since F' is not the 0 function, then f(0) = 1.

o= [ 4

o cosh™t

Problem-1-4

(a) Since cosht is C* and positive and even, f,, is C*° and odd. f} (z) =

and f;;(x) _ _ _nsinhz

COShn T cosh™t1 g
r 1 . z 1
(b) fi(z) = / i 67tdt = 2tan” " (e”), fg(x)/ o tdt = tanh(x),
0 0
A1 = mggloo fi(x) =7 and Ay = IETOO fa(z) =1.

(¢) fulz) = /090 _dt < fi(x) < 7 for x € [0, +o0.

cosh"t —



(d) f» is bounded and increasing on the interval [0, +-o00[, then liI+n fnlx) =
Tr—+00

A, exists in R.
1 1
e) By integration by parts (u = ———— and v = ———), we find
(e) By & v P ( cosh" 2t cosh? t)

. .12 .
sinh x sinh” ¢ sinh x

ﬁxx>=—un—2yéz L= ST 9 h (@) - (=2 fu(a).

cosh" !z cosh” ¢ cosh" 1z

(n = 1) fn(@) = (n—2)frale) + —2DT sy

(coshz)n—1’

(f) From the previous formula, we have (n — 1)\, = (n — 2) A\, _2.

2n! 22n=2(pn — 1)12
Agnt1 = 92np12 T, Aoy = —(2n 1)
. . n+1
Problem-1-5| (a) By integration by parts, we have W, 1o = mWn
@) 7 227 (nl)?
b) Wy =Z, Wy =1, then Wy, = d Wopy1 = ————.
(b) Wo =3, Wi =1, then Wan = 551w 5 and Wonss = 5oy,
(c) nW,W,,_1 = n—Wn 20— 1Wn,3 = (n — 2)W,,—oW,_3. Since
2WoWy = W1Wy = %, then the sequence (nW,,W,,_1),, is constant

equal to 7.

Wy
(d) Since 0 < cosx < 1, then W, 11 < W,, < W,,_1. Moreover —ntl

n—1
< < 1. Th 1 =1
n+17— Wn,1 - on nirJIrlooW
2 Wn 1
W, W1 =nW; = —. Then hm VW, =
W, 2
Vo
(©) Lm:/ (-)%N“”J/’ 27 .
0
ii. For the change of variable u = sin v, \f/ cos?" M vdv.

T t2
(f) For x > 0, define A, (z) = / (14 —)~"dt, for n € N.
0 n

i A,(x) = /ﬁ(l +u?) " du.
0

and

An( )u tan v \/>/ 2n 2Ud’U.



Problem-1-6 | (a)

ii.

ii.

It is obvious that lim A, (z) = v/nWa,_2,then lim lim A, (z)

T—+00 n—+00 r—+00
™
lim nWay,_o = L
n—-+4oo 2

By the Taylor Formula, ¥ =1+ y + %ec, where ¢ between 0
2

and y, then Vy e R, e¥ > 14+ yand In(1+y) <y. (14 x—)" =
n

z2 2
enln(l—‘,— =) < et

2
In the same way for 0 < z < 1, In(1—z) < —z, then (lfw—)" =
n

e in(=55) <e ™ Vxe [0,+/n].

Vvn t2 Vi 2 v t2
B, =/ (1——)"dt </ e "dt < / (14—)""dt, then
0 0 0

n n

\/E 2
lim B, < lim e dr< lim lim A,(x).

n—-+oo n—-+o0o 0 n—-+oo r——+oo

Then

i

ii.

1il.

ii.

v
ﬁ = lim e ®dr= lim lim A ().
2 n—+oco Jo n—+00 T—+00

22 3 4
For x > 0, e* —1+x+?+g+ﬂe For = 1 and since

C
246 >0, Wehave§<e

1 1
/ In(1+¢)dt =2In2—-1= 1né and ln(/ (1+t)dt) = ln;
0 € 0
1 1
Since § < e, then / In(1 + ¢)dt < ln(/ (14 t)dt).
0 0

If flz) =In(1+2)—z, f'(z)= ﬁ < 0. f is decreasing and
f(0) =0, then In(1 + v) < v, for v > —1.

1 1
. / Inu(t)dt < / u(t) — 1dt = 0. The equality done if and only
0

0
ifu=1.

Let u(t) = S

" 1 1
) / u(t)dt =1 and then / Inwu(t)dt <0,
Jo £() 0
which yields that

/ n f(#)dt < In / o), (7.10)
0 0



1< k
Since the function In i In( ) > =y 1 —
(c¢) Since the function In is concave, In( Zf - Z n(f(
foralln € N. f and lnof are Contmuous then

1

tm (- > (5 = [ p(oyan)

k=1 0

and

which gives the proof.

Problem-1-7| (a) The function ¢ — f(t) = (n+t e 18 O n [0, +oo[ By =

k+ E+1
((tzr(n)’“”) 1FB)| < (nk+2) and the series Z )k+2 is con-

n>1
vergent, then ¢ is C* on [0, +o00[ and , 11r+n P(t) =
—+00

(b) 1. As the sequence ((n+t)(n+t+1)), is decreasing, then for any
t>0andn>1

1 1 1
< <

n+t)n+t+1) = n+t)2 = (n+t)(n+t—1)
1 1 1 1
= - and =
n+t)n+t+1) n+t n+t+1 (nttntt—1)
1 1 1 1
, th < YPt) < =, f t d
nri=1 pap then g s vl s g forany £ >0, an
that ¢(t) = ¢; (t = +00).

ii.

1 1 o 1 1 s +°°( 1
111. = — since —
(n+t)2 m+t)2n+t+1) n+t n+t+17 ntt
1 1
= th
nria 1) T T then

1
v - :nz::l m+t2n+t+1)

1
(¢) 1i. Since the function x — ———— is decreasing,

@+ 0P

1 Ly 1
7§/ < —. Then for any ¢ > 0
(n+t+1)3 n 4z T (n+1t)3




2 /+°° da <§’:° 1
2+t Sy (t+a)pP T A (1)

n=1
+oo
1 1

- < -

vt t+1 —; (n+1t)3
- /+°° de 2
= )y Grep P
Then ) )

n
) —— =2
() t+1 2’
1
ii. Since ¥(t) — 1512 0 and the function ¢ — % is integrable,
+o0 1

then /0 (w(t) — m)dt is convergent.

1
n+t)2(n+t+1)

(d) Since the series Z ( converges uniformly on [0, +o00],
n>1
oo 1 =01 n+1
| w0 - 5= Y6 - w2,

n




4.5 Solutions of Exercises on Chapter 2

Consider the sequence (v,)n>1, with v, = nu,. Remark that Zun =

n>1
1 1\ - . . .
Z —vp, the sequence (;), is decreasing and the series Z v, 1S conver-
n>1 n>1
gent, then by the Abel’s Theorem 1.13 the series Z U, 1S convergent.
n>1

2-1-2| 1) Since the series Zun is convergent and the sequence (up)p>1 is

n>1
decreasing, then wu, is non negative and lim wu, = 0. Moreover
n—-+oo
2n
g ug > nugy,. By Cauchy criterion (1.2), lim E up = 0,
n—>+oo
k=n+1 k=n+1
then lim nug, = 0. Moreover nug,4+1 < nus,, then lim nug,y1 =
n—-+o0o n——+oo
0.
2) Since lir_irrl nu, = 0, the series E (nu, — (n + 1)uyy1) converges.
n—-+0oo

n>1
Moreover n(u, —tn1+1) = (nty, — (n+1)uyp1) +unt1, then the series

Z n(u, — Unp41) is convergent and

n>1

+oo + o0 400 “+o0 400
Z n(Up—Ups1) = Z(nun—(n—l—l)unﬂ)—kz Upt1 = uﬁ—Z Upt1 = Z Up-
n=1 n=1 n=1 n=1 n=1

3) Z P = % The sequence (r™),, is decreasing.
-7

n=1
+oo +oo r
Zn(r” — ity = an"(l —r)= T
n=1 n=1
+oo r
Then an" = e
n=1
00 r
Zn(m‘"—(n—l—l ) Zn 1-7)—nr H:(l—r)Q
n=1
+oo 2
1
Then Z nZrt = r + r 1+ 7")



3

-1
2-1-3| (a) The sequence ( +1)” is decreasing to 0. Then the series Z )

n>0 n+l1

is convergent.
(b) Fort >0,
zn:(l)ktk b — ﬂ
Pt 1+t 14+t

We integrate this identity on the interval [0, 1], we get

B 1 dt 7 /1 (_t)n+1dt
—k+1 Jo 1+t Jo 1+t

1 1
—t)ntldt 1
/ (1)+t’ S / tn+1dt - ? Then
0 0 n

Z”:(—Uk_/1 dt | _ 1
Zk+1 o T4t T nt2
1
dt
(c) Since/ — =
o 1+t
2 1 1
214 1) g =1
;m— Vo Vn+ V2
1 1 1 1 1
2) — =_. - , then
n®—1 2n—-1 2n+1
2
—n 1 2
1 11 1 1
3 —— = th
T DmTY) 2m gl 2mia then




5) §2n3+1 22 n—|— e+2+zo:on2+s'n+1 =e+4e+
de ' 2¢ = 11e. "
6) ;ma—ﬁ):mg(”n 1."Zl)z1n""‘2:;1.
Then iln(l — %) = lnl.
— n 2
7)
1 1 1
2m Sin2—m UCOSQ—n = 2™ 51112—771(3082—”17171 €08 o
m—1
= 2™ lgin =T H cos — =sinl
n=1

1
Zlnc052—n = Insin 1.

0 1 T x 2
8) E — [ (Int)"dt = tdt = 2. (We use the Dominate Conver-

" n"t " In™ ¢ Int
gence Theorem | E | < E — < elmtl )y
n! n!
n=0 n=0

2-1-5

20l ay, " 1 \" 2
1) Ifa,=22 94 _of ™ ) —of1- — <
n" an n+1 n+1 n—+o0

Q]

"'p)
Then the series Z is convergent.
n>1
3n ! ) n 1 n 3
2) Ifa, = =, U =3 (" =3(1- — => 1.
nmn an n+1 n+1 n—+o0o €
3"n!
Then the series Z is divergent.
n
n>1
n! . Uy, 1
3) tn = nn’ ngl}rloo Un41 N ngrwpoo(l + ) =e > 1. Then Z:lun
n
converges. B

4) The sequence (1), is decreasing for n > 3 and its limit is 0, then

Inn
the alternate series Z(—l)"— is convergent.
n>2 "




2

5) For |z| < 1, 1211(1 +1) = — gy, Where le(x)| < |z|. Moreover
fo <l Z<__ - <9
. (=™ . . 1.
The series Zn22 a1 convergent and the series anz —2a 1S
convergent if and only if o > % Then anz Uy, is convergent if and
only if o > %, where u, = In (1 + (::1)”).
n’ 1 n 1 1
_ _n_ o no ; n o _ _ _\n —
6) un = <"+1> ’ ngr-&r-looun ngr-&r-loo(n—F 1) (1 n) e <1
then the series >, ., u, is convergent.
7 cosn cosn —cos’n
Vntcosn  /n o /n(yn+cosn)
q
1 . .
The sequence (%)n is decreasing to 0 and | nzzpcos n| < snl Then
cosn
the series Z is convergent.
n>1 \/E
2
1 2
cos®n _ . cos 2n ' Then the
Vn(yn+cosn)  2y/n(y/n+cosn)  2y/n(y/n+ cosn)
series Z ST s divergent
Vn + cosn sent-
n>1
2
_ 1 _ (m)? . Un+1 (n+1) _
8) Un = ¢y, 2l then nll}IJIrloo Uy, T nStoeo (2’[’L—|— 1)(2n+2) N
1
1 < 1, then the series Z U, is convergent.
n>1
2(2 1 4
9) u, = H(Ll!” lim Yntl _ lim w( i )" = —, then
n(n=1!" 5 o Uy, n——+o0 n n+1 e
the series Z Uy, is divergent.
n>1
1 — nsin(~ li =1, then th i is di
0) u, = nsm(ﬁ), Jm un =1, then the series Z Uy, is divergent.
n>1
_ 1\n __ nln(l—&-i) ’VL(i— 1 ) 1—-L
1) up=e—(1+)"=e—e n) >e—e"\ w2 =e—eldn, for

n > 1. It follows that u, > e(1—em ) > e(1—(1— 7). (It suffices
to prove that e < 1 — % for x < 1.) Tt follows that u, > ﬁ and

the series g Uy, is divergent.
n>1




12)

u, = cosh®n—sinh®n = (e te ) — (e —¢ )
2 2
ena 2n\« —an )\«
= o [(1—}—6 ) —(1—62)]
_ £ —2n —2n —2n
- = [ae + ae +e g(n)] , g(n) W_Too 0
671,((1—2)
= S Ratg(n)
where nll)l}rloo g(n) = 0. Then the series ; u,, converges if and only
if @ < 2. _
3
B S (n+1Y 1 1 1
13) Uy = COS (M) = COS (1 — TM) ~ m, then the
series Z Uy, CONVErges.
n>1
(n+1? | (14077 3 -
14) u, =1n =In =2In(l1+n" 3ln(l+n =
) (n?2+1)3 (14+n-2)3 ( %) =31n( )
2
o + ﬁg(n), where g(n) bounded. Then the series Zun
n>1
converges. =
1 1
15) u, = (5)\/5, The sequence (u,),= is decreasing. Let f(z) = ek
+oo +oo
dr t=\z
/ Lo 227" dt.
2V 1
This integral converges, then the series Z Uy, converges.
n>1
(="
16) u, = —1. 41 =1+
) u T + +
11 1
gf—i— 7 —g(n), where g(n) bounded. Then the series Z u, diverges.
n>1
(nm)* + lun o
diverges. B
1 1 1 1 )
18) Un = (ln n)lnn = e(ln(lnn))Inn < e2lnn = ﬁ’ then the series Z Un

n>1
converges.




n n n  6n3 Hg<)_g 2n2

where lim g¢g(n) = lim h(n) = 0. Then the series Zun con-

1 1 1 1 1 1 1 1
19) un:sin—ln(l+):—+ n + +—h(n),
n

n—-+oo n—-+oo o1
verges. B
1" 1" 1
20) u, = # Uy, — (=1) = — . The series
ne § (1) TRV

e, U

verges if and only if a > %

is convergent for a > 0. Then the series E Uy, CON-
n>1

1
21) u, = ~. We use the comparison with integral. Let
ninn(In(lnn))
1
r)=—"7"———/#/"4.
/@) zlnz(In(lnz))

“+oo “+o0
Inz=t dt
x)dx = / =
A f( ) In4 tIn®t

Int=u /+oo du
Inln4 U

Then the series Z u, converges if and only if @ > 1.

n>1
1 1 1 g(n) .
22) COS% = 1 — % —+ 47’”‘2 —+ F, Where nll)Iiloog(’n,) = 0
1 1 1 g(n) 1 1 h(n)
Incos—= =n(l—-—+-—+=3) = — + — + —=
Heos vn n( on A T o gzt
where ngr}rloog(n) = 0.
( 1\" 1
U, = |cos—=]| ——=
n e
— 67%+ﬁ+% — 6_%
_1
- %( $+“i’£)_1)~e :
e e ™

Then the series Z Uy diverges.

n>2

23) =1In ! In { sin !
n=1In—— n——
b \/ﬁ \/ﬁ



1 1
Sin— = — 9(n)

i Va Gnyn a2

where lim g(n) =0.

n—-+o0o

Up, ==

o)
- 1(f 6nv/n ' g(n))

— < B g(n)> 1

Then the series Z u, diverges.

n>1

+

n2 677,'

2-1-6 | (a) In a neighborhood of 0,

2 3 4
ln(1+x)=x—%+%—%+x5g(x), (7.11)
where lim g(x) = 0.
z—0
1 1
alnn+bdbln(n+1)+cln(n —1) = lnn(a+b+c—|—bln(1+n)—i—cln(l—n))
- lnn(a+b+c+b_c+h(2)),
n n

where (h(n)), bounded. Then the necessary condition of the con-

vergent of the series Z Upisb=cand a+b+c=0.
n>2

(b) The series Z Uy, is absolutely convergent.

n>2
(¢) If a = —2, b= c =1, the conditions of the convergence of the series
Z u,, are satisfied. Its sum is — In 2.

n>2

(a) In use of (7.11), we have



I
E

Up = Sn - Sn—l

fln—=1)
= (n—l)ln(l—%)—kl—%ln(l-ﬁ-%)
_ 3 g
 4n? n?’

where (g(n)),, bounded. Then the series Z Uy is convergent.
n>2

(b) Z Uy = Sy — S1. Then the sequence (S,,),, is convergent.
n=2

l, n, —n
(c) n! L ente Vn.

2-1-8| (a) Define the function f(z) = 1—e @ — 2, f'(z) = e * —1. fis
increasing on the interval | — 0o, 0] and decreasing on the interval
[0,4+00[ and f(z) < 0. We deduce that if the sequence (uy), is
convergent its limit is 0.
o If up < 0, the sequence (u,), is decreasing, then it diverges.
e If uy > 0, the sequence (uy,), is also decreasing, then it converges
because it is non negative.

(b) Assume ug > 0, then lim u, =0. e® =1—x+ %2 + z2e(x),

n—-+4oo
. . u 1—U 1
where lim e(z) = 0. Then lim % =—-.
x—0 n—-+oo un 2
) . Up — Upt1 1 .
Since lim n72n+ = —, then the convergence of the series
n—+o0o Uy, 2

Z ui is equivalent to the convergence of the series Z Up, — Upt1,
n>0 n>0
which is equivalent to the convergence to the sequence (uy),. And
since the sequence (u,), is convergent, then the series Zui is
n>0
convergent.
(-1 1 1

T +o = g(l + (=1)"y/n). For n even, 1 + (—1)"y/n > 0 and for n

odd, 1+ (—=1)"y/n <0.



_1)n
Then the series T;un is alternate. The series 7; ( \/ﬁ)

1
but the series Z — is divergent. Then the series Z Uy, is divergent.
a1 n>1

(=D"

n

n+1 n+1 2(n+1)w
/ ft)dte. But/ f)de :/ | sin z|dz =
n n 2nm
+oo

4. then the integral / f(t)dt diverges. Since f(n) = 0, then the
1

series Z f(n) converges.

is convergent,

The sequence (— + ) is not decreasing.
n

S

+o0 too
@ [ swi=Y

1 n=1

n>1
(b) Consider the function
nz+1-n® for zen—25n] (n>2)
g(x) =< —n?z+1+n® for z€nn+ L] (n>2)
0 for z does not in any of these intervals
Since g(n) = 1, then the series Z g(n) diverges.
n>1
n 1 n+n—2 1
/,; g(t)dt = el and /n g(t)dt = oz Then the integral

n

+oo
/ g(t)dt converges.
0

The function g is not decreasing.

2-1-11 | Recall the Taylor formula with integral remainder
Let f: I — R be a function of class C™, then for a,x € I:

@) = fla)+ X S 0+ [ G o

For n <m €N,

x
f(n) = f(zx) — / f'(t)dt. We integrate this relation on the interval
n

[n,n+1], we find f(n) = /"—H f(;v)dx—/m_l(/x f'(t)dt)dz. By Fubini

n
Theorem we get



Then

and the series Z f(n) converges.

n>0

/1 o fx)de = 2 /1 " sin(m

by parts 2 /+°° cos(mz)
N O o 2

dz.

T

“+o0
Then / f(z)dz is convergent.
1

/ @) = / -

)

mcos(my/z)  sin(my/z)
2x\/x x?

dz. It is evident that

this integral is convergent. Which following that the series Z sin(my/n)
n
n=1
is convergent.
sin((2m +1)0) = TIm(e’)*™*' = Tm(cos(6) + isin(6))*"
Z( DFCFEEL cos? MR (9) sin?* 1 (6)
k=0
m
= sin® () Y (—1)FCFERY cot?m R (0).

(b)

k=0

Make the substitution x = cot?(f), the roots of the polynomial P,

are given by: cot? 27’;’;1, k =1,...,m. The sum of the roots is
2m —1

Com413 = m(2m ) Then

Com411 3

’” 2m —1
ZcotQ( km ):m(m )
Pt 2m +1 3



()

(a)

1 1

We know that for t > 0, |sint| < ¢, then 1 + cot®t = — 5 2
) 1 . sin“t — t
Moreover if f(t) = cott—g, IHOES t+t2 < 0and lim ft) =
1
0, then f(¢) < 0. Then V¢ € ]o,g{ cot% <z < cot2t+1
Apply this result for ¢ = b we have
pply T om+ 1
"L 2m 1, 2m—1 u 2m+1
P <3
k=1 k=1
Then
2m+1 1 3 32m+1)2 &1
— <1< —
2m(2m —1) ;l@ 2m —1)m2 — *ﬂzm(Zm—l)’;kQ’

which yields
+

oo
1 2
2

There exists N € N such that for n > N u, < 1, then u% <u

for all n > N, which yields that the series Z ufl converges. In the

n>0
same way, E v? converges.
n>0
upv, < uZ 4 02, then the series g VUnvy, converges. (Cauchy

n>0
Schwarz).
If £ > 0, there exists N € N such that for n > N, nw,, > g and then

Wy > % and the series Z wy, is divergent, which is absurd. Then
n>0

{=0.
Upt1 — Up = —u% < 0, then the sequence (uy,), is decreasing.
If  €]0,1[, 0 < 2 — 22 < 1, then by induction u,, €]0,1].

(un)rn is decreasing and positive, then it converges. If £ is its limit,
we find £ = ¢ — ¢2. Then ¢ = 0.

m m

E u? = E Up — Up41 = U9 — Um+1- Lhen the series g u? con-
= n=0 n>0
verges and its sum is ug.



(a)

m

9 2 mn(

U 1 Un+1 Um+1 . Un+1
—Hy —In || iR ey Thentheserlesg In(—+1)
U >0 Unp,

nz

u
diverges and its sum is —oo. Moreover In( ”+1) = In(1 — u,) and

Un

In(1 — uy,) ~ u,. Then the series Z u, diverges.

LUy =

n>0
Up—1 — Up 1

. Since lim u,, = 0, then limv,, = 1.
UpUp—1 1—up_1 +o0 +o0

ii. Fore > 0, thereis N € Nsuch that forn > N, 1—¢ <wv, < 1+¢,

iii.

ii.

then for n > N,

which yields that u, ~ +.
Since uZ €]0,1], the series Zsin(ui) and the series Zui

n>1 n>1
converge or diverge together. Then the series E sin(u?) is
n>1

convergent. Moreover since u, =~ %, then the series E — is

nle/i

convergent.

For |z| < 1, In(1 + z) = zh(z), with h € C>°(] — 1,1[) and
h(0) = 1. In particular |h(z)| < M for a suitable number M for
o] < 3

If the series Z Uy, is absolutely convergent, there exists N € N

n>0
such that for n > N; |u,| < 1, then |In(1 + u,)| < M|u,| and
the series Z In(1 + u,) is absolutely convergent.
n>0
In the other hand if the series Z In(1 + w,) is absolutely con-
n>0
vergent, then liIJIrl un, = 0. Moreover |z| < 2|In(1 + z)|, for
n—r+00

|z| < 1. Then the series Z |un,| is convergent.
n>0

_1)n
(=1 The series Z Uy is convergent, but the series

Vﬁ{ n>0

Z In(1 + u,,) is not convergent.
n>0

Let u,, =



iii. A. Assume that the series Z U, is absolutely convergent, there
n>0
exists N € N such that for n > N, |u,| < L, then u?

PRI n -

Un . 2
Uy, | and < 2|up|. Then the series u;, and
tal and || < 2fu >
n>0
Z Yn_ are absolutely convergent.
1+ u,
n>0
(=™ . .
B. If u, = . The series Zun is convergent but the

\/ﬁ n>0

. 2 Unp
series E u,, and E are not convergent.

n>0 n>0 L+un
U
(b) Since v, = T " < uy,, if the series Zun converges, the series
T Un n>0
Z vy, is also convergent.
n>0
If the series Zvn converges, there exists N € N such that for
n>0
v
n>N, v, < % which yields that u,, = T "< Qu,.
— o,

2-1-16 | By the Cauchy criterion (1.2), for € > 0, there exists N € N such that
m

m

for n,m > N; |Zuk| Seand\ZwH < e. Then

k=n k=n
m m m
—& < Zuk < ka < Zwk <e.
k=n k=n k=n
Then the series Z VU, CONVErges.
n>0
v (n+1)w (n+1)m sint
2-1-17| (a) u, = / sin(z?)dr = / ——=dt. Tt is well known that
vnm nm 2\/7E

sinz > 0, for z € [2nm, (2n + 1)7] and sinz < 0, for x € [(2n —

1)m, 2n7]. Then the series Z U, is an alternate series.
n>1

(b) From which previous sinz = (—1)"|sinz|, for € [nnm, (n + 1)7],

(n+1)7 | o: t
then |uy,| :/ |;1\I;£|dt

] /("'H)7r |sinx|d /7r sin x d
Up| = T =Up = —dx.
nm \/E 0 VnT+IT




This proves that the sequence (|uy|), is decreasing, which yields
that the series Z U, 18 convergent.

n>1
(n+1)m si
/ | 1nx|dx
nm ﬁ

|y,

L
> —d
- /m Vi
> /("'H)’T 1 — cos(2z) dx

(DT cos(2a
In the same way we prove that the series Z / ( )da: is
n>17nm \/‘%
(n+1)7
convergent, but evidently the series Z / ——dx is divergent.
n>1Ynm \/5
Then the series Z Uy, is conditionally convergent.
n>1
1 . .
2-1-18 | |uy,| > ———, the series Z Uy, is not absolutely convergent.
nt —1 "2
1" —(—1)"cosn -nH"
Let v, = up, — ( 3) = 3( 3) . The series Z ( 3) is conver-
ni ni(ni + cosn) ase NA
—(—=1)"cosn
gent and the series Z # is absolutely convergent. Then
=, ni(ni +cosn

series E Uy convergent.
n>1

2-1-19| (a) The sequence (uy,
Un,

un) > (1 + UO)

Jn>o0 is increasing and un41 = uy, + uZ = u, (1 +
> (14 ug)"up. Then lim w, = +oo.
n—-+oo

. 1
(b) vpy1 — vp = g=n—1p Y ;rl = 27" 'In(1 + —). The sequence
n Un
1
In(1 + —) is decreasing and its limit is 0 and the series Z 2—n1

u
n n>0

is convergent, then the series Z(U"‘H — vy,) is convergent, which

n>0
yields that the sequence (vy,), is convergent.
(c) f @ = lim w,, then u, ~ a?".

n—-+4oo



2-1-20| (a) Since f is a continuous non negative function, then the integral
+o0 [£22%
/ f(z)dzx is convergent if and only if the sequence v, = / f(z)dz
0 0

is convergent, with (a,), any sequence such that lim a, = +oo.
n—4oo

+oo
Then the integral / f(z)dz is convergent if and only if the series
0

g U, is convergent.
n>0

nm

(b) On the interval [nm, (n + 1)n], cosh(x) > %-, then

(n+1)m 1 m 1 z 1
Oﬁunﬁ/ ﬁdl’:/ ﬁdm:Q/ — 5 dx
o 1+ S-sin“x 0o 14 S-sin“z o 1+ 5 sinz

(c) On the interval [0, 3], sinz > 2.

z 1 z 1 +oo 1
Un §2/ Wdiﬂg/ dexﬁ/ dex:
0o 1+ 5 sin“z 0o 1+5=2 0 1+ 572

’/'I'2 —nm
—e 2 .

V2

This proves that the series Z Uy, is convergent and then the integral
n>0

400
/ f(z)dzx is convergent.
0

2-1-21| (a) The sequence (R,), is decreasing,

R, - Ry /R it an
-« R, 1T Ry
leolc _ Rl—a
. . 11—« _ . D n— n e
Since nEIJIrlOC R,”® = 0, the series Z —1_, convergent
n>1
and then the series Z b, is convergent.
n>1
(b) Since lim InR, = —oo, the series Z en 1s divergent. Moreover
n——+4oo
n>1
dn :
0<e, <e¢, and ¢, = 1 d, > d,, then the series ch and

n>1

Z d, diverge.

n>1



(¢) Define v, = lim v, = +oco and the series Zunvn is

e n—-+oo
Rnfl n>0

convergent.






4.6 Solutions of Exercises on Chapter 3

3-1-1| (a)

/ K(e,9)f ()dy = (z—1) /Omyf(y)dyﬂtx / (-1 f(w)dy.

and

1
f(a) = / yf(y)dy + / (v — 1)f(v)dy.

0 T
Then f* = f, f is of class C2 and f(1) = f(0) =
(b) Let f,g of E,

/0 i) f () (- Dg(a) [ yfw)dy + ag(x) / (y—l)f(y)dy)c

0

by parts

/\/\

CDgly)dy + (x— 1)f(x) / yg(y)dy) :

\\\

“ﬁz

x
(For the first integration by parts, we set u = / yf(y)dy, v' =
0

(z - 1)g(z) and v(z) = - / (v — Dg(y)dy.)

+oo 4—(x+1)
t

3-1-2| (a) The integral ———dt converges for x € [ =| — 1, +0|.

(a) gral | Te— g ] [

b) The f gt C Ix]1 F

e function f(z,t) = is C*° on Ix|l,4o0|. For z €
(b) fat) = 1+
o f

[a,4+o0[, with @ > 1 and n > 0,
integrable. Then F'is C*° on I.

dxm

(x ,t)‘ < |In" tf(a,t)| which is

3-1-3
01 — cos(t
F(x) = / Ci(f(m)e*tdt; x>0
0 t
1 — cos(t 2sin? (L&
(a) The function f(z,t) = %(x)e*t = %(2)6775 is C* on

1‘2

10, +00[x]0, +oc[. Moreover |f(x,t)| < ?e_t. Then the integral
converges.



9,
(b) From which previous f is continuous. ‘af(:c,t)‘ < |z|e™" and for
x

o f

n>2 (x,t)’ <t et
n

- )

ox

+oo 8nf
ox™

+oo
F'(z) = / cos(zt)e”'dt and by integration by parts, F”(z) =
0

Then F is C* and F"™(z) = / (z,t)dt. In particular
0

1+ 22
2
¢) By integration by parts and since |f(x,t)| < $—e*t and g x,t)| <
2 0
x
1
|z|e™t, then F(x) = xtan™!(x) — 3 In(1 4+ 2?%).
+0o0 o3 +oo  —tx
t
For z > 0 define the functions F'(z) = / P2 dtand G(z) = / £t
o t+az o 12
int —tx
(a) Define the functions f(z,t) = :Tx and g(z,t) = 1€+ e on )0, +00[x]0, +o0].

f and g are C*°. The function t — ; is decreasing and tends

b
to 0 at oo, |/ sintdt| < 2 for all a,b € R. Then by Abel Criterion
F s well defined.

For the function G, |g(z,1) which is integrable. Then G

|§L
1+ t2

o f nlsint
(1‘, t) =
oz" (t 4+ z)ntt
sint

“+oo
which is integrable for > a. The F'is C* and F(") (z) = n!(—l)"/o Wd]

is continuous.
n!

Let @ > 0 and n > 1, > (t+a)n+1’

1 T cost
Moreover by integration by parts F(z) = — — / mdt and
X 0 X

1
a second integration by parts yields that F''(z) + F(z) = —.
x
ang (m ) B (_t)nefwt (t)nefat
oxn | 1+ 12 (1+12)

g (100 (n) = (=1)" —
The G is C* and G™(x) (1)/0 112

" Foo p2emat 1
= ——dl = — -
G'o)= [ Togit=—G)+

, which is integrable for > a.

<

+oo tne—zt
dt. In particular



(b)

1 oo ¢ ¢ 1
Since F(x) = — —/ &th and | o8 | < , for
o ) G+ o? = traop
x >a >0, then HIJP F(z) = 0. The same result for the derivative
Tr—r1+00

+o0 : :
/ t t 1
ostinceF(gc):—/ &thand| > 5] < 5, for
o (t+x) (t+x) (t+a)
z>a>0.
00 < o for o > aand |22 (0] < e, for o > 0> 0
x or x > a and | = (x e orxr >a .
g ) — 1 + t2 — ax ) —_ ) iy
Then lim G(z)= lim G'(z) =0. Then F = G.
T—+00 T—+00
By the Monotone Convergence Theorem, lir% G(z) = g Then
z—

. i
limy P(@) = 5

+0o0o i +oo . .
t t t 1
F(x)—/ SN gt = —m/ STt Since | S <
0 t o tlt+x) tt+x +

+oo 3
t
which is integrable for x > a, then lim F(x) = / Sl%dt = g
0

x—0

If | f] < M and since |f(t)e | < Me~** snd [tf(t)e” | < Mte ¢,
which are integrable, the F' and G are well defined for x > 0.
The function z — f(x,t) = f(t)e”*" is C> on]0, 400l and |f(t)e~*¢| <
Me=®t, then by the Dominate convergence Theorem or the Mono-
tone convergence Theorem lirf_l F(z)=0.

TrT—r+00

‘gf(x,t)’ = tf(t)e ™ < Mte ™™ for all x > a > 0. Then F is
x
differentiable and F'(z) = G(z).

+00 +oo
o) = / flz —t)(t)dt = / f(@®)¢¥(xz — t)dt. The function

—00 —00
g(z,t) = f(t)Y(z —t) is continuous on R X R and |f(¢)y(x —t)| <
|7 f(t)] which is integrable, then ¢ is continuous on R.
o"f
oxm
integrable. Then ¢ is of class C* on R. (We can prove by induction
Pu(t)

that ™ (1) = —2

a /IZ} ( ) (1 + t2)n7
and this function is continuous and bounded since its limit at co is
0.)

For n € N, (x,t)’ < |f®™(z — )| < Cu|f(t)| which is

where P, is a polynomial of degree < n,



(c) The function (x,t) — f(x — t)3(¢) is integrable on R? the by the
Fubini Theorem

/;OO p(z)dx /;OO </J:O flax— t)w(t)dt) dx

o b(t) (/ﬂo fla— t)dx) dt

— 00 — 00

+oo “+o0
/ rwde [ vt

— 00 — 00

o0 cos(z —t)
d) Let ¢(z) = ——2dt.
(@ Let pla) = [ S
i. The function zln g(z,t) = (:(Sl(ﬁ—_t;)) is C* on R and ‘gx‘z (x,t)’ =

cos(x —t+n%)
(1 +¢2) — w(1+1¢?)’
C> and ¢ (z) = —@.

which is integrable, then ¢ is

oo t 1

ii. By the residue Theorem, $(0) = /_Oo mdt = p =
3
(a) Let I, :/ sin” zdzx.
0

. . . n—1 ™
i. By integration by parts I,, = — T2, forn>2 Iy=73,11 =

_ = _ (@pt _ (2mp)?

1 and IQ =7 Then IQp = (2pp')2 5 and IQerl = m

ii. Since 0 < sinz < 1, the sequence (I,), is decreasing, then
Iy <12 < 1,1, forallm € N.

and Is,,_11s, = 1, then
4n

| T
In ~ oo %

(b) i. The function (z,t) — ¢ (x,t) = sin” t is C* on | -1, +00[x]0, F|,
" 2
2715(,@71?) = In"(sin¢)y(x,t) and dominated by |ln”(—t)\ which
™
is integrable. Then f is C* on | — 1, 4o0].
ii. f is decreasing, then f(E(x)+ 1) < f(z) < f(E(x)). By the
™

previous question f(x) ~oo 2
x

™
Ioplopp1 = ————
it T 9on + 1)



iii. By integration by parts, f(z) = % —flz+2)= 1{(7;)1 +
()~ s+ 2)+ T 1) 4 oa 1),
(a) The function f(x,t) = ! is C*° on R* x [0, 4+00]

(14 t2)(22 +¢2)

and tli+m t?f(x,t) = 1, then F is well defined. Moreover 0 <

—+00
f(z,t) < f(a) for all @ > 0, then F is continuous on ]0, +o00[.
of T b
7(3371") = 3 S
Ox VI+2(2? +12)2 V14 12(a? +t2)2
[a,b] C]O,+o0]. since this function in integrable, the F' is of class
C*' on 10, +o0l.

5, for all z €

1 1
(b) By the change of variable t = zu, we find F(z)—F(-).
z oz

(c) Since the function 2z — f(z,t) is decreasing, integrable and lir_sr_l flz,t) =
TrT—r—+0o0
0, then hm F(x)=0.

dt
(d) By the Monotone convergence Theorem, lim / =
z—0 (1+t2)($2+t2)
/1 a
0o t/(1+1t?)
(e) i F(x) :/ / . In
0 1+t2 a:2+t2 1+t2 x2+t2)
the second integral, we take the change of variable ¢ = L and
u
we find F(z / .
1+ t2 a:2 +t2)
1
ii. Since —— 1, then F(zx) ~ 2/
Jive ' 0 \/x2 T2

Ve gt
ii. 2 ——— =2In(1++v1+2)—Inz. Then F(z) ~g —lnzx
and F(z) ~ e
T
t(1—t)

3-1-9 I ighborhood of 0 ~—
(a) In a neighborhood of 0, . 7

only if x > —1.

which is integrable if and



(b)

()

7 (1—t)

The function z +—— f(z,t) = —7— is C> on | — 1,+00[ and
0
8—f(x7t) =t*(1—t) <t for all x > a > —1. Then f is differ-
x
1
entiable on | — 1, +oo[ and f'(z) = ——————— for all x > —1.

(x+1)(z+2)

t*(1—1¢ t*(1—1¢ 1
limgzofort#landgg—fort>l
z—+oo  Int Int Int

which is integrable, then by the Dominate Convergence Theorem,

rz+1
lim_f(@) =0 and f(z) = ().

x
By Fubini Theorem, g(x) = / f
0

r 1
) / ————du | dt
AN =)
Then g is well defined.

With the change of variables u = t cos? ¢ + x sin® ¢,

z
2dp = .

[ ==

¢ (x —u)(u—1t) 0

From the first and second question g(z) = 77/ f(®)dt and f(z) =
0

g'(z)

1
The function f(z,t) = ——=—=———==1is C*° on |—1,1[x[0, §]. Then
1 —a2sin®t

F is well defined on | — 1,1[. For z ¢] — 1,1],

]

€] — 1,1[. Define

H\'—‘

o = |sin"'(1)], then f(z,t) = , which its integral
sin? o — sin” ¢

is not defined. (For x > «, sin® a — sin®t < 0).

The map ¢ — f(z,t)isC*® on]—1,1[and for |z] < a < 1, f(x,t) <
0

ox

~

IN

f(a,t), which is integrable, then f is continuous. Moreover,

92
a o°f <

, which is integrable and

(1 —a?sin?t)3 0a? (1 —a?sin®t)3

3 2
%, which is integrable. Then F is of class C? on ]—1, 1],
(1 —a2sin®t)2

F,(x):/”/2 xsin? t _mSnt e and F / sin? t(1 + 222 sin t)dt
o (1—a2sin?)3 (1 — 22sin? t)

i. With the change of variables u = zsint, F(x

v od
/7u2,f0r,0<x<1.
o 1—u

/ \/l—u2 x2—u2) &



z g 1 1



4.7 Solutions of Exercises on Chapter 4

4-1-1

(a)

(b)

The sequence (f,(x)), convergence if and only if z = O or |[1—z| < 1,
which is equivalent that z € [0, 2].

2
lim / fn(x)de = lim S L 1. But the sequence

(fn)n converges to 0 on [0,2[. Then the sequence (f,), is not uni-
formly convergent on the interval [0, 2][.

1
lim fn( )= lim n(l— —)" = +oo, then the sequence (f,) is
n

n—-+oo n n—-+oo
not uniformly convergent on the interval [0, 2[.

. 1 1
fn(0) = 0, and for = # 0, ngrfoo fn(xz) = 0. But f(ﬁ) =3 Then

the convergence is not uniform.

2n2x if zel0, 5]
fo(z) = 0 if xe€l[i 1] on]0,1],
2n —2n’z if x € [5-, 1]

2n’n
fn(0) =0, and for x €]0, 1], there exists n € N such that for z > 1,
. 1
fn(xz) = 0. Then nEIJIrloo fa(z) = 0. But f(%) = n. Then the

convergence is not uniform on [0, 1].

_ Jatsin(L) if z#0
f’ﬂ(x)_ { 0 lf $:0 on R7

fn(0) = 0, and for x # 0, Erj_l fu(x) = 0. But lim, 40 f(n) =

n?sin(-z) = 1, then the convergence is not uniform on R.

sin(z) —nax if 0
f”(x):{ S TR

fn(0) =1, and for > 0, lim f,(z) =0. The convergence is not
n——+00

uniform on [0, +00] because the limit is not continuous and f, is
continuous for all n € N. Moreover, the convergence is uniform on
[a, +oo] for all @ > 0 since |f,(z)] < e "¢, for all z € [a, +o0].

falx) =n%z(l —nz — |1 — nz|) on Ry, a € R.

1
fa(z)=0ifz < L and f,(z) =2n%z(1 — na) if n > —.

n
olfa< -1, nllgloo fu(z) =0, for all x € Ry, but nll)riloo fo(n™%) =

—o00, then the convergence is not uniform.



oelf a=—1, 11111 fn(z) = =222, for all > 0. The convergence is
n—-+oo

not uniform.
elfa>—-1, lim f,(x)=—o0, forall x> 0.
n—+o0o

0 if
hm fu(x) =0, for all z € [0, 1]. Then the pointwise limit of the

n—+

bequence is 0.

fn(@) = n*(1 = 2nx), for & € [0, +]. Then sup,co ) fu(x) = 2
The convergence is uniform on [0, 1] if and only if o < 1.

fol) = {n"aﬁ(l —nx) if

a—1

4

_1y 1
fulz) = {nlx_ - iff i 2 {0 ][ defined on [0,1].

lim f,(x)=1—20n]0,1] and hIJIrl fn(0) = 0. The functions f,
n—-+0o0

n—-+o0o
are continuous. Since the limit is not continuous, the convergence is

not uniform. But the convergence is uniform on any interval [a, 1],
forall 0 < a < 1.

sinnx

fulw) =4 VT

ifz>0

0 ifz=0

For x # 0, ngl}rloo fn(x) = 0. The convergence is uniform on the in-

terval [0, +o0[, indeed, sup | f,(x)| = max (sup | fr ()], sup |fn(x)|> .

x>0 IS; zz%
sin nx | sin nz|
sup|f (x)] = sup f<—smei§1andsup\f (2)] =
'p< " z<% f nr 12% "
sin nx

, since |sinnz| < 1.

n

fulz) = Tram each of the following interval, with 0 < a < 1.
xn

0,1 —a], 1—a,1+4a], [1+a,+oo[

On the interval [0,1 — a], the pointwise limit of f is 0. The conver-
gence is uniform since | f,(z)] < (1 —a)™.

On the interval [1 — a, 1 4 al, the pointwise limit of f is 0 if |x| < 1,
Lif || > 1, § if 2 = 1. The convergence is not uniform.



On the interval [14a, +o00], liIJIrl fn(z) = 1. Moreover | f,,(z)—1] =
n—-+0o0o
1 1

| T | < TTatar Then the convergence if uniform.
" a)”
. 2
sin®(nz) .
() fal@) = "y B TETL

4-1-3| (a)

0 if zenZ

1
lim f,(x) =0, and f,(—) = sin® 1. Then the convergence is not
n—+o00 n
uniform on R.

i. The function ¢},: [0,n] — R is continuous. It reaches its ex-
tremum on 0 or on n or on at an interior point of the interval
[0,n] where ¢,, vanishes. ¢}, (0) =0, ¢}, (n) = —e™™ < 0 and let

a

1" - 1
a such that ¢, (a) =e % — 1 (1- g)"_2 = 0. Then

n
et = m=L(1— )72 and @ (a) = ~BL(1 - 22 4 (1 -
ayn=l — (1 — &)n=2(1=a) We remark that ¢},(1) > 0, then the
extremum of ¢/ is positive. Then ¢/ has a unique zero on the

interval |0, n[.

ii. Let b be the point in |0, n[ where ¢, (b) = 0. ¢, is increasing on
the interval [0, b] and decreasing on the interval [b,n]. ¢, (b) =
b, b, »
E(l_ﬁ)n 17 ©n(0) =0 and p,(n) =e™".
The pointwise limit of the sequence (f,,), is f(z) = e~®. Since ¢, =
f — fn, then the sequence (f,,), converges uniformly on [0, +o0].
fi(z) = —ncos" ! xsin? x+cos" T & = cos" ! z(cos® z—nsin® x) =
cos" 1 z(1—(n+1) sin® ). The maximum of £, is reached at a,, such
1

that sin?(a,,) = w1+ Since fn(an) < sin(ay), then the sequence

(fn)n converges uniformly on [0, 7].

fn:[0,%] — R defined by: f,(z) = (cos™ x)sinx.

x
Hm gn(z) = lim (14 2)"=e® Th ), s :
Jlm g (x) n—l>I—ir-loo( + n) e e sequence (g ), Is increas
ing. sup |e¥ —gn(x)] <max(e™™, sup (e — gn(x))).
T€]—00,a] z€[—n,a)

For x € [-n,al, the function f,(z) = €* — (1 + 7)™ is differen-
tiable and f)(z) = 0 <= €* = (1 + £)""'. Let a, the zero
of f!, then by the variation of f, yields sup (e* — gn(z)) <

z€[—n,a]
« .
max(e™ ", fn(a), f?neo‘". Since ze® < % for x <0, then
1

sup (ea: - gn(x)) S max(eina fn(a‘)v D]
z€[—n,a] en



which proves that the sequence (g, ), converges uniformly on | —
00, al, for all a € R.

o Ifz =0, f,(0) = 0.

o If x >0, ngrfoo fnlz) =1.

oIf 2<2<0,z+# -1, lim f,(z)=-1.
n—-+00

o If x < -2, ngrfw fulz)=1.

The pointwise limit of (f,,)n is the function f defined by:

flz)=4¢ 0 ifz=0
-1 if —2<2<0
. . . 2
o If [a,b] is an interval in ]0,4o0[, |fn(z) — f(x)] = EFST
x
2
————— . Then the convergence is uniform on [a, b].
(a+ 1) +1
2
o If [a,b] is an interval in | — oo, =2[, |fn(x) — f(x)] < CEE]| <
x
2
——————— Then the convergence is uniform on [a, b].
[(b+ 1) + 1]
2 "
o If [a,b] is an interval in | — 2,1[, |fn(x) — f(2)] = |(ac(—ig-61—:")—|—1| <

2max(|la 4+ 1|", b+ 1|),

. Then the convergence is uniform on |[a, b|.
[min(a + 1], [b+ 1) + 1] & la, 4]

4-1-6| (a) u,(0) =0 and for x # 0, li)m un(x) = 0.

—+o0

1 ~+o00
lim Up(x)dr = / te tdt = 1.
0

n——+oo 0

)
) The convergence of the sequence (uy,)y, on [0, 1] is not uniform.
a) frn(0) =0 and for x €]0, 1], liIJIrl fulz) =1
n—-+00
)

The convergence of (f,)n to f is not uniform on [0,1] since the
functions f,, are continuous but the limit is not continuous.

The convergence of (f,), to f is uniform on [1,4o00[? since |f,(z) —

1] =

< .
l4+nx = 1+n
The convergence of (f,)n to f is not uniform on [0, 4o0[ since the
convergence of (f,)y is not uniform on [0, 1].



(¢) Fp(x) = /0“” fat)dt =z — %ln(l + nx).

i. The pointwise limit of the sequence (F,), is F, with F(z) =z
ii. The convergence of (Fy,), to F on [0, 1] is uniform since | £, (z) —
F(z)]=1In(1+nz) < 1in(l+n) e 0.
n—-+0oQ

(a) 0< fn < }L, then the sequence (fy,), converges uniformly on R.

(b) For all n, the function f,, is differentiable on R and f/ (z) = z(2* +

i)*%,

n2
The limit of the sequence (fy,)n is f defined by f(x) =1 if =z > 0,
f(z) =—-1if z <0 and f(0) = 0 which is not differentiable at 0.

4-1-9| (a) D={zcecRy; |Ina| <1} =], €].
(b) sup |fn(x)] = n, then the sequence (f, ), is not uniformly convergent
D

D. Let K be any compact of D and a = supy |Inz|, @ < 1, then
the sequence (fy,)n converges uniformly on K.

4-1-10| (a) fn(0) = 0 and for = > 0, lim fn(z) = e7®(1 4+ 2?). Since the
n—-+0oo

limit is not continuous and the functions f,, are continuous, then
the sequence (fy )y is not uniformly convergent on R, .

(b) Let K be a closed and bounded interval of ]0, +oo[ and a = inf K.

—r(q —r(q 2
|fn(:c) fl@)] = % The map z — % is de-
creasing, then sup |f,(z) — f(z)| = |fn(a) — f(a)] — 0.

zeK n—+oo
—r(q 2
(¢) The map = — % is decreasing, then C521[101)31] | fn(z) —

f@)=1
1 1
(d) For all a > 0, lim / fa(t)dt = / f(t)dt since the convergence

[ - f<t>dt] <a

is uniform on the interval [a,1]. Moreover

n—-+oo

Then lim fn t)dt = / f@)

4-1-11| (a) Ry is the domain D of pointwise convergence of the sequence (f,,)n
and EI—F fu(z) =1ifz € [0,1] and EI—F fu(z) =0ifz € [1, +o0[.

(b)  sup |fn(z)] = €™ ™. Then the sequence (f,), converges uni-
z€[1,4+00]
formly on [1, +o00[ to 0.



()

(d)

(a)

(a)

The function x — 1 — f,,(x) is increasing on the interval [0, 1], then
sup |fn(z) —1] =1—e~", which yields that the sequence (f,)n is

z€[0,1]

not uniformly convergent on [0, 1].

Let K be a compact subset of [0, 1], there exists a < 1 such that

K C[0,a]. sup |fn(z)—1|=1—fn,(a) — 0. Then the sequence
z€[0,1] n—+4oo
(fn)n converges uniformly on K.

gn(x) = fi(@) = —n?z" 7 fu(2).
R, is the domain of pointwise convergence of the sequence (g, )n
and its limit is 0.

-1 .
yn = lim —n?(
n—-+oo n2 n——+o00 n2

n—1

Since lim  sup |gn(z)] < lim |gn(72)%| = 400, then the
n

n—+oo x€[0,400[ n—-+oo
convergence of the sequence (g,), is not uniform on the interval
[0,4+00[. The same argument for the uniform convergence on the
interval [0, 1[.
sup  fn(z) = fn(1). The sequence converges uniformly on the
z€[1,+00]
interval [1, +o00].

22 tz+ny _ 22 : ~ w"5+2
In(*=25") = In(1 + %), which proves that |f,(z)| N
e If 3 =0, |fu(z)] = 2 The sequence (fn)n converges on
n—+oo
10, +o00[ to 0.
o If 5 <0, |fu(z)] = ””—2, the sequence converges on 0, 4+o00[ to
n—+oo M
0.

e If 3 > 0, the sequence converges only on [0, 1] to 0.

e If 3 =0, |fu(2)] W % The sequence (fy,), converges uni-

formly on any compact of ]0, +o0].

o If 5 <0, |fu(x) = "’”—2, the sequence converges uniformly on
n—+oo M

any compact of 0, +-o00[.

e If 8 > 0, the sequence converges uniformly and normally on [0, 1].

(The function = — "’ ln(%) is increasing on [0, 1])

By the Cauchy criterion (1.2), there is ng such that for n,m > ny,
super | Pn(z) — Pn(z)] < 1. Then P, — P,, is bounded on R for
n > ng.



(b)

P, — P, is bounded, then it is constant. There is a sequence (cy,)rn
such that P, = P,, + ¢, and since (P,),, converges to f then f is a
polynomial.

1

For z # 0, 1+xlnx > 0, then |f,(x)] < Ina” Then (fy)n converges
ne

uniformly on [0, 1].

The pointwise limit of (f,,), is 0. f/(z) = nz" (1 + nlnz). Then
SUPgefo,1] fn(T) = flemn) = —1. The convergence of the sequence
(fn)n is not uniform. The convergence is uniform on any interval

[a,b] C [0,1].
The pointwise limit of (f,), is 0. The convergence of the sequence
1 in”1
(fn)n is not uniform because f,(—) = &1 — sin? 1.
n’  nsin; no+too
The functions f,, are even and f,(z) = 4" (:1727“rl —2?") = 4" (2¥ —
1).
fa(1
[_lv

) = 0, and the sequence (f,), converges only on the interval
1] and the limit is 0. f/(z) =0 <= 2z =27,

— 47’7,71.

sup | fu(2)] = |fn(2777)

z€[0,1]

Then the convergence is not uniform on [0, 1].

=0 and (f,)n converges to 0.

fn(0)
1 n

/ £ ()t = In(n2™ +1) In2
0

——. Then the convergence is not
2n n—+o0o

uniform.

4-1-15 | The functions f, are odd, we study the sequence on [0, +o0.

(a)

(b)
(¢)

For z # 0, fuo(x) ® £ — 0. Moreover |sinz| < |z| yields that
n—-+oo
[fr(z)] < m On any interval [a, b], the convergence is uniform.
n

.1 . .
fn(n) = n?sin — — 1. Then the convergence is not uniform.
n< n——4+oo

1 1 1 2 1 3

|f!(x)] = |2zsin — — — cos —| < = + — = —. Then the sequence
ng mo onr . n o noon

(f)n converges uniformly on R.

n (_l)kflxk
4-1-16 | For x € [0,1] and n € N, define f,(z) = Z —— —In(1+2)



L GOl

(@) folw) = 3 (-1t — o = = Then

__ [T
fulz) = 7/0 1—|—tdt'

x

fao) < [ e =
0
formly to 0 on [0, 1].

(b) Sine the sequence (f,), converges uniformly to 0, then for all se-

| (1
quence (), in [0,1], hm fn(xn) = 0. Moreover nh_{glo Z 7(717_’_1

1
1 and the sequence (f,), converges uni-
=

lim In(1+ 7) In 2.

n—oo 1

4-1-17| (a) The sequence

form since f,(

n)n converges to 0 but the convergence is not uni-

i
ﬁ):

n— oo

(b) lim fn der = hm / fo(x)de = = and / hm ful(z =
0

0. Then the convergence is not unlform



4-2-1

(a)

(2
fulz) = s1n§1+x), with z € R,

|fn( )| < n2’ then the series anl fn is t normally convergent on

(b)

1
fn(z) = —tan™! E, with z € R.
n n
Since f,, is odd, we study the series on the interval [0, +o0].
For z > 0, tan™' z < x, then f,(z) < %. Then the series ., -, fn is

absolutely convergent on R and normally convergent on any interval
[0, a] for all a > 0.

Since the functions  — fj(x) is increasing on [0, +oo], for m > n,

sup Z fr(x Z , then the series is not uniformly conver-
2€[0, 400 k=n k=n
gent on R.

fnlz) = z" sin(nmx), for n € N and z € [0,a], with 0 < a < 1.

2 2
|z" sin(nmz)| < a™ < a" and the series ) ., a™ converges, then
the series ) -, fn converges uniformly and normally on the interval
[0, a]. -

T 1—(2n— 1)z
fala)y = — 5 1-(@n 1)z
(14 a2)" (14 a2)m+
fn is an odd function. The series Zn21 fn 18 pointwise convergent
on R since f,,(0) =0 and lirf n?fo(x) =0, for z # 0.
n—-+oo

with z € R. f](z) =

fn is increasing on [0, \/ﬁ] and decreasing on the interval [\/%, +00

1 1
sup  ful(z) = fal ) &~ . Fora > 0 and n

2€[0,400] v2n—1 e(2n —1)

large,

sup  fn(xz) = fn(a). Then the series ) ., f converges uni-
z€[a,+oo[ -
formly and normally on any interval [a, +oo[, with @ > 0, but it is
not uniformly convergent on R.

fulz) = xe"“"z, with ¢ € R,
fn is odd. The series anl fn 1s pointwise convergent on R since
fn(0) =0 and lim n?fo(z) =0, for x # 0.

fn is increasing on [ f] and decreasing on the interval [ NeTE +ool.

supfule) = ful =) ~

z€[0,400[ V2 2en

T



The series ) ., fn converges uniformly and normally on any in-
terval [a,+oo[, with @ > 0, but it is not uniformly convergent on
R

+oo

Z fulz) = %, for x # 0. The function f defined by f(z) =
— e x

n=0

+oo
Z fn(x) is not continuous on 0.
n=0

fo(x) = 22e~*V" with z € R,
The series Zn21 fn is pointwise convergent on R, since f,(0) =0
and lim n%f,(z) =0, for 2 > 0.
n—+oo
2 4

sup  fn(z) = fu(—=) = =~
z€[0,4+00] " " \/{E e?n
The series ) -, fn converges uniformly and normally on any in-
terval [a,+oo[, with @ > 0, but it is not uniformly convergent on
R..

2
nx
) = s

The series ) -, fn is pointwise convergent on R, since f,(0) =0

, with z € Ry,

and lim n?f,(z) ==, for = > 0.
n—-+oo
For all n € N, the function f, is increasing. sup  fu(z) =

2€[0,+o00[

lim f,(z) = +oo. The series >, -, fn it is not uniformly con-
xr——+00 Z

vergent on R .

Moreover since f, is increasing, sup,¢jo,4) fn(z) = fn(a) and since
the series ), -, fn is pointwise convergent on Ry, then the series
> n>1 fn it is uniformly convergent on any interval [0,a], Ya > 0.

=" .
fn(z) = T with z € R,
The series ) -, fn is pointwise convergent if and only if 2 > 0.
The series Zn;l fn is normally convergent on any interval [a, +00],
with @ > 1 and not normally convergent on the interval [1, +oo].

sup |fn(x)| = 1, then the series > -, f, it is not uniformly
x€]0,+00[ -

convergent on |0, +00|.

Since the series is alternate and the sequence (n%)n is decreasing
and converges uniformly to 0 on the interval [a,4+o00[, a > 0, then
the series >, < fr is uniformly convergent on [a, +ocf, for all a > 0.



(i)

2n

xz .
fn(l‘) = m, with z € R,

lim f,(z) =0if and only if z €] —1, 1[. Since f, is even, we study

n—-+oo

the series on the interval [0, 1].

The series Y, -, fn is pointwise convergent on [0,1] since f,(z) <
2", -

fn is increasing on the interval [0, 1] and sup,¢jo 17 fu(®) = fn(1) =
1, then the series > n>1 [ is not uniformly convergent on [0, 1.
The series ) -, fn is normally convergent on any interval [0, al,
witha <1.

=" .
fn(:E) = m, with z € R,

The series ), -, fn is pointwise convergent on R since the sequence
1 . - .
(375 )n 18 decreasing and converges to 0.
The series ), -, fn is not normally convergent on any interval of R
; —_1 1
since | fn(z)] = 7 N
The series ), < fn is uniformly convergent on R since the sequence

(ﬁ)n is decreasing and converges uniformly to 0. (IQ{HL <1y

fulz) = m, with z € R. Since f, is odd, we study the

series on the interval [0, +00[.
The series ) -, fn is pointwise convergent on [0,+4o0] since the
sequence f,,(0) =0 and lim n2f,(z) =0, for z > 0.
n—-+o0o
The function f,, is decreasing on any interval [a,+oo[, a > 0 for

n large. Then the series ) -, fn is normally convergent on any
interval [a, +oo[, Va > 0. B

1 1
fa(=) = ——7+

n n(l+ E)
convergent on [0, +00[.

1
~ —, then the series >, ., fy is not uniformly
en 2

_ (=D
fn(x) = (1—|—.’1§‘2)"7

on the interval [0, 400l

with € R. Since f,, is odd, we study the series

The series ) |, -, fn is pointwise convergent on [0, 400 since, f,,(0) =
0 and the sequence (ﬁ)" is decreasing and converges to 0 for
x> 0.



1 1 1
fn(—=) = ~ ; then the series > -, fy is not

Vil a4+ T ey

norrnally convergent on [0, +o0l.

4-2-2

Z falz) = , for x # 0 and Z fn(0) = 0. then the series
anl fn is not umformly convergent on [0, 4o0l.
fulz) = m, a > 0. Since f, is odd, we study the series

on the interval [0, +oo].
The series 3, -, fn is pointwise convergent on [0, +oc since, f,(0) =
0 and the sequence n®*!f, (z) = %, for z > 0.
1 1

sup fn(x) = fn(i) =
2€[0,400[ Vﬁi
normally convergent on [0, +-o0[ if and only if o > %

S nfi) > S nfl-) > () =

sup nfr(x) > nfi(—=) > 2nfon(—=) = —0———.
1:6[0,-{-00[ k=n+1 k=n-+1 \/ﬁ \/ﬁ 3\/5(271)0(
Then the series Z fn is uniformly convergent on [0, +oo] if and only

n>1

if > , Vae > 0.

The series ), -, fn is normally convergent on [a, +oof for all a > 0.

P Then the series > o fy is

x
The series E (—1)"In (1 + 7) is an alternate series. The sequence
n
n>1

(In (1+ £)),, is decreasing and tends to 0, then the series Z
n>1
is pointwise convergent on R .

x
1i ' (#)| = a, then the seri —1)"1 (1 7)' t ab-
im n|f,(x)| = z, then the series Z( ) In 1+ — ) is not a

n—+oo =
n>
solutely convergent on any interval of R+
sup | fn(z)| = 400, then the series Z (1 + ) is not uni-
20 n>1

formly convergent on R .
sup |fn(z)| = |fn(a)|, then by Abel Theorem for the uniform con-
z€[0,a]
TN . .
vergence (2.5) of series, the series Z "1In (1 + 7) is uniformly
n>1 n
convergent on [0, a].



—1)re—nx
The series Z Elre™ converges if and only if > 0. Moreover the

series is alternate and

o n+1

—nx

e
T is decreasing and converges uniformly to 0

on [0,4o0[. Then f is continuous on [0, +oo[. (f(z) =€e"In(1+e™7)).

—_1)e—nT
(a) The series E % converges if and only if x > 0. Then
n

4-2-5

(b)

(c)
(d)

n>0
D =0, +o0].
. (=D)re e .
The series Z ————— is pointwise convergent on D. The series
n?+1
n>0
-1 n+1nefn:1:
of derivatives Z (=1) converges uniformly on D since
n?+1
n>0
ne—nx
the sequence 1 is decreasing and converges uniformly to 0.
n
) (_1)ne—nw
Moreover the functions f,(z) = 2 e C>* on D. Then g
n

is of class C! on D.

2n+1

The functions f,(z) = (-1)"%

are odd. We study the series on

2n+1
[0, 1].
x2n+1
The sequence o1 is decreasing and tends to 0 uniformly on [0, 1],
n m2n+1
fulz) < ﬁ Then the series ;(—1)”2n 1 is uniformly con-
vergent on [—1,1]. -
+oo p2n+1
We set =N ()" forz € [-1,1].
e set f(z) 7;)( ) oy forze[-1,1]

The function f,, are O on R, sup,¢(o o | £, ()| = a*" and lim, , ;oo a*"

0, for all 0 < a < 1. This proves that f is differentiable on ] — 1, 1]
and

+oo

fa) =3 (-1 =

n=0

1
1422

Since f(0) = 0, f(z) = tan"*(z), for =1 <z < 1.

1
In2
By integration by parts, / tan"! zdx = Z — HT
0



4-2-6

x2n+1

1)
2n+1

The series Z (—
n>0

1 +o0 1 2n+1 +oo n
R B (-1)
/Of(x)dw—nz_:o( 1 /0 1™ Z (2n+1)(2n+2)

then

is uniformly convergent on [—1, 1], then

“+o0
(—=1)" T 1112
;0 (2n + 1)(2n—|—2) 4 2

fn(1) = 0, then the series Z fn(1) converges. For x € [0,1], Z "
n>1 n>1

. 1.
. The series E "7 2 is convergent

is convergent and its sum is 1

n>1
and its sum is Ve .
(1—2)
fy = [ = s HaeP ]
0 ifx=1
“+o0 +oo .
Ro(@)= > wpl@)= > aP—aP"2 =a"f(x).
p=n+1 p=n+1
sup |Rp(x)| = sup a"|f(x)] = —. Then the
zG[(),1]| (@) z€[0,1] F@l = ze[()l 1+\f 2

series Z fr is not uniformly convergent on [0, 1].
n>1

f+1 +1°

/01 R, (z)dx| =

1
Since lim R, (z)dx = 0, the series Z gn is convergent and its

n—-+oo 0
n>1

sum is / f(z

2 2 vz
/Oun(x)dx—Q(n+1) il Then/f Ydx = _/o 1+\/5d33—

—1+2In2. We deduce that Z

= —1In2.



1
(a) |fn(z)] < ot then the series Z fn converges uniformly on R.

n>0

(b) f!(x) = cosn’z, the series Z f7 is not convergent on any interval.
n>0

1
(a) fn is C°°, the sequence (—=—=——=),, is decreasing dominated by 1,
vn? 4 a2 n

then converges uniformly on R. Then f is continuous on R.

-1 1
(b) fl(z) = (na;(—l—xl)g’ If](z)] < -3 (We study the variations of f,).
Then f is of class C!.
: (1)t . :
4-2-9| (a) The series E ———— converges if and only if z > 0. Then
nm
n>1
(71)n+1
D =]0,+o00[. By Abel Theorem (2.5) the series E ——~— con-
n$

n>1
verges uniformly on any interval [a,4oc[, for all @ > 0. Then f is
continuous on D.

_1)ntk+1] k —1)ntkt1y k
gy = DT ) e
() " . e series T; = con
verges uniformly on any interval [a, +00], for all a > 0, then f is C>®
on D.
1 =1
(b) For z > 1; define ((z) = ;::1 e and ¢(x) = nZ::O g

18 &1

+oo “+o0o
F0) =30 3 D Gy = S = (-0

4-2-10| (a) The sequence (#)n is decreasing and converges to 0 and

2y/n + cosx
q .
1 T sinnx
sinnx| < ———, then the series —————— is pointwise
|; = sin(%)’ H;Q\/ﬁ+cosx P

convergent on |0, 27|



(b)

(a)

(d)

1 1
sin(§) ~ sin(§)

q
if x € [, 2 — @, | Z sinnz| < and the sequence
=p

T
(W)n is decreasing and converges uniformly to 0 since
n+coszx
T 27

3+ cosa < =1 Then the series converges uniformly on
the interval [, 27 — o] for all 0 < o < 27.

Ifa<landz#0, lim n®f,(z)= oo, then the series Z fn(x)

li
n—-+4oo
n>1
diverges.
If « > 1, take 8 such that a > § > 1, for z # 0, liIJIrl nﬁfn(:c) =0,
n—-+0oo

then the series Z fn(x) converges.

n>1
Assume that o > 1.

i. lm f,(x) = 400, then the series Z fn(x) is not uniformly

T—r+00
n>1
convergent on R?
ii. Let K = [—a,a], for a > 0, the function f,, is continuous on R,
and sup fu(z) = —In(1+ n®a?). Moreover for a > 3 > 1,
z€[—a,al n
lim n” sup f,(z) =0. Then the series Z fn(x) converges
n—r+oo z€[—a,a] o1

uniformly on [—a,a] for all a > 0, the f is continuous on R.

The functions f,, are even. We study the differentiability on [0, +o0].

2
Let @ > 0 and = € [a7+00[7 |f,,/1(x)| = T’[fal& =~ nia (The
2 1 1
maximum of the function g(z) = Tnxagﬂ is g(n—%) = n—%)

Then the series Z f/, converges uniformly on [a, +o0], for all a > 0.

n>1
then f is differentiable on R*.

Assume 1 < o < 2.

i. The functions f, are even. We study the differentiability on

2x
0,40c[. Let a > 0 and = € [a,+00[, |f1(2)| = |+—5=
[0,400[. Let a and z € [a,+o0[, |f,(z) 1+ nog2| =
2
TS“@Q for n large enough. Then the series Z fq'ql converges

n>1
uniformly on [a,+o00[, for all @ > 0. then f is differentiable on
R*.



+o0
i. f(n) Z—lnl—l— Z—lnl—k )ZIHZ.Z%}.
k=n

n+1 d +oo d a—1
We know that / a: , then Z = / —f = ? .
n k=n n z -a
Since1<a§2,n22n 1and
o —a ln2
2 2 > .
nE ) >

f is not differentiable at 0 because f is even and its derivative is
odd. Then if f is differentiable, f/(0) =0

1
4-2-12| (a) The sequence f, is a geometric sequence with common ratio 1522 <

1+ a2
1 for z # 0. Then the series Z fn and Z )" fn converge and
n>0 n>0
= 1+ 22
> fula) = lfx#Oanden =0,
= n=0
+oo 2
z(14 2°)
)" fn = —"
>R =y
(b) sup fn(x) = fu(a), for n large. Since the series an(a) is
z€[a,+oo] n>0

convergent, then the series Z fn converges uniformly on [a, +0oo.
n>0

(¢) The series Z )" fn is alternate. The sequence (f,(z)), is de-
n>0
creasing and converges uniformly on [a,+o0c[ to 0, then the series
Z(—l)” fn converges uniformly on R.
n>0

1 1
4-2-13| (a) fn(xr) > — and the series Z —— converges if and only if z >
n

nx"
n>1

) 1
and the series Z pT
n>1
converges. Then the domain of the pointwise convergence of the

series Z fu(x) is]1, 400l

n>1

1
1. Moreover for x > 1, f,(z) < poen

(b) For all n > 1, the map & — f,(z) is decreasing on the interval
]1, +00], then



q

ap 3 fulwy =30 2O,

2€]1,+00 5, =, nep

Then the series Z fr is not uniformly convergent on |1, +ool.
n>1

Moreover sup fn(x) = fn(a), which proves that the series Z fn
z€[a,+oo] n>1

converges normally on [a, +00].

(¢) The functions f,, are continuous on ]1,+oo[ and the series Z I

n>1
converges normally on [a,+oo], for all @ > 1, then f is continuous
on |1, 400l

m

The function f is increasing and li > i S =
unction f is increasing an lim f(z) > mg}rlooze];ﬁ)oo[;fn(x)

m
) In(1+n)
1 i ST
A 3=

1
4-2-14 F i = d f > < —_
(a) For z < 0, nigloofn(x) +oo and for x > 0, f,(x) < Vi

Then the domain of definition of f is [0, +-00[.

= +-00.

(b) The functions f, are C*° on R, the series Z fn converges normally
n>0
on [0, 4o0[, then f is continuous on Ry = [0, +o0].
(¢) fr(x) = —v/nfn(x) and for all @ > 0 and x € [a,+oc[, |f}(z)] <
Vnfn(a). Since lim, 1o n?y/nfn(a) = 0, f is differentiable on
R’ =0, 4-00[.
4-2-15| The sequence (n%m)n is decreasing and converges uniformly to 0 on any
interval [a, +oo[, for all @ > —1. By Abel Theorem (2.5) for the uniform
convergence of alternate series, f is continuous on | — 1, +o0].

Since the sequence converges uniformly on [a, +oo[ and 11111 fa(z) =0,
Tr—r+00

then xgrfoo f(z)=0.

flz) = ! +§(_1)n The function g defined b ()—f(_l)"
7) =11 2uts e function g define ygx—n:2n+x
is continuous on | — 2, 4+o0[, then lim f(z) = —oc.

z—(—1)*



—nxT

4-2-16 | Let f,(x) = 16+7n2. If # < 0, limy, 400 fn(x) = 400 and for z > 0,
falz) <

the series Z fn converges normally on R*.

5
1+n =

fl(z) = —nfn(x). The series Z f/, converges normally on [a, +oo| for
n>0
all @ > 0 and the functions f,, are C*, then f is of class C! on R .

4-2-17 | The sequence (1), is decreasing and tends to 0. Moreover Z cosk(k —1)x — cosk(k + 1)
k=1
|1 —cosn(n+1)x| < 2. Then the series Z fn(x) converges uniformly on
n>1

R.

1
4-2-18 | For = # 0, fn(7) > — for n large enough. Then the necessary condition
no

for the convergence of the series Z fu(x) for x # 0is a > 1. Moreover if
n>1
a>1,let 1 <y <a,then lim n”f,(z) =0. Then the series Z fli(x)

n—-+oo >1
nz
is pointwise convergent on R if and only if a > 1.
2nPx 2
()= —————~— forz#0.

n*(1+nfx?)  nox’

Then the series Z fn(x) and Z /() are pointwise convergent on R if
n>1 n>1
and only if o > 1.

4-2-19| (a) fo is a polynomial. Assume f, is a polynomial. Since f;(z) =
fn_1(z — x?) is a polynomial, then f, is a polynomial. Moreover if
9(@) = fu(z) + fn(l —2), ¢'(z) = fo(2) = fL(1 —2) = fnoa(z(1 -
x)) — fa—1(xz(1 —z)) = 0. Then g is constant.
(b) Let z € [0,1], f1(z) — fo(z) = / dt =z.
0
Assume that 0 < f,,(z) — fro1(z) < x—'
n!

Faer(@) = fula) = / (L= ) = fur (61— D)dt and



(c)

(1)

0< fn+1(x) - fn(x)

/O " Fat(— 1)) — Faa (11— 0))dt

< /z 7(tn(1_t)n)dt</m L
b n! ~Jo n!
xn+1
RCEE
— 1
sup |fn(z) = fim(2)| < sup | fe(®) = fraa( —. Since
z€[0,1] 2€[0,1] ,;L " zzz K

the series Z 7 converges, the sequence (f,)n converges uniformly
k>0

on [0,1] to a continuous function f. Since the convergence is uni-

form, the function f fulfills

z) =1+ /Oz Ft(1 —t))dt

Then f is C* on [0,1] and f'(z) = f(x — z?).

—2n " 6%2
/
= - d =
1 2n " 6n2
w(r) < ———— and |f], < ———and <
for all € [a,+o00[. Then the series Z fns Z f), and Z f,;/ are
n>0 n>0 n>0
uniformly convergent on [a, +00].
+o0 +o0 2 2
1 4 1 T 1 27
F(-)= —s=4Y —=4(—=—-1—-)=—-05.
(2) ;(n—FQ)Q ;nz (6 4) 3

r 3 1+§ L P(2)—1. Then F(2) = +1.
LA S e — 1. Then F(2) = ™
6 n:1n2 4n:1n2 12

1"
Since the series E fn, E /), and E fn are uniformly convergent
n>0 n>0 n>0

on any [a,+oo|, for a > 0, F is C? on ]0, +o0[. F’ <0 and F' >o.



(d) Since the series Z fn is uniformly convergent on [1,+oo[, then

n>0
lim F(z) =0.
T—r+00
% 1
lim F(x) > lim ——— =m, forallm € N, then lim F(x)
0+ a—0t £ (nz + 1) 0+

+00.

4-2-21| (a) lim e =0 < z>0and for z > 0, lim n?e —n*r ),

(b)

(c)

(d)

)

n—+o0o n—-+oo

Then Dy =]0, +o0.

The series Z ze T converges for x = 0, then Dy = [0, +o0].
n>0

i. The functions z — e ™% are decreasing on Dy, then f is
decreasing on Dy.

m

ii. lim f(x) > lim Ze o m + 1, for all m € N, then

r—0Tt z—0t
lim +00.
z—0t f( )

For all a > 0, the series Z ze T converges uniformly on [a, +o00|
n>0

since e~™’? is decreasing and the series Zme‘”%

n>0

is convergent.

Then f is continuous on Dy.

i If fo(z) = ze ", fl(x)=e —n’ ?(1 — n2z), then sup ze —nfe -

x>0
1
en?’
—+o0 —+o0
o . 1, . nlg .
ii. Since the series E — Is convergent, the series E xe is
n>0 n>0

uniformly convergent on D,.

—nx

lim (—1)" c = 0 if and ony if x € [0,400[. Moreover if z €
n——+oo n+ 1
—nr
[0, +00], the series Z(f c converges since it is alternate and
n+1

n>0
—nx

the sequence (?)n is decreasing end tends uniformly to 0. The
n

—nx

e

domain D = [0, +oc[ and since the functions f,(z) = (=1)" 1
n




(d)

—nT
n €

n —+

are continuous on D, the series g (-1 defines a continuous
n>0

function on D.

In the same way, the domain of convergence of the the series Z(—l)
n>0
is [0, +oo[ and the series converges normally on D. The functions g

is continuous on D.
—nT

The functions g,(x) = (—1)";27_’_1 are C* on D and g, (z) =
(—1)m+t ne . This series converges also uniformly on D with the
n?+1

same arguments gives above. The g is C! on D.

g;; () = (=" = —gn(x) + e ™. The series Zg;; () con-
n>0

verges uniformly on any interval [a, +oo[ for all a > 0. Then g is C?
on |0, 4o0[ and fulfills

n2e—nz
n?+1

" ].

g (z)= Tte= —g(x).

Since the functions g and 1-&-% are continuous on D, then is C? on
D and by induction g is C* on D.

m n’f,(z) =0,

For x = 0 the series is convergent and for z # 0, li
n——+o00

the series g fr is pointwise convergent on R.
n>0

ol
R.

On the interval [a, +oo] the function f, is decreasing for n large

) = @, then the series Z frn is not normally convergent on
n>0

El

enough, and since the series Z fn(a) is convergent, then the series
n>0

Z fr is normally convergent on [a, +00].
n>0

Since the series Z fr is normally convergent on [a, 00|,

n>0

2

* * IR = 1 e 1 e®
t)dt = - (H)dt = (H)dt = — = — L
[ swi= [ 3 ma =3 [ moa =5




which yields that

932

flz) = @ -1 for z # 0.

4-2-24 | Let fn(z) = _r frn is odd, then we study the series an on

14 n2g2’
+ n>0

[0, +o0l.

(a)

(b)

(a)

()

1

. 2 ot

fn(0) =0, Z fn(0) is convergent. For z # 0,

n>0
then Z fn 1s pointwise convergent on R.
n>0
On the interval [a,+oo[, the function f,, is decreasing for n large
and sup fn(x) = fn(a). Since the series Z fn(a) is convergent,
z€[a,+oo| n>0
the series Z f/, converges normally on [a, +o0].
n>0

@) = 22 e 1)) = 2, then the s ies Y £ is not
) = ————5—55, bu —)| = —, then the serie isn
" (1+n2a?)?’ " 5 "o
uniformly convergent on R. -

For a > 0, sup,cpq, 4o [ (7)] < m%a? Then the series Zf,'l
n>0

converges uniformly on [a, +oo[ and F is C* on R*.

F is odd and if F is differentiable at 0, its derivative at 0 must be 0.

k
1 k2 (k+1)
2) > E >

But kF(k) = n?+ k2~ 2

n=0
at 0.

. Then F' is not differentiable

Iln(y) _ eIn(y) In(z) _ yln(x).
fulx) = 2 = @) Then the series Z fn(x) converges if and
n>1
1
onlyiflnz < -1 <= z < —.
e
i. For z € [a,b], fo(z) = 2™ < p" then the series an is

n>1
normally convergent on [a, b].



ii. Since f, are continuous and the series E fn is normally con-
n>1

1
vergent on [a,b], for all 0 < a < b < —, f is continuous on
e

]07 7['

e
(d) The sequence (fn(z)), is decreasing for all z < L, then kD) <

k+1
/ 2 tdt < 2™F and
k

oo +oo
xlntdt < len(n) — f($)

+
1 n=1

+oo
f($) _ xln? — len(n—&-l) < /
n=1

+oo 1
/ it = — and z"2 < 1, then
1 1+Inzx

-1 In(z)

< flx) <

1
vz €0, ;[7 1+In(z) — ~ 1+ 1In(2)

1
The function f is not bounded on ]0, —[ since lim f(z) = +ooc.
€ T

4-2-26| (a) The domain of definition of f,, is R\ {—n}.
(b) The series Z fn converges on D =R\ {n € Z; n <0}.

n>0
: = (e
(¢) i f(l)_;m_l—g.

e n +oo 1\n
ef(z) — fla+1) = an*l) > (-1)

—nl@+n) Znllz+n+1)
+o0 oo

B (=1)™(x+n—n) 3 (—D)"x

N nZ:;) nl(x 4+ n) T;)n!(x+n+1)
+oo +oo +oo

_ =" _ =" (="

B nZ:o n! ;(nfl)!(ern) nzzon!(ernJrl)
1

@ o) = L ana g (@) = 2O



(1)

(c) Let k € N, fF(z) =

Let K be a compact of D, there exists N € N such that K C
[N, N]. There exists 6 > 0 such that d(—k, K) > 6, forall 0 < k <
N. Moreover for N < p < ¢

q q
1
. ) / < : —
i 2 SR @ISt D = =

n=p

and

q q
" 2 el
. Jim ;:p sup [fu(@)l < lim Z nl(n — N)3 0

n=p

then Z f;; converge uniformly on any compact of D, then f is C?

n>0
on D.
—1)+11n2 In2
i fl(zx) = ()n#’ and if z € [a,b], | f, (z)] < r;an. Since
. n’n .
the series Z — is convergent, then the series Z /1 (x) con-

n
n>1 n>1

verges normally on the interval [a, b] C]1, +o00].
ii. The function f, are C* on R and |f,| < f}|, then the series

Z fn(x) converges and then f is C! on |1, +o0[.
n>1
—1)"+1 2
i. fl(z) = ()n# The series an(x) is alternate, the

n>1
2

n“n, . . .
sequence (T)” is decreasing and converges uniformly on any
n

interval [a, +o00[ to 0. Then the series Z fl(x) converges uni-
n>1

formly on any interval [a, +o00[, with a > 0.
ii. fis C! on any interval [, +oc[, then it is C on |0, +ool.
(=1)"HF I~y Inf*n
~—————— The sequence (———),
is decreasing for n large and converges uniformly on any interval
[, +00[ to 0. Then the series Z fE+1(z) converges uniformly on

n>1

any interval [a, +oo[, with @ > 0, which proves that f is C* on
10, 4+-o0[.



(a) i

ii.

iii.

(b) Let g(z) =

ii.

iii.

672nx 1 72n:c
For x > 0, e < yrea , then the series 7; P
converges uniformly on [0, —|—oo[
+oo —2(n—1)z —2(n—1)= =
3e 3e 1
3¥ fla)-1=Y —5— 1= <3e > .
@)1= g Z T ST e
n=1 n=2
+o0 1 +oo 1
Since the series Z 1 is convergent and wll)ar_loo 3e 2 Z yem
nIQ n=2
~ _,—2T
0, then f(x) e
foo e—(2n+1)a¢
2n —1
n=1
—(2n+1)z —(2n+1)z
ngrfoo n262ni_1 = O for all z > 0, then the series Z 62717—1
n>2
e—(2n+1)r
is pointwise convergent on ]0,+oco[. Moreover R <
n —
e—(2n+1)a e—(2n+1)a
for all . Si th i _—
S or all z € [a,4o00[. Since the series Z ST
n>2
e—(2n+1)a:
is convergent, then the series Z ————— is uniformly con-
2n —1
n>2
vergent on [a, +-o0o[ for any a > 0.
3 too 672(n71)z too 67(2n73)a
T o —x
Leta>0,e g(fE)fl—ZmSe 2%7_1,
n=2 n=2
YV € [a,+o0l.
e —(2n—3)a too 67(2n73)a
Since the series Z % 2 o 1 is convergent and wgrfoo e ” Z e

n=2

0, then g(z) ~ e 3.
+oo

“+o0o
(c¢) Let u(z) = Z e~ =1z,
n=1

i

Since lim,,, 1 n2e~(2n=Dz — 0 for all z > 0, then the series
Z e~ (2n=17 js pointwise convergent on ]0, 4+oco[ and since the
n>1

function z — e~ is decreasing, this series converges
uniformly on [a, +o00[, Va > 0.

(2n—1)z




ii.

(d) Let

i

ii.

/+°° 11 et —1 " e*%—ll e? —1 e ®
—n| —-: = n — .
. 13 et +1 4 e +1 2

The sequence (e~2?~1?) is a geometric sequence, then u(z) =
~1
e 1

1—e22  92ginha’

F(x) =e2f(r) and G(x)=e**g(x).
too  _—(2n+1)z
e . . —(2n+1)z
F = — S limy, s 40 n? 5—— = 0 for all
(x) 2 ince limy, 40 n°S5— or a
67(2n+1)x
x > 0, then the series Z o1 is pointwise convergent on
n —

n>1
. . e (@ntDe .
]0, +oo[ and since the function z +—— “5-—— is decreasing,

this series converges uniformly on [a,+o00[, Ya > 0. Then F is

+oo e—(2n+1).’r

differentiabl 0 dF'(z)=— _—
ifferentiable on |0, +00[ and F”(z) ; S

= —g(z).

o too 67(277,71)1: )
G(z) = e*g(x) = Z T With the same arguments

n=1
+oo
G is differentiable on |0, +oo[ and G'(z) = — 267(277'71)9’: =
n=1
1
—ul) =  2sinhz’
/+°° dt /+°° sinh tdt L, (cosh:z: - 1)
= — = —In(————).
. sinht J. cosh?’t—1 2 ‘coshz—1

e | (cosho:Jrl
= n
4 coshx —1

)

1t cosht — 1
F = = 2 n(—————)dt
(z) 4/95 © n(cosht—&—l)
smet 1 [T 51 ds
=< = In(2—=)22
2/em n(3—|—1)53
e 2 —1 (ex—l) e ”
= n - .
4 er +1 2
sinh(z) , ,e*—1 1
and f(z) = 5 (61+1)—§-

(8) ulat) = 3 CheMak(l — o) = icﬁ(e%x)ku — )k

k=0 k=0
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1—33

1—a:) =z,

n

KCEF (1 — a)"F = na Y kCHTah

=

)Y (k+1D)CF_ 281 —2)"1F = nx +n(n — 1)2?

By(x) =) Chf(-)a"

IN

IN

Z CFak(1 -

k
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= k
kokq_on—k(. Fye o2 k n—k k.2, .k
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k=1
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n
Since Z CFa*(1—2)""% = 1, then we differentiate with respect to  and
k=0

we set h(z) = ZC’ﬁkxk(l —2)" % we get: h(z) = naz. We reiterate
k=0

this precess, we get:

- _ k x(1—x)
ko ki1 on—k(,  Fya
S ek -y - By - 2
k=0
Then

1 < k 1
= Ckkl_ n—k _ 2 <
QQI;J i z) (@ n) ~ 4no?

Then the sequence (B,,), converges uniformly to f on [0, 1].



Solutions of Exercises on Chapter 5

too  2n—1
x
1) Recall that if h(z) = > o——, with |¢| < 1, th
) Recall that if h(x) n12n_1 with |z en
1.1
E zn=2 = and h(z) = = In +I.
1—x2 21—z
+<>o
" 2 1
Let f(x) :T;:O an_ T R:nli)I_POO 221—1 =1 and for x > 0 we set
+oo jon—1
t \/5 1+f
= ¢2 =1+t =—-14+ =
z =1 f(x) +Z Sy g
For x <0, we set z = —t2.

+oo
1 n n
2) Recall that for |z| < 1 12— Zm I f(x) = Zx =

+oo
:;nz Zn:c +Zx Thenan 1_$>2

n=0
1
1-—z
+o00 +oo 00
ZnQ nely ch”_l = Z(n2+2n+1)x"+2(n+l)x
n=1 n=0 n=0
Then

3

2.n n n
nex” = — 3—3 nx'—2 "t = — 3 5+
n=1 (1 ZL’) n=0 n=0 (]‘ {E) (1 :L')

1—2a

(n?+1)(n+1)

3) R= 1l —_— = .
) n—1>I-|r—loo (n+1)2+1 +oo
+oo o +oo 400
Z n! T Z(n—l)!x te =e +xz n! *
n=0 n=1 n=0
400 o
_ x x
= e +ze +x27(n—1)'
n=1

+oo
1
= e’”—i—me”—i—xQZﬁaﬁ" =e"(1 +x +2?).




- n—+4o00 (’n —+ 1)(n + 3)
For z #£ 0

n

= z" <X gm
;@Tmmﬁ':§znﬂ,*zn+

n=0

1 IX gntt 1 IX gnts

% 2<ni1 28 2403
n=0 n=0
2

1 1 T
= 5 In(1—2x)+ ﬁ(x -5 In(1 — x)).
5) If 22 = x, the radius of convergence of the power series Z et
- © ’ n>0 dn? —1
4 1)2-1
is R=lim u = 1. Then the radius of convergence of

n—-+o00 4n? —
(71)nx2n+1

the power series Z i1 is 1. For x #£0
n>0 T
d too n 2n+1 +oo (_1)nx2n +oo (_1)711.27171 L
n=1 n=1 n=1
+oo (_1)nx2n+1 .’£2 L 1 T t2
St - 4 tanla— - [ ——dt
D AT ot 2/01+t2

n=0
2
T xz 1
= 71+?tan711’f§+§tanflx.

6) R— lim (n 4+ 1) cosh(na) _
n—+oo n cosh((n + 1)a)

too n 1 too LN ena 1+ e~ na
Z:lgcosh(na) = 52_:1 iz_:

1 1 1
—iln(e“ —z)— aln le™ —z| = ~5 In(e® — z)le

—a

— I|.




too " 1n9

7 Zx smn@_I Z

=2

9 .
gl‘ sinn _ Im;l';in

2x cos 0
22 44 —4xcosb

X 2m cosnb aneln?
8) ZanReZ — B=2.

n=1

+
i ™ cos nbd R IX gneint
_— = e E
n2m n2n
n=1 n=1

= In2—In(2? +4 — 4z cosh)

9) R=2
X pam sin?(nf) _ ©= na™(1 4 cos(2nh))
Z on - Z on+1
n=1 n=1
" re2if
= q—ae Reop e
T 2z cos(26) — a2

4(1—x)2  2(22 +4 — 4w cos(20))”

10) R=1
+oon2+1 . +00
nzz:orH_lx = ;::O(n—kl —221 +2n2:0n+1

2 21 (1—3:).
1—2x T




11) R = +o0.

+Zoo on cosh(y/z) ifz>0
— =
n=0 (2n)! cos(v/—z) ifx<0
12) R = +4o0.
+oo . 9 +oo
sin®(nd) 5, 1 1—cos(2nd) 5, 1 .2 1
D T = gl u =g ~gRee
n=0 n=0
1 1 ,
= o™ — e cos(20) cos(z?% sin(26)).
2 2
13) R=1
—+o0
2z 1
S (@2 4 1) = 4
— (1—-x) 1—2z
14) R = 4o0.
If j = %,
+00 . \p +o00 n +o0 n+1 +o0
U 3 S
i 2 Gl
n=0 n n=0 (Bn) n=0 (3 + 1) =0 (
15) R =40
+oo
S P15 =1+ a+a?).
n=0
16) R =400
X 2™ cosnf i0
Z ——— =Ree™ =¢" 050 cos(2 sin ).
— nl
17) R =+o0

X 27 sinnd i
E T —Tme® = ePoos? sin(x sin 9).




18) R=3. Forx #0
+§ nz" 3 N 3In(3 —z)—3In3
3n(n+1) 33—z x '

19) R=1, and set x = t3. For x # 0

"i:’o (—1)”.%‘” B 1 "'ZOO (_1)nt3n+1
— 3n+1 o t—~ 3n+1
1 [t ds 1 [t —bs+2
= -] — =_m(1 - =
t/01+s3 g0+ 3t/01—5+52
1 1 1 2t —1 T
= —In(1+t)— —In(1 —t+t*) + ——=tan"! +—.
3t (1+¢) 6t ( ) V3 (\/??) 6tv/3

(a) Remarque that w1 — V2011 = (1 —V2)(u, — V20,) and
Upt1 + \/§Un+1 =1+ \/i)(un + \/ivn). Then

=V2u, + (1= V2)", w,=—V2v, +(1+V2)"

1 1
We deduce that u, = 5(1 —V2)" + 5(1 + V/2)". The radius of
convergence of the series Z Upz™ is R =1+ /2 and
n>0
™ ar 1 1 Ll 1
Ut = = Z )
—=" 21— (1-v2)z  21—-(1+V2)z

(b) 1 is the radius of convergence of the power series Z anx”

n>0
1 2
f'(r) = =1 — ztan"! x, then f(z) = —g - (J;ix)tanfl(x). We
can also compute f(x) as follows:
+oo ( l)n 2n+1 +<>o n 2n+1 n 2n+1

T;(Qn_—l)@n—&-l) - Z n—l _72 2n+1

|z (et §R et
B 2 2 4~ 2+l

1 2
= _g—i( —;I )tan_l(:ﬁ).




5-1-3| (a) If R is the radius of convergence of the power series Z anx™, then
n>0

the power series Z anx™ and Z(fl)"ana:” are absolutely conver-

n>0 n>0
gent if || < R and for |z| > R the series are divergent because
|ana”| = |(=1)"anz"|.
(b) Yes, because |a,x"| = ||an|z™].

1
(¢) No, the domain of convergence of the series Z —z" is [—1,1] but
n>0
—1)"
n

the domain of convergence of the series Z 2™ is | —1,1].

n>0

m"l
(d) No, the radius of convergence of the power series Z —7 is infinite,

n>0
but the series is not uniformly convergent on R since sup x' = +00.
z€R T
1 flx) _
(e) Yes, for all pe N, f(z) > apy12P™", then lim ——= =400
r—+oco P
B f)= ==t
l—xz—22 (@—-a)(z—p) z—a z-p
1+V5 1-v5 1++5 1-5
wherea = ——— b= ———, a = — ,and = — .

25 25 2 2

et - - S-3Es

n

2f2:31+f 2fz "'

+oo n+1
x
-1- 1 = )™, In(1 1" then th duct
5-1-5 )1+9: g n(l+z) = ngzo( )nJr17 en the produc

n=
of the series ylelds

In(1 4+ x) - 1
T ith ¢, = (-=1)" —_—
BEre Z with e =", 2y
2) The function f fulfills the following differential equation

(1- x2)y” —ay' =2.



5-1-6

If f(x Zan then ag = a3 = 0 and ay = 2. Moreover

(n+1)(n+ 2)an+2 = n2a, for n > 1. then Thus as, = 0, aons1 =
(2n —1)%ag, 1 (2n!)?

d asnsr =2+——2 . Th
on(2n + 1) nC Al T S Ty e
+oo n 2
=12 L)
=N ot .
(sin™" ) 2 en "

nlVE @+ D)
m d (SlIl \/> 722 T_'_l)x

1 1
If g(z) = In(1 — 2z cos a + 22), then ¢'(x) = — + —. As
r—e* r—e '@
1 = .
i n;ow e e,
Then
g(x) = In(1 — 2z cos o + z%) Z 2 7 cos (n+1)a.

—+o0 .
. 2 n .
e* cosz = Ree®+) = Re E @x” Set (2+1) = v/5¢!?, thus
n!
n=0

+oo n
€% cosx = Z (\/5) " cosnb.

n!
n=0

(1_13:)2:;;(1;) :io(n—i—l)m”,R:l.

n=0
“+o00
1 1 1 1 1
= - S (25— o5 | R=2.
(z=2)(x—-3) x—-3 x-—2 nZ_O(QnJrl 3n+1)x )
too 377,
For |z| < 1, In(1 + 2z + 2*) + In(1 — ) = In(1 — 2%) = Z—
Then

In(l +z + 2?) annzan,

where ag, = 0, agp+1 = agnt2 = —1.



4) R = +o00, we linearize sin® x,

1- 2 1 1
sinz = Sinx(M = —sinz — = sinz cos(2x)
2 2 2
1 1 3 1
= 3 sinx — 1 sin(3x) + 1 sin(x) = 1 sinx — 1 sin(3x)
Or
singac _ j(eiaz _ e—iw)?) _ ;1(63im _ 3eim + 3e—ix _ e—Siw)
8i 8i
_ 1 (35’5 (_1)nx2n+1 io (_1)n32n+1x2n+1>
4 o ! :
4\ = (2n+1) o (2n+1)!
5) R = +o0,
EO e 1 x —x\3 1 3x T —x —3x
sinh®z = g(e —e ) :g(e —3e" 43¢ —e 77
7 1 <+°O 32n+1x2n+1 3+O° x2n+1 )
T4 (2n+ 1) (2n + 1)!
1\ & @+ )l T @n )]
6) R=2,
(x—1D)In(z* =52 +6) = (z—1)In(2—2)(3—x)
too P too "
= (z—1)(In2— ~1)(m3-Y
(=123 0+ 13- 32 )
+oo
1 1\ z"
= —1)(In6— — 4+ — .
(x )(n ;(Qﬁ?,n) n)
7)
) S (U, 2
zln(z + vV Jrl):ngo " il
8)
z—2 B T —2 3 B 1 7 3
B —a2—x+1  (1-2)2(1 —|—x)7 41—-2z) 2(1—-2)> 4(1+2)
3 +oo +oo

- _,Z (n+1)z 32( 1)"a".

nO n=0



10)

11)

12)

1+2—223

1—2z

(14 2x —22)?

tan

o +1)

an~!(z + V/3)

1 _ 1 n x+4
(1—2)(1+2z+222)  5(1—x) 5(1+ 2z + 222)
Ly ] io( 1)"2°% (cos(n + 1) + Tsin(n + 1)7)z"
= X — — S\ — 11n(n — )T
5= 10 &~ 4 4
_ _li 1 _ _i i(@_\/ﬁ)n (2+\/§)n)wn
- 2drl1+2x—22  dx 2nt2 on+2
= 3@ NI O
- 2n+2 2n+2

7r+/x dt

4 Jo 2+2t+¢2

7r+i/”” dt i/g” dt

472 0 14+i+t 2y 1—i+t

. Foo (_l)nanrl . +oo (—1)n$n+1

1 1

i) nz:% n+ DA+t 2 T; (n+ 1)1 — )ntt

I
[\}

i +oo (_1)7z€—i7("+1)7r n+1 i +oo (_1)7161(n+1)7r n-+1

m
n + o n - 5 n
4 2 2 (n +1)2°% 2 (n+1)2"

n=0 n=0

((n+1) ) n41

+ Z ™ sin )2n+1

T n /”“ dt
3 Jo 4+ 2ft+t2
T i ¥ /
3 xf+1+t \f—1+t
z L i f (_1)71 n+1 B 7 Z )nwn+1
3 < (n+1)(V3+i)ntt n+1 )(V/3 —i)ntl
m n i X (—1)n671(ntilhx” i Z )" ST gt
3242 (n41)2" — n+1 2"
X (=1 sin((”ﬂ)’r) n+l
3" 2 (n+1)2"
n=0



13) R=1.
z ] t2_§t 1 T ¢ l—t
R e / b2,
0 t
tn—1 gngn—1
- dt
S ()
= " T T
2"y
- —§: + ).
n22n n2
(1+I)Sinz 27 217(}08(2:17 B + n+1 L20n-1)
R = +o0.
/2z —¢2 dt +§ (*1)" (22n+1 1) o2n+1
e = ) 1)
x o n!(2n + 1)
16) R = +oo0.
2 z R +oo
o2 / e dt = 3 ez, where
0 n=0
_ 2y nl o
T W Rk D k) aln 1)
17) R=1.
" too +o00 n )
1—,%‘72”'21. chl’nywherecnzzﬁ.
n=0 n=0 0
B)R—1
2n 400 +o0
—a Z n! Zx ZC”J; where ¢, = Z kl’and Cont1 =
n=0
e
k!
k=0
too n.2n
N (D)
cost = nz::O T and

oo n.2n—1

T cost—1 (—1)"z
O = =N
A t? EQQManD



20) R=1.

+oo too
1+ (*1)"*19:" "
1 = -~ —In2 R

21) Ifa >0, R=e"".

1
In\v/1—2zcosha+ a2 = B In(e™® — z)(e® — x)
_ 1 <X enagn 1 X emnagn
2 = n 2 = n

+00 2n+1
cy, x

1
(a) We know that sin™' 2 = Z n on il for |z| < 1 and T

n=0 —?
+00 pn
Z ﬁx% for |x| < 1, then the expansion in power series in a
n=0
neighborhood of 0 of f is the power series product of these series for
|z < 1.
(b) (1—2?)f'(2) —af(x) = 1.
“+oo
Since f is odd, f(z) = > anz®*!, then for all n > 1, a, =
n=0
2n (2nn!)?

M1 T ny )l

— (2n+2)!
5-1-8| (a) f(z) =cosz, (xg = %),
cosz = cos(z— g + %) = g(cos(x — —) —sin(z — —))
VAR (- D7 R ) e P
- 7(”; (2n)! _;) (2n 4 1)! )



(b) f(z) =(1—2%)7%, (20 = 0),

=

+00 ~p
(1-a%)" :Z%x?’”.

4n
n=0

The power series ), -, anz™ is convergent if and only if the power series
E asnx®™ and the series E a2n+1z2”+1 is convergent. Then the radius
n>0 n>0

of convergence of the power series Z anx™ is inf (\/1?{, VR.
n>0

5-1-10| (a) By the Abel Lemma (1.2) the power series Z apx™ is convergent

n>0
for |z| < 1. If the radius of convergence of the power series Z anz”
n>0
is R > 1, then the series Z an is absolutely convergent, which is
n>0
absurd, then R = 1.
(b) For x = 1, the power series Z anx™ is divergent, but for x = —1,
n>0
the power series Z anx™ is convergent, by the Abel Lemma (1.2).

n>0
5011] (a) i
P P
Sp(x) —Sp(z) = Z apxh = Z (Rp—1 — Ry)a"
k=n-+1 k=n-+1
P P
_ Z Rkl’k+1 o Z kak
k=n k=n-+1
= Rua"™' - RyaP + Z Ri(a**! —a*).
k=n-+1
p—1
ii. sup |Sp(z)—Sn(z)| < |Rn|+|R, |+ sup |Ry| sup Z
2€[0,1] w€l0,1]

") < |R,| + |R,| + sup |Ryl. Then lim  sup |Sy(z) —
k>n+1 P40 ze(0,1]
Snp(x)] =0.



(b)

(a)

i. Define a, = byx{. The series Zan is convergent. f(x)

n>0
+oo +oo T
>t = Yl
= n=0 0

is continuous on the interval [0,20] and then

Then by the previous question f
lim f(x)

T
z€[0,z0]

+oo
E bpay .
n=0

ii. On the interval [0, 1], In(14x) = 321 M and the series

+oo

-1H" -nH"
Z (=1) is convergent, then Z ! =—In2.
n n
n>1 n=1
x4n
The power series Z an)! is convergent on R.
n)!
n>0
too dn +too dn—1 oo dn-—2
NP =N T =S
+oo 4n—3 +oo 4An—4 too  4n
"r) = Wy =N A
f@) ; g @ ; (4n — 4)! ZB (4n)!
f ().
The power series Z ) is convergent on R.
n>0 w
+§ il +Z°° xn—l . io n—2
f@)=) % f@=) 9 [ @)= :
— (n}) “— nl(n—1)! = nl(n —2)!
. , _ +o© (TL _ 1)xn71 too xnfl +oo "
of @)+ @) = f@) = ) =1 2 =1y 2 ENE
n=1 n=1 n=0
+oo :Cnfl +oo "
= — — —— =0.
2 - 2 [
-1 n22n 2n
The power series Z )(Qn)lx is convergent on R.
n>0 ’
+oo 2m 2 +o0 2n ,.2n—1
_ (=1)n2eng=n , _ (=1)n2eng=n " _
f(x)—ZW7 f(x)—ZWaf(w)—
n=0 n=1
too no2n,.2n—2 too 2n+2,.2n
(=1)n22ng=n (=1)n2ent=g
_— = — _— e —4 .
nz::l (2n — 2)! n;) (2n)! /(@)



f(z) = cos(2z).

+oo
5-1-13| (a) Let y(z Z anz™, y'( Z na,z"" x) = Z n(n —
n=2
" +(x> " +OO
Da,z" "% 2%y () = Z nn—1)a,2", zy (z) = Z n(n+1)an 12"
n=0 n=1
and zy'( Z na,T
1" +w
r(x—1)y +3zy +y=ao+ Z(n +D((n+ 1a, —napy1)z™
n=1

Then ap = 0 and (n + 1)a, — nap+1 = 0 for all n > 1, which yields
that

—alzm: 1—x)2

(b) The radius of convergence of the obtained series is 1.

+oo —+oo
(a) Let y(z Z anz®™, Y (x) = Z 2nana® ",y (x) = Z 2n(2n —
n=1

+<>o
Dapz® 2 = Z 2(n+1)(2n+1)a, 12> and zy/( Z 2na,x"
n=0
i o=
y (z)—2zy (z)+2 y(z) = Z 2((n+1)(2n+1)ans1—(2n—N)ay,)z>".
n=0

y is a solution of (6.6) with ag = 1 if and only if

(n+1)2n+ a1 = (2n — Nay, (7.12)
for all n € N. This condition gives a unique even solution.
+oo “+o0
(b) Let y(z Z anz®™ oyl (z) = Z(2n+1)anx2", y' () = Z 2n(2n+

n=0 =
+oo L too

Da,z*~! = Z 2(n+1)(2n+3)an12°" T, and zy/(z) = Z(Qn +
n=0 n=0



+oo
Y (2)=2zy (2)+22y(x) = Y 2((n+1)(2n+3)an1—((2n+1)—N)a, )z,

n=0
y is a solution of (6.6) with ap = 1 if and only if

(n+1)2n+3)an+1 = (2n+1) — Nan, (7.13)

for all n € N. This condition gives a unique odd solution.

(¢) The conditions (7.12) and (7.13) yield that if A € N is an integer,
then the equation (6.6) has a non vanishing polynomial solution.

—+o00 +oo
(a) i Lety(z Z anz”™, y'(z) = Znanm”_l = Z(n + Dapyi12"
oo n=1 n=0
= Zanx"H = Z n_12", and ag = 1.
n=0 n=1
+oo
Yy —2zy = ai + Z((n + Daps1 — 2ap-1)z"
n=1

y is a solution of the differential equation y’ —2zy = 0, y(0) = 1
if and only if a; = 0, ap = 1 and (n + 1)a,+1 = 2a,_1 for all
n> 1. Thena2n+1 :0 a2y = i' andy:em

ll Lety Zan 7y Znan ) ( ) Zn Onan 71

+<>o +oo
y (z) = Z n(n —1a,z™ 2% = Z(n + 1)(n+ 2)an 22",
n=2 n=0
" +Oo
y +ay +y= Z(n + 1) ((n+ 2)ant2 + an)z"”
n=0

y is a solution of the differential equation y” +zy +y = 0if and
(="

only if (n+2)an4+2+a, =0 for all n € N. Then as,, = Sl
n!

(—=1)"2"n!
(2n +1)!

w— (=" 2an )r2"n! g2l
$):aoz 2nn|x IZ 2 _|_1 !
n=0

ao,

Aont1 = a1 and



400

400
iii. Let y(x Z anz™, y'(z) = Z na,z" "t = Z(n + Dapp12”
n=1

n=0
oo iy
y (z) = Z n(n—1)a,z" "% and zy (z) = Z nn+1ay112™.
n=2 n=0
1" +Oo
doy +2y —y= 2(2(71 +1)2n+ Dapt1 — an)z™.
n=0

y is a solution of the differential equation 4scy” +2y —y=0if
and only if 2(n + 1)(2n + 1)an4+1 — an, = 0 for all n € N. Then
ag

F and
n:

Ay =

+oo
1
x) = ag Z me” = ag cosh(y/7).
n=0 """

T +o0 _1)ng2ntl .2 = —1)g2n
(b) / 67dt:2% and e 2 :Zu Then
; 2nnl(2n + 1) 2nn!
n=0 n=0
I Ck
)=e Z en™", where ¢ = (2%3! 29, T
2 . T ) Ck$2k+1
n _ _n-
We remark that (1-+¢°)" kZOC t and/o (1+¢t7)"dt = kz_o 2% +1

Then

Cn = (=D" /1(1+t2)”dt.
0

2nn!
1
If I, = / (1 + t*)™dt, by an integration by parts, I,, fulfills the

0
following induction relation (2n + 1)I,, = 2" 4 2n1,,_;.

xn

5-1-16 | Define uy,(z) = (71)"71, for n > 2.

n(n—1)

(a) The radius of convergence of the power series Z un(x) is 1 and the
n>2
series converges on the interval [—1,1].

n—1

(b) u(x) = (~1)" (jf 1) and u,,(x) = (=1)"2" 2,

+0o too
(c) z:;un(x 1+x Zu n(l + z) and nz;un =In(1+
x) — .



@

(b)

i

+oo
F(z) = Zanx”
n=0

+oo

= 1422+ Z Upgox™ T2
n=0
—+oo

= 142247z Z A1zt — 1222 Z anpx”
n=0 n=0

= 1+2x—12x2F +7xZanx
= 142z —122°F(2) + 7x(F(x) —1).

1—5z 2 1
Then F(z) = _ _ ,
en F(2) = 1 95 = T3, 1 e

“+o0
2
R e T e Z Z nz;)
4™)z™. Then a, = (2.3" — ) for all n € N

Consider the function G(x Z anT

+oo
G(z) = Zanz"
n=0

= 1422+ +§ Aoz
n:0+oo +00 +00
= 1+2zx+7x Z anﬂaz”“ — 1222 Z anx”™ + Z na”
n=0 N )
= 142z —122°G(2) + 7x;anx" + (=
= 1420 —1222G(z) + T2(G(z) — 1) + ﬁ
1 7 11 1

T A0 —32) 90 —42) T36(—2)  6(1—22



+oo “+o0
Gx) = —723"x”+ Z4""+—12x”+é2(n+1)x"
n=0 n=0

i"’(nﬂ 11 747 3v

6 Tt T T®

n=0

1 11 74" 3"
Thena,L:(%+%+ 5 _Z

) for all n € N.

(¢) Consider the function H(x Z an®

+o0o
H(x) = Zanx"
n=0

o0
— 1422+ Z Anpox™t?
—+o0 (')
= 1422+ 8x Z A1z — 1622 Z apx"
n=0

= 1+42z—12:%H(x +89:Zan

= 142z —122°H(x) + 856( (x) —1).

1—6x
Then H = QN 4 d — 9n
en H@) = o st (1 2z) Z voand dn

for all n € N.

1

5-1-18 (a) If a > O, R = — = +400.
limy, 4 00 l(‘::)‘g

1

Ifa=0,R> = 4o00.

hmn~>+oo I

(n)
an®
Then the radius of convergence of the power series Z '
n>0
(b) Fore > 0, there exists N € Nsuch that forn > N, a—¢ < a,, < a+e.

n
is +o0.

ant™ Xt g

— — - n

(a—e)e (e’ — ) <et E " < (a+e)e (el - E . )
N



Then , lim e 'f(t) = a.

——+400

+oo +oo
y = Zanxn’ y/ — Znanxn—l
n=1

n=0

+oo
3zy' + (2 —5z)y — x = 2a9 + Z((i’m + 2)an — Sap_1)z" — .

n=1

1
y is a solution of the differential equation if and only if ag = 0, a1 = 3

and

(3n +2)a, — 5a,—1 =0 for all n > 2. Then

(a)

5n—1 5n—2
ap = ay = , n>2
" eGR+2) T TGk +2)
_ 3 2
The radius of convergence is +00 since Il _ n5+ .
an
—+o0 —+o0 +o0
y@) = Y™, (@) = Y nana" ™ and o @) = Y nln -
n=1 n=1 n=2
Da,z" 2
+oo “+oo +oo
Pyt~ @ty = (0 Dana” = 3ty = 3 ey
n=2 n=2 n=2
+oo
= Z((n2 —1Dan — ap—2 — an—1)x".
n=2

+oo

If (x) = Z anz™ is a solution of the equation (6.1) with ¢’(0) =1,
n=1

then (n? —1)a, —ay_2—a,_1 =0foralln >2 a; =1 and ay = 0,

2 1
then a,, = 2M 1D
((n+1)!)?
2 1 2 1
a, = n(n+1) = < E Then the radius of

(n+DH%2 (=Dl n+1! = (n-1)
convergence of ¢ is +00.

—XT —XT —XT 1 1 —XT " —X 1
gy =y T AE D) dy = g AT
X xr

x 2 2
e (24 2z + 2?%)
z.

x3




2ty +ay — (@t +ly =€ (m -1+ 21?)Z’>- Then z =

inh
Ae?(2x — 1)+ C and y = (e* — s1n$ x)
(@) a0 =y(0) =0, a1 = y/(0) = 0 and a3 = lim L2 _ 1.
z—0 I
+oo
(b) y(x) =Y ana",

n=2

“+o0
22y (z) — y(x) + 2% = Z((n —Dap—1 —ap)z".

n=3

Then a1 = na, for all n > 2.

(c) The previous question yields that a,, = (n—1)!. The series ) ., nla"
diverges for x # 0.



4.9 Solutions of Exercises on Chapter 6

Let t € R\ Z and f(z) = costz, for —m < 2 < 7 and 2r—periodic.

T sin 7t 1 (7
(a) ap = Py costxdr = " andforn > 1, a, = 7/ costx cosnxdr =
TS ™ T
(=1)™2tsinmt
7(t2 — n?)

(b) Since the function f is continuous and piecewise differentiable, then
for any x € [—m, 7],

. “+o0 nos2
sin 7t (=1)™2¢
mmﬂf@+;fLMCMm»

(¢) i. We take this relation at x = 0, we find that for t & Z:

w 1 & (—1)"2t
=it

sin 7t —
n=1

ii. We take the same relation at © = 7, we find that for ¢t & Z:

oo

1 2t
mecotanmt = ; Z m
n=1
1 2t 1, 1 1
iii. Since mcotanm t+zt2—n2 t—I—Z(t_n t—i—n)
n=1 n=1
and the series Z(L + ——) is pointwise convergent on
t—n t+n

n>1
R\ Z and the series of the derivative converges uniformly on
any compact subset of R\ Z, thus

()~ L
sin?mt ¢ —(t—n)?  (t+n)? —7oo(t+n)2'

(The series Z m converges uniformly on any compact subset
n

nez
K C R\ Z, because

UMy o0 SUPLe g Dojnj>N ﬁ <y Do ﬁ =0
with K ¢ D(0,R).)



2 (% o7 4sin(nd
6-1-2 (a) ag = ;A ; (]. - 27(5) r = 8. Ap = #
4 sin?(nd)

The series 4+ E
n262
n>1
f is continuous and piecewise differentiable continuous, the Fourier

series of f converges to f.

cos(nx) converges uniformly on R. Since

2(1-£)—4++§M (nz), Y0<az<25. (7.14)
5 55) = 252 cos(nx), <z < 20. .

n=

+oo . 9
sin“nd  d(m — 20)
b) F = 0, the relati 7.14) yield =
(b) For x , the relation (7.14) yie s; 3 5
the second sum we use the Parseval identity.

1 2

871' a
— 2 =2+ Th
o f (z)dx 1 Za en

. For

nt 3

+Z sin® nd (7 — 66)8°

n=1

We recall some results on the Fejer Theorem.

N
Let Sy(z) = % + Z(an cos(nx) + b, sin(nx)), be the partial sum
n=1
of the Fourier series of a piecewise continuous 2m—periodic function f
(we can take a Riemann integrable function on [0,27]) and Ay (f,z) =

So(z) + ... Sn(z)

N1l . Then
Jim Ao = LEDEIED)

for all © where f(z+) and f(x—) exist. In particular if f is continu-
ous function and 27 —periodic and the sequence (S, (x)),, converges, then
An(f,x) converges to the same limit. Then f is the sum of its Fourier
series.

(a) i Let f(z) =2 —m, for z €]0,27], odd and 27-periodic, b, = =
Thus = —7T—2Z sin(nz)

n=1

for 0<ax<2m.

n



_2(_1)71

ii. Let f(x) ==, for x 6] — 7, 7|, 2m-periodic, b, =

Thusx——2z smnx) for —w<z<m.
iil. Let f(x) = 5, for E]O,ﬂ'], even and 2m-periodic, ag = 0,
azn=0 and agp41 = W
cos(2n + 1)z
Thusx—f—fz @2n 1) for 0<z<m.

iv. Let f(x) = «, for x e 0,3], f(x) = —x, for x € [F, 7] odd
and 2m-periodic, bap—o and ba,41 = 7T4(—1)" ]

—+oo

4 (=1)"sin(2n + 1)z -7
Th = — f — <z<
us & = — ngzo Gn 1) or —-<w<

v. Let f(z) ==z, for x € [0, 7| and zero on | —m, 0] and 27-periodic,

3

_ _ (=pm+? _
ap = 5 G2p=0, G2n+1 = ﬂ(2n+1)2 and b, = ~——. Thus z =

T 2 <X cos(2n + 1)z Z (=1)"*! sin(na) for 0<2 <.

2
4 i (2n+1) = n
(b) Using b) fo ™ we shall have io (D" _ o«
in rr=7%,w ve: =—.
—an+1 4
using c) for = 0, we shall have: —_— = —.
— (2n+1)> 8
o X1 w2
nzln2*4zn2 Z +12’thuszn2zf'
o . - 1
By the Parseval identity in the relation b), we shall have: Z m =
n
=0
-
96
. ™ cos(2n + 1)z
(¢) i. In the relation c¢) the series 5~ - Z W converges

normally on [0, 7], thus by 1ntegrat10n on the interval [0, z], with

+oco . 2 9
2 1
v € [0,7], we shall have: 3 sin(2n + Vrz _ m°z  2°

— (2n+1)? 8 2
ii. Let h(z) = % - % for ¢ € [0,x], h is odd, then by, =
1
(2n +1)3°

6-1-5| (a) agp =0, azpn—o and agy 41 = :((2:12:).



% 5| and piecewise continuously differen-

400

. =y (" o«
tiable, then f(0) =1 = Z x(@nl) Thus 7;) m+1 4

(b) As f is continuous on | —

1
6-1-6| (a) Since the series Z — is divergent, then by the Bessel inequality,
n
n>1
there exists no locally Riemann integrable function f such that its

sin(nx)
Fourier series is E

n>1 \/ﬁ

+oo .
(b) Let g(z) = Z sm(;zx). As the series which defines g converges
n
n=1

normally on R, thus g is continuous and the Fourier coefficients of

1
g, an =0 for any n > 0 and b, = — for any n > 1.
n

(a) If z = €%, then

flx) = ! = 2 _ ! <_ea P )

cosh(a) — cos(z) 22 —2zcosha+1 sinhal\z—e* z—e@

a

In making the expansion in power series of the two functions -
z—e
—a

and — and remark that |z| = 1, one shall have:

inz ,—|nla _ —na
flz) = E e"e = E e "% cos(nx)
(@) 51nh 51nh 51nh

(b)

2m
dx 2m
——————— =21C) = .
/0 cosh(a) — cos(x) o sinh(a)
(a) i. fis odd and b, = 2 for n > 1. The Fourier series of f is

2
Z — sin(nzx).
n>1 n

4
(2n+1)21°

. The Fourier

ii. ag=m, forn > 1, ag, =0 and for n > 0, ag,11 =

cos((2n + 1))

The Fourier series of g is 5 +—= Z 2n 1 1)

series converges uniformly on R to f



(b) h is piecewise continuously differentiable. ' = ¢ on [0, 7]. Then the
Fourier series of h is

4 Z sin((2n + 1)z)
(2n+1)3
2(—=1)"sinh 7w

(14 n2)
(b) The Fourier series of f is

6-1-9| (a) a, = and b, = —n’a,,.

—+o0

sinh 7 n Z 2(—1)™sinh 7 cos(nx) Z 1)"*1n? sinh 7 sin(nx)
™ — (1 4+ n?) — (14 n?)
F mcoshm _ o Z Th
orx = —1= en
" sinhm
i 1 m(coshm + sinh)
=01+n2 N 2sinh 7 '

() 0t 0y = 2D gy, = TCUT_20-(CDY

) ] n2 n n3m
Fourier series of f is

The

2 +oo _1\n +oo a(—=1)" _ (_1\n
%+Z%COS(’WE)—Z( (=) 20=(=1) ))sin(nx).

3
n nem
=1 n=1

(b) FOTQC:WL— +Z 2,then2 %

+°° +°° -1 2
2 AR 2D ()"
Fore=0,0=% 43 =5 then ) 5 =15
+x>1 +“3(—1Y“4 +00

1
E: 7:25 —, th
w2 n? — (2n—1)% o

n=1 n=1

4
-1-11 n = = —.
(a) bap, =0 and boyiq T2n+ 1)



) o [ a3 HES S A
an fo U T e A an e

n=

——— = .
£ (20 1)0 240
= = 0 relf rcosf — r?
(a) Zr cosn@zRle e’ = e = T w—t
n=1 n=1
(b)
+oo ) +oo
Z plnlein®  — 1492 Z " cosnd
—00 n=1
_ 14 2rcosf —2r? 1— 72
o 1472—2rcosf 14+1r2—2rcosf
= Qr(a)'
2 cosnf
(¢) The function @, is C*° and 27w —periodic, then I,,(r) = /o md& =

Ty, 2mr™

1—7r2 1—7¢2

(a) i Leta= V3 + 2 and 8= —/3 + 2 the roots of the polynomial

x? —4x + 1.
z? -1 4o — 2
W) = 22 —4r+1 +x2—4x+1
a b
= +
m—\/§—2 a:+\/§—2
a B
= 1
+x—a+x—6
+oo oo
T T
= 1“22;;“§:Zﬁ-
n=0 n=0
ii. R==2—+3.

(b) Let a and z be two complex numbers, such that |a| # |z| and az # 0.

—+oo
= Zz", for |z| < 1.
n=0

Recall that
1—=2

—+oo
1 1 1 a”
It |a] < |2, —— = S

2(1-2) z42=2"




z
If |z| < |a] = <= —
a(l—2) a —a
(c) If |2] €]B, af,
B
h =
(2) * z—a * z—p
—+oo +oo
ZTL Bn
= 1— z Ll
>t
n=0 n=1
+oo “+oo 6”
SR YRS »e
n=0 n=1
‘ o2t 1 et _ it
d) h(e') = — . =— — = —if(t).
@ he) = o = = e if (1)
+oo
-1
i t) = — n 1nt P —1nt =9 n t
() i f()=—0 nzoﬁ +nZlﬂ nzlﬁ sin(nt)
sin? x
ii. Since the Fourier series of f converges normally to f, / —_—
o 2—cosz

7Tb1 = 271‘5.
iii. F'is C'*° and 27— periodic, then the Fourier series of F' con-
verges uniformly to F'.

iv. F'(t) = f(t) =2 p"sin(nt) and

n=1

+o00 Bn
t)y=C-2 Z ?cos(nt).

n —2
=In2, 425 5)2 —1,then C =1+1n2

V. / In(2 — cosz)dr = 7C = mwln(2e).
0

(a) For A>0and n>1

= if 2rn < A

aw =1 ,
[t]<A m if 2mn Z A
then the series Z fn(t) converges normally on any interval [— A, A] C
n>1

R.



1, —2a(t+ 2nn) Cauchy Schwarz 1 2 4 (t + 2nm)?

b = =
(b) i 1fa(®)] a|(a2+(t+2n7r)2) | = a(a® + (t+ 2n7)?)2
fa(t)
p
ii. Since the series Z fn(t) converges normally on any interval
n>1
+oo
[-A, A] C R, the series Z f}.(t) converges normally on any
n=1
interval [—A, A] C R.
400 1
(c) We deduce that the function g(z) = Z PRy o is C! on R.
2 1
Moreover the function h(x) = n:Z_OO T (2 = g(—t) is also
C! on R. Then the function
+o00 1
t) = _—
() n:Zm T (1 2nm)?

is even, 2m-periodic and by Dirichlet Theorem f is equal to its
Fourier series.

(d) i. By Residue Theorem

+o0 —|kla
cos kx e
Ii(a) = / 5 gdr =T .
oo Ot X
ii. Since the series Z fn(t) converges normally on any interval
n>1

[-A4, Al CR;

+o0 20 +oo 2(n+1)mw
f( coskwdx—Z/ T coskx dx:Z/ Mdtz[
0 a 2

(z + 2nm)? —~ Jonx a? + 2?2



iii.

ka ) cos(kx)
—|— Ze cos(kx)

1 —k(a+iz)
%a + — Re Z e
k=1
sinh a

2a(cosha — cos )’



4.10 Solutions of Exercises on Chapter 7

If o/ is a o—algebra in Z(R), it contains three elements, there is a set

7-1-2

7-1-3

A € o such that A # () and A #R. But A° € &7/. A° # () and A° £ R,
this is impossible. So there is no c—algebra in &(R) which contains three
elements.

If o7 is a o—algebra in & (R) which contains four elements. Let A € &7
such that A # 0 and A # R. The set & = {(, R, A, A°} is a o—algebra
in Z(R). It contains four elements. This is the general form o—algebra
that contains four elements.

The set R € & and so () € .

If A€ o/, then A C f~1(f(A°)). and if there exists x € AN f~1(f(A°

then there is y € A° such that f(z) = f(y). Hence y € f=1(f(A)) =

This is a contradiction. Then A€ € 7.

Let (A,), be asequencein o7. As f~1(f(U2,A4,)) = U2 f71H(f(4,)) =
> 1A,. Then Us2Z A, € o, therefore .o/ is a o—algebra.

);
A

eRe .

o Let A € o such that A # R. If there exists x ¢ A and f(z) € A, then
x € f71(A) C A, and this is impossible. Then f(z) ¢ A and therefore
f(A¢) C A°. On the other hand if x € f~1(A) and = € A, then z € A
and f(z) € A° and this is impossible. Then f~!(A¢) C A° and A° € /.

e Let (A,), be a sequence in &7, f(Us2 A4,) =Us2,f(A,) C U A,
and f1 (U2, A,) = U2, fH(A,) C S, A,. Then & is a o—algebra.

Any o—algebra containing ¢ must contains &/ = € U ¢°, where ¢ =

{F : F° e %}. We will prove that the set & is a c—algebra.
It is obvious that R € & and if A € &, then A€ € &/.
Let (A,), be a sequence in .

(oo}
If there exists A; such that £ C Aj, then U A, € € C &/. Butif
k=1
Aj € €°, for every j € N, then A; C E¢, for every j € N. Therefore
UAj C E“. IfU;ilAJ c .
j=1
&7 is the o—algebra generated by €.

Let o(S) be the o—algebra generated by S.

o If the set E finite or countable, as o(S) is closed under countable union,
then o—algebra o(S) contains the finite or countable sets. Since the
subsets of E are finite or countable, then o(S) = Z(E).

o If the set E is not countable.



7-1-6

Let o be the family of finite or countable sets in F and & = {A°, A €
o/}, As o(S) is closed under countable union, then &/ C ¢(S). Also since
o(9) is closed under the complement, then & C o(S). Now, we prove
that o/ U Z is a o—algebra and therefore o(S) = &/ U A.

leo C o/ UPB and o UAB. Let (A,), be a sequence in & U A.
+oo

If A, € &, for every n € N, then UAnEMC.dU%’.

n=1
If there is n € N such that A,, € &, then AS € o/ and then A is finite or

+oo ¢ +oo
countable and (U Ak> = ﬂ Aj, C A; is finite or countable and this
k=1 k=1
+oo ¢ +oo
proves that UA" € o/ and UAnE%’C,QiU%. Hence o/ U %
n=1 n=1

is closed under countable union and then &' U A is a c—algebra.

(a) Let o = P(A°)UF.
R € € and if B € €, then B® € &(A°) and if B € #(A°), then
B¢ € €. On the other hand, if (A,), is a sequence in & and if
there exists k such that A C Ay, then A C U2, A,,. Moreover, if
Ay € P(A°) for every k € N, then U321 A, € P(A°). Then & is a
o—algebra and it is the o—algebra generated by % .

(b) & = Z(R) unless if A =0 or A =R, because o/ = L (A)U P (A°).



AUB = (A\B)U(B\ A)U(ANB). The subsets A\ B, B\ A and ANB
are disjoint. Then pu(AU B) = u(A\ B) + u(B\ A) + u(AN B).
A = (A\ B)U (AN B), therefore p(A) = p(A\ B) + u(AN B). The same
for B= (B\ A)U (AN B), and therefore u(B) = u(B\ A) + p(AN B).
Then p(A) + u(B) = (AU B) + u(AN B).

Let (A, = [n,+00|), for n € N. A(4,,) = 400 and m A, = 0.
n>0

As Q is countable, we can consider Q = {z,, : n € N}. Define the set

O=Jltn— 5 2+ 57—
et 2n(n+1) 2n(n+1)
O is an open set and A(O) < Y 0° | m — e

For x <y, f(y) — f(z) = AM(AN]z,y]) <y — . Then f is continuous.

The two limits A = li)I_n f(z) and B = 11)1}_1 f(z) exist.
As the function f is increasing, the set f~!(] — 0o, a]) is an interval for
alla € R (If x < y and f(x) < a and f(y) < a, the for all x < t < y,
f(®) < f(y) < a). So the function f is measurable.

{x eR: f(z)#0} = f1([—o0,0]) U £71(]0, + infty]) is measurable.
w0 = [ M) <A0) =0,
pl+2x

As ) is a measure, then if A and B are measurable and A C B, then
1 1
/ d\(z) < / dA(z). Then p(A) < u(B).
A B

14 22 1+ 22

“+o0
Let (A,), be an increasing sequence in & and let A = U A,. The

n=1
) ) o Xa,(®) .. . .
sequence (fy,)n defined by: f,(x) = 12 is increasing and using the

x
1
monotone convergence theorem, lim p(A,) = [ ——dA(x).
n—+oo a4 1+ 22

Forne N, p({z € B: [f(@)] > n}) < %/R\f(x)uu(x). Then

u({x eR: f(z) = j:oo}) =0.



For all n € N, the set E, = {x € R: f(z) > 1} is measurable. Since
f(z)du(z) =0, then E, is a null set. So E={zx € R: f(z) > 0} is

ETL
a null set. Also the set {x € R: f(x) <0} is a null set, then f =0 a.e.

“+oo

|sin(z?)]d\(z) = / | sin(z?)|dz.

— 00

7-2-10 | As the function sin(z?) is continuous, /
R

+oo +o00 . foo o
/ |sin(z?)|de = / Mdm > de
! L v 1 VT

o0 1—
_ / cos(2x) i
1 2V

+oo
cos(2x
and since the integral \(f )d;v is convergent, (We can use Abel’s
T
1 Ve
theorem) and the integral ——dx is divergent, then the function
1 X

sin(z?) is not integrable.

With the same arguments the function cos(z?) is not integrable.



7-3-1

+oo |sin(e"”)|d tzac_\/ﬁ +o00 sm en
11 na2 ™ B f 142 dt
0

“+oo
— 7dt.
\/ﬁ/o 1+ ¢2

IN

Then
lim 20 sin(e?)

dx = 0.
n——4oo 0 1—1—7’7/332 v

Ty _n —x
lim  x[o,n( )(l—i—ﬁ) COS T = X[0,4+o00[(Z)e * cos x and X[ ) (7)(1+

n—-4o0o

x x
—) "|cosz| < e 2, and this function is integrable. So using the
n

dominate convergence Theorem

n

. x oo 1
lim (1+7)_"cosxdx:/ e T cosxdr = —.
n—-+4oo 0 n 0 2

lim X0, () (1 + %)"6_21 = X[0,400[(z)e” . On the other hande,

n—>+

as 5 <In(1+z) < a, for every z € [0, 1], then

X[o,n) (2)(1 + E)”e_% < e~ %, and they are integrative. So using
n

Capped Convergence Theorem

n

x oo
lim (1+ =)"e " dx = / e Pdr =1.
n 0

n—-4o0o 0
(1- E) e >e? for all z € [0,n], and therefore:
n
" x 2
lim (1—=)""e2dx = +o0.
n—-+oo 0 n
. z.,1+nz - .

ngrfoo X[o,n) (2)(1 n) g (08T = @e “cosz on the interval

[0, 4+00[. On the other hand since In(1—xz) < —z, for every x € [0, 1],
then

X[0,n) (T )(1—5)
So using the dominate convergence theorem

14+ nx

|c05 x| < e7®(1+x), and they are integrable.
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(b)

n + infty
. z.,1+nz _
lim (1—=)" cos zdx xe " cosxdx
n—+o0o Jg n’ n+x 0

oo

1
= ie_m(—m cosx+(1+x)sinz| =10.
0
X, 2 22
li 1+ )" e™ = ~°2. On the other hand, In(1
n;rilm( + n) e X[0,400[(T)e n the other hand, In(1 +
x)<xz-— % for every = € [0,1], then
Xjo,n) () (1 + %)”Qe*m = o (x)e" BAFHEI T < =% Using the
dominate convergence theorem
n —+o0 22
lim (1+ E)”Z’e_m”da: = / e~ FTdr =)~
n——+oo 0 n 0 2
AsIn(1+z) < Lz for every z > 1, then
LT in? —nz —2x
X[, +oof (@) (14 )™ €7 < X, pocf)a)e 2" and
teo ., 2 oo,
lim (14+=)" e ™dx < / e 2%z =0.
n—+oo J, n n
Then
+oo
x P
1 14— Mdr ==
nﬁlrfoo 0 ( * n) v 2
+oo
_ N\ f(no)
Let g(z) = Using the monotone convergence theorem
n(x
n=1
+oo +oo
|f (nx) |f nx) 1
/Z d)\ d/\( )= Z‘|f||1m<+o®.
n=1

So the function g is integrable and finite a.e. Then lim f(nz) =0
n—+oo N«
a.e.

+
i. Let h(z) =

n

8
[y

(nx)

. Using the monotone convergence theo-

n
1

rem,



TEX ) (na X T f(ne

+o0 nT
) @,
_ 7;/0 )

oo T
_ Z/O 7|f7§f)|d>\(x)<+

So the function A is integrable on [0, T'], T— periodic and bounded

a.e. Then lim f(nz)

5 = 0a.e zelR.
n—-+oo n

ii /W(ln\cosxDQda? = 1 Mdm < +00 and (In|cosz|)?
- Ve

(In | cosnzx|)?
2

m—periodic. Then lim
n—-+4oo n
1 a.e.
721

1+ ev 1+e z = Z )re~ (M7 The sequence (Z —1)* *(3+k)1>

k=
is a sequence of 1ntegrable functions and bounded above by the function
e~ 3%, Then it is integrable and

too -2z too -1
/ R o G M
0 1+e® 3+n 2
n=0
1

1 1
If;vZe,lntZ1foreveryt2xandm_ 2 andrbg+oom:

0. So using the dominate convergence theorem lim,, 4~ Ip,(z) = 0.

Hm<e/+°° dt _/+°° dt +/e dt
=7, W™t ). 2In"(t) L t2In"™(t)’

e dt
The first integral / ——— tends to 0.
. t2In"(t)

n

3
—_

For every, x <t < e, Int <1 and the sequence ( ), is increasing.

1
t21n"(t)
. . . ¢ dt
Using the dominate convergence theorem lim S = oo,

n—+oo [ t2In"(t)

R Lot (0) = 1 = 3 e

The functlon fis contlnuous on the interval [0, +oo[ and non negative.

=0a.e. and lim (|cosnx|)% =
n—+o00



1
(f(0) = lim f(x) = g>~ On the other hand, _lim e " =0, then there
r—r x

—+00

1
exists A > 0 such that 1—e%* > 3 for all z > A and then f(z) < 2ze™ "

which is integrable.

+o0o 400 +oo
Using the dominate convergence theorem, / fla)dx = Z / ze (@m0 g0 —
0
+00 1

HZ:O (a + nb)2’

7-3-6 | The sequence (tan” x),, is decreasing for each z € [0, 7[and 0 < tanz < 1
a.e. Therefore lim tan"(z) =0.

n—-+oo
1
We note that In = 7, I; = ha\@7 and for eachn > 1, I, + I,10 = T
n

define the sequences (u, = Io,)n and (v, = Iopi1)n-
We have u,, + tupt1 = m and v, + vpy1 = ﬁ Then uy = % =
+oo k +oo k

(-1 oo (=D
;2k+1 and then 2v0—ln2—; A

(a) As In(1 —t¢) < —t for every t € [0, 1], then (1 — f) = enn(-2) <
n

T

e, for every t € [0,n]. Then lim (1— =)" < e *. Using the
n—-+oo n

monotone convergence theorem

lim / V(1 lnmd;v—/ Vze *lnzdx.

n—-+oo

.2 Loz
| sin x| = and  lim |sinz|»

1+22 — 1422 n—stoo 1422 14z
nate convergence theorem

(b)

5+ Using the domi-

lim dr = 7.

x:
n—+oo Jp 1422 /Rl—i-QTQ
1

1 1
li — — =0 a.e. and th < d th
(c) o dim EDn a.e. and the AT = (1+$p)% and they

are integrable. Then

+oo
lim _de
Y B CErTL



(d) lim e_"Sinzrf(x) = f(x) and e_"smzﬂf\(m) < |f|(z), therefore

n—-> 00

+oo

2 +o0
lim e~ () d :/ f(z)dx.
0

n—-4oo 0

T hf() oo f(ht) f(ht))
dr = dt = o t dt
/a n2 + 22 L [,f 1+2 /[;,+OO[XbL,+OO[( )1+t2

f(ht)
hlip([)lJr Xz ool (1) 1+ 2

+oo
which is integrable. Then hm /

= 0 a.e and bounded by the function |f]

()
+2

= nf@) [ ) ()
/0 huxzdx—/o el

* f / f(ht)
o t dt
/0 h? + 332 [0,+oo[X[07h [)( )1 + 12

f(ht) _ f(O)X[O,-‘roo[(t)
hhnol+ X0, 2 ((t ) e = 10 a.e. and bounded by the

function | f| which is integrable. Then

T hf(x) 7 f(0)
li = .
h—o+ e d 2

r = 0.
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(b)
()

1 1
f(z) = — a.e. and this function is integrable and/ —d\(z) =
Ve 0,1 V¥

2.
g(z) = cosz a.e. and this function is integrable / coszdA(z) =
[0,1]
sin 1
. 9 B
For every x > 1, | sinz] > smr 1 — cos(2x) _ 1 cos(2x)
x 2x 2x 2%

2x)

cos
The integral of the function on [1,4o00[ is convergent, but

1
the integral of the function 25 on [1,+00[ is divergent. Then the
x

| sin x|
x

integral of the function

b

V/|sinz|
™

0, —|.

[ ’2]

is not convergent on [1, +ool.

T 2x
is integrable on [0, 5] because sinxz < — on the interval
T

Le”f/ _dr
0,2] \/|sinz|

(n+1)7w 1
dr < 2] ——, theref
/M g(z)dx < A5 mE) erefore

+oo +oo 1
g(x)dr < 21 Yy ———— < +00. So the function g is
| 2 T @)

1

+oo
integrable. We note that / h(z)dx = / h(z)dz. (We can make
0 1

1
the substitution ¢t = —). and for x > 2, h(z) < 5— which is
T rlnz
e 1
integrable on [2, +o00]. (/ ———dx = —, for a > 1). Then h
o zln®z Ina

is integrable.

—+oo
e lel — Z efnx[n,n_s_l[(:c). Then using the monotone convergence
n=0

—+oo
theorem / e Fldx(z) = en=_—5_
0,+0c] nz::o el

f(z) = cosz a.e., then f(z)d\(z) = / coszdA(z) = 0.
[0,7] [0,7]

Xg = 0 a.e., then / Xo(x)dA(z) = 0.
[0.1]
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