
 

Chapter 6:  Box-Jenkins Methodology 

The theoretical forms of ACF and PACF for the models: 𝐴𝑅(𝑝), 𝑀𝐴(𝑞) and 𝐴𝑅𝑀𝐴(𝑝, 𝑞)  

Model 𝐴𝐶𝐹(𝜌𝑘) 𝑃𝐴𝐶𝐹 (𝜙𝑘𝑘) 

𝐴𝑅(1) 
Approach zero exponentially or in 

a sinusoidal manner 

Cut off completely after the 1st time 

lag 

𝐴𝑅(2) 
Approach zero exponentially or in 

a sinusoidal manner 

Cut off completely after the 2nd time 

lag 

𝐴𝑅(𝑝) 
Approach zero exponentially or in 

a sinusoidal manner 
Cut off completely after time lag p 

𝑀𝐴(1) Cut off completely after the 1st time lag 
Approach zero exponentially or in 

a sinusoidal manner 

𝑀𝐴(2) 
Cut off completely after the 2nd time 

gap 

Approach zero exponentially or in 

a sinusoidal manner 

𝑀𝐴(𝑞) Cut off completely after a time gap q 
Approach zero exponentially or in 

a sinusoidal manner 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

Gradually approaching zero after 

(q-p ) lags exponentially or in 

a sinusoidal manner 

Gradually approaching zero after 

(p-q ) lags exponentially or in 

a sinusoidal manner 

 

 

 

 

 

 

 

 

 

 

 



Steps of Time series analysis: 

1. Checking stationarity. (Make an appropriate transformation if need) 

Differencing can help stabilise the mean of a time series by removing changes in the 

level of a time series. Box-Cox can help make the variance constant.  

R code of Box-Cox transformation: 

(lambda <-BoxCox.lambda( x )) 

 x.B<-BoxCox( x ,lambda) 

2. Checking ACF and PACF and  Finding the appropriate model. 

3. Checking the coefficients. 

Test for significance of the estimated parameters. 

4. Diagnose the Residuals. 

a. Random, PAC, L-Jung Box and normality graphs. 

b. Residuals are uncorrelated. 

Test if the residual of the fitted model up to lag k are uncorrelated. We examine the 

correlation up to lag 12, 24, 36 and 42. 

                    
          𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑘 = 0

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 ≠ 0
𝑡ℎ𝑒 𝐿𝑗𝑢𝑛𝑔 − 𝐵𝑜𝑥 𝑡𝑒𝑠𝑡 

Also, autocorrelation function (ACF & PACF) must be free of any spikes (all the bars  are 

within the blue band). 

c. Randomness test by use Runs test. 

The randomness of the residuals is tested by Runs test around zero. 

𝐻0: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑟𝑎𝑛𝑑𝑜𝑚
        𝐻1: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑟𝑎𝑛𝑑𝑜𝑚

          (Runs test around zero).   

d. Normality test by use Shapiro test. 

𝐻0: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 𝐻1: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

                 

e. Mean of the residuals is zero. 

Use t-test :   𝐻𝑜: 𝐸(𝜀𝑡) = 0     𝑣𝑠   𝐻𝐴: 𝐸(𝜀𝑡) ≠ 0       

5. If we have more than model, we use AIC or BIC to compare. 

6- Forecasting. 

 

 

 



Exercise 1 using R: 

The packages used in time series analysis. 

#install.packages("forecast") 
#install.packages("tseries") 
#install.packages("randtests") 
#install.packages("astsa") 
#install.packages("lmtest") 
library(forecast) 
library(tseries) 
library(randtests) 
library(astsa) 
library(lmtest) 

1. Checking stationary of the series: 

d<- read.csv(file.choose(),header = T)  
d=ts(d)  #time-series objects 
plot(d) ; abline(h =mean(d),col="red")   

 

The data seems to be stationary in the mean. 

➢ Normality test. 

shapiro.test(d) 
    Shapiro-Wilk normality test 
 
data:  d 
W = 0.9688, p-value = 0.3296 

          𝐻0: 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙    𝑣. 𝑠    𝐻1: 𝑑𝑎𝑡𝑎 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 >  0.05, 𝑤𝑒 𝐴𝑐𝑒𝑝𝑡  𝐻0  

The data seems to be stationary in the variance.  



 

2-Finding the appropriate model using ACF and PACF plot: 

ggtsdisplay(d,lag.max=20 )  

 

# Or use  
#* acf(d,lag.max=20)                        
#* pacf(d,lag.max=20) 

The ACF Approach zero exponentially or in a sinusoidal manner. The PACF Cut off 

completely after the 1st time lag, so we suggest the model ARIMA(1,0,0) 

 

ARIMA(1,0,0) model 
(model1=arima(d,order=c(1,0,0))) 
Call: 
arima(x = d, order = c(1, 0, 0)) 
Coefficients: 
         ar1  intercept 
      0.6909    14.6309 
s.e.  0.1094     0.5840 
 
sigma^2 estimated as 1.447:  log likelihood = -64.47,  aic = 134.94 

 

𝐴𝑅𝐼𝑀𝐴(1,0,0) 



3- Testing the coefficients for ARIMA(1,0,0): 

coeftest(model1) 

 
z test of coefficients: 
 
          Estimate Std. Error z value  Pr(>|z|)     
ar1        0.69090    0.10945  6.3126 2.744e-10 *** 
intercept 14.63095    0.58402 25.0523 < 2.2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

𝐻0: 𝜙1 = 0 𝑣𝑠 𝐻1: 𝜙1 ≠ 0  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  2.744𝑒−10 <  0.05, 𝑤𝑒 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0.  

The constant term and coefficient of AR1 is significantly different from zero ,thus must be 

kept in the model.  

ARIMA(1,0,0) Model :  𝑦̂ = 4.5224 +0.6909 𝑦̂𝑡−1+𝜀𝑡 

𝑐 = 𝜇(1 − ∅1 − ∅2 − ⋯ − ∅𝑝) = 14.6309(1 − 0.6909) = 4.5224  

❖

 
Not: ARIMA model in R  

 

 

4- Diagnosing the Residuals of model ARIMA(1,0,0) 

a. graphs. 

b. Residuals are uncorrelated.  

tsdiag(model1) 



 

checkresiduals(model1, lag= 12)  

 



Ljung-Box test 
data:  Residuals from ARIMA(1,0,0) with non-zero mean 
Q* = 9.2425, df = 11, p-value = 0.5995 

Model df: 1.   Total lags used: 12 

checkresiduals(model1, lag= 24,plot=FALSE) 

 
    Ljung-Box test 
data:  Residuals from ARIMA(1,0,0) with non-zero mean 
Q* = 22.899, df = 23, p-value = 0.4667 
 
Model df: 1.   Total lags used: 24 

checkresiduals(model1, lag= 36,plot=FALSE) 

 
    Ljung-Box test 
data:  Residuals from ARIMA(1,0,0) with non-zero mean 
Q* = 29.715, df = 35, p-value = 0.721 
 
Model df: 1.   Total lags used: 36 

 

• Plot of residuals with time: The residuals are random around the zero. 

• All p-values of the Ljung-Box test > 0.05. The residuals are uncorrelated. 

• The ACF of the Residuals are zeros. 

• Histogram: The residuals seem to be normal . 

 

c. Randomness test 

runs.test(model1$r) 

 
    Runs Test 
data:  model1$r 
statistic = 0.32036, runs = 22, n1 = 20, n2 = 20, n = 40, p-value = 
0.7487 
alternative hypothesis: nonrandomness 

 

𝑯𝟎: 𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝒂𝒓𝒆 𝒓𝒂𝒏𝒅𝒐𝒎     𝒗. 𝒔   𝑯𝟏: 𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝒂𝒓𝒆 𝒏𝒐𝒕 𝒓𝒂𝒏𝒅𝒐𝒎. 

p-value= 0.7487 > 0.05 we accept 𝐻0  , which means that the residuals are random 

 

 



d. Normality test 

shapiro.test(model1$residuals) 

 
    Shapiro-Wilk normality test 
data:  model1$residuals 
W = 0.96633, p-value = 0.2737 

𝑯𝟎: 𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝒇𝒐𝒍𝒍𝒐𝒘 𝒏𝒐𝒓𝒎𝒂𝒍   𝒗. 𝒔    𝑯𝟏: 𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝒅𝒐 𝒏𝒐𝒕 𝒇𝒐𝒍𝒍𝒐𝒘 𝒏𝒐𝒓𝒎𝒂𝒍. 

p-value= 0.2737 > 0.05 we accept 𝐻0 , which means that the residuals are Normally 

distributed. 

 

e. Mean of the residuals is zero. 

t.test(model1$r) 

 
    One Sample t-test 
 
data:  model1$r 
t = 0.031149, df = 39, p-value = 0.9753 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.3835818  0.3955808 
sample estimates: 
  mean of x  
0.005999503  

𝑯𝟎: 𝑬(𝜺𝒕 ) = 𝟎     𝒗𝒔     𝑯𝟏: 𝑬(𝜺𝒕 ) ≠ 𝟎 

p-value > 0.05 , which means the acceptance of the zero-mean hypothesis of the residuals. 

 

If we suggest other model ARIMA(0,0,1) 

(model2=arima(d,order=c(0,0,1))) 
Call: 
arima(x = d, order = c(0, 0, 1)) 
 
Coefficients: 
         ma1  intercept 
      0.5570    14.5881 
s.e.  0.1251     0.3337 
 
sigma^2 estimated as 1.87:  log likelihood = -69.46,  aic = 144.92 

BIC(model2) 

[1] 149.9828 



3- Testing the coefficients for ARIMA(0,0,1): 

coeftest(model2) 

z test of coefficients: 

          Estimate Std. Error z value  Pr(>|z|)     

ma1        0.55701    0.12509   4.453 8.467e-06 *** 

intercept 14.58814    0.33366  43.721 < 2.2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

𝑯𝟎: 𝜽𝟏 = 𝟎     𝒗𝒔   𝑯𝟏: 𝜽𝟏 ≠ 𝟎 

p-value = 8.467e-06 < 0.05, means, we reject 𝐻0 

The constant term and coefficient of MA1 is significantly different from zero ,thus must be 

kept in the model.  

 

4- Diagnosing the Residuals of model ARIMA(0,0,1) 

 a.graphs.         b.Residuals are uncorrelated. 

tsdiag(model2) 

 



checkresiduals(model1, lag= 12)  

 

    

 Ljung-Box test 
data:  Residuals from ARIMA(0,0,1) with non-zero mean 
Q* = 20.109, df = 11, p-value = 0.04387 
Model df: 1.   Total lags used: 12 

checkresiduals(model2, lag= 24,plot=FALSE) 

    Ljung-Box test 

data:  Residuals from ARIMA(0,0,1) with non-zero mean 

Q* = 43.852, df = 23, p-value = 0.005478 

Model df: 1.   Total lags used: 24 

checkresiduals(model2, lag= 36,plot=FALSE) 

    Ljung-Box test 

data:  Residuals from ARIMA(0,0,1) with non-zero mean 

Q* = 49.797, df = 35, p-value = 0.05004 

Model df: 1.   Total lags used: 36 

 

• The residuals are random around the zero (Except for 𝜌2, it could be a random error) 

• Almost all p-values of the Ljung-Box test < 0.05. The residuals are correlated. 

• The ACF of the Residuals are zeros. 

• The residuals seem to be normal . 

The fitted model is not adequate. 



 

c. Randomness test 

runs.test(model2$r) 
    Runs Test 
data:  model2$r 
statistic = -0.96108, runs = 18, n1 = 20, n2 = 20, n = 40,  
p-value =0.3365 
alternative hypothesis: nonrandomness 

p-value= 0.3365 > 0.05, means, we accept H0 (the residuals are random) 

d. Normality test 

shapiro.test(model2$residuals) 
    Shapiro-Wilk normality test 
data:  model2$residuals 
W = 0.97718, p-value = 0.586 

p-value= 0.58 > 0.05 , Accept 𝐻0(Residuals follow normal) 

e. Mean of the residuals is zero. 

t.test(model2$r) 
    One Sample t-test 
data:  model2$r 
t = 0.033222, df = 39, p-value = 0.9737 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.4355887  0.4501366 
sample estimates: 
  mean of x  
0.007273971  

p-value > 0.05 , which means the acceptance of the zero-mean hypothesis of the residuals. 

 

5- Using AIC or BIC to choose between ARIMA(1,0,0) and ARIMA(0,0,1)  

model1$aic 
[1] 134.9385 
model2$aic 
[1] 144.9162 
BIC(model1) 
[1] 140.0051 
BIC(model2) 
[1] 149.9828 
 

The best model with lowest AIC and BIC . Which is ARIMA(1,0,0,0) 



6- Forecasting using ARIMA(1,0,0): 

(f=forecast(model1, h=5)) 

Point   Forecast    Lo 80    Hi 80    Lo 95    Hi 95 
41       15.42967 13.88817 16.97116 13.07215 17.78718 
42       15.18278 13.30916 17.05641 12.31732 18.04825 
43       15.01221 12.99927 17.02515 11.93369 18.09074 
44       14.89436 12.81822 16.97051 11.71917 18.06956 
45       14.81294 12.70729 16.91859 11.59263 18.03325 

autoplot(f) 

 

 

Exercise 2:  

 For (WWWusage) data, is a time series of the number of users on a server every minute for 

100 minutes, do the following: 

1- Plot the series and check its stationarity in mean and variance. 

2- plot the ACF and PACF , suggest a preliminary model for the data. 

3- Fit the suggested models and get acquainted with the R output. 

4- Predict number of users for next 10 minutes. 

 

 

 



 

Exercise 2 using R: WWWusage data. 

rm(list=ls()) 
 data <- read.csv(file.choose(),header = T)  
 Y=ts(data) 
 plot(Y) ; abline(h =mean(Y),col="red")  

 

The data seems to be not stationary in the mean and variance. 

➢ Normality test: 

shapiro.test(Y) 
    Shapiro-Wilk normality test 
data:  Y 
W = 0.9373, p-value = 0.0001325 

qqnorm(Y); qqline(Y) 

 



The data is not stationary in the variance. p-value = 0.00013 < 0.05 , we reject 𝐻0, which 

indicates to instability in the variance. Also, qq-plot doesn’t look normally distributed. 

➢ First starting by taking the first difference: 

Y.D<-diff(Y,difference=1) 
plot(Y.D) ; abline(h =mean(Y.D),col="red") 

  

The data now seems to be stationary in the mean. 

 

➢ Normality test: 

shapiro.test(Y.D) 

 
    Shapiro-Wilk normality test 
data:  Y.D 
W = 0.9891, p-value = 0.5997 

The data now is stationary in the variance. 

 

2- Finding the appropriate model using ACF and PACF plot: 

ggtsdisplay(Y.D,lag.max=20) 



 

The ACF Approach zero exponentially or in a sinusoidal manner. The PACF Cut off 

completely after the 3rd time lag, so we suggest the model ARIMA(3,1,0) 

 

ARIMA(3,1,0) model: 

(model1=arima(Y,order=c(3,1,0))) 
Call: 
arima(x = Y, order = c(3, 1, 0)) 
Coefficients: 
         ar1      ar2     ar3 
      1.1513  -0.6612  0.3407 
s.e.  0.0950   0.1353  0.0941 
 
sigma^2 estimated as 9.363:  log likelihood = -252,  aic = 511.99 

 

3- Testing the coefficients for ARIMA(3,1,0): 

coeftest(model1) 
z test of coefficients: 
     Estimate Std. Error z value  Pr(>|z|)     
ar1  1.151340   0.094984 12.1214 < 2.2e-16 *** 
ar2 -0.661227   0.135263 -4.8885 1.016e-06 *** 
ar3  0.340713   0.094146  3.6190 0.0002957 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 



 

 

1) For 𝜙1:   

𝐻0: 𝜙1 = 0     𝑣𝑠    𝐻1: 𝜙1 ≠ 0 

p-value = 2.2e-16 < 0.05, we reject 𝐻0 

2) For 𝜙2:   

𝐻0: 𝜙2 = 0     𝑣𝑠    𝐻1: 𝜙2 ≠ 0 

p-value 1.016e-06< 0.05, we reject 𝐻0 

3) For 𝜙3:   

𝐻0: 𝜙3 = 0     𝑣𝑠    𝐻1: 𝜙3 ≠ 0 

p-value 0.0002957< 0.05, we reject 𝐻0 

Notice here the coefficient of AR1 ,AR2 and AR3 are significantly different from zero and 

hence must be retained in the model. 

 

 

ARIMA(3,1,0) Model : 

(𝟏 − 𝝓𝟏𝑩 − 𝝓𝟐𝑩𝟐 − 𝝓𝟑𝑩𝟑)(𝟏 − 𝑩) 𝒚𝒕 = 𝝐𝒕   ≫

≫ (𝟏 − 𝟏. 𝟏𝟓𝟏𝟑𝑩 + 𝟎. 𝟔𝟔𝟏𝟐𝑩𝟐 − 𝟎. 𝟑𝟒𝟎𝟕𝑩𝟑)(𝟏 − 𝑩) 𝒚𝒕 = 𝝐𝒕 

 

4- Diagnosing the Residuals of model ARIMA(3,1,0): 

a. graphs. 

b. Residuals are uncorrelated. 

tsdiag(model1) 



 

checkresiduals(model1, lag= 12)  

 

   Ljung-Box test 
data:  Residuals from ARIMA(3,1,0) 
Q* = 6.6597, df = 9, p-value = 0.6725 
 
Model df: 3.   Total lags used: 12 



checkresiduals(model1, lag= 24,plot=FALSE) 

 
    Ljung-Box test 
data:  Residuals from ARIMA(3,1,0) 
Q* = 20.393, df = 21, p-value = 0.4965 
 
Model df: 3.   Total lags used: 24 

checkresiduals(model1, lag= 36,plot=FALSE) 

 
    Ljung-Box test 
data:  Residuals from ARIMA(3,1,0) 
Q* = 31.19, df = 33, p-value = 0.5574 
 
Model df: 3.   Total lags used: 36 

checkresiduals(model1, lag= 42,plot=FALSE) 

 
    Ljung-Box test 
data:  Residuals from ARIMA(3,1,0) 
Q* = 38.516, df = 39, p-value = 0.4918 
 
Model df: 3.   Total lags used: 42 

 

• Plot of residuals with time: The residuals are random around the zero. 

• All p-values of the Ljung-Box test > 0.05. The residuals are uncorrelated. 

• The ACF of the Residuals are zeros. 

• Histogram: The residuals seem to be normal . 

 

c. Randomness test 

runs.test(model1$r) 

 
    Runs Test 
data:  model1$r 
statistic = 0.20102, runs = 52, n1 = 50, n2 = 50, n = 100, 
 p-value =0.8407 
alternative hypothesis: nonrandomness 

𝐻0: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑟𝑎𝑛𝑑𝑜𝑚    𝑣𝑠     𝐻1: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 

p-value= 0.8407 > 0.05, we accept 𝐻0 (the residuals are random) 



 

d. Normality test 

shapiro.test(model1$residuals) 

 
    Shapiro-Wilk normality test 
data:  model1$residuals 
W = 0.98913, p-value = 0.5951 

p-value= 0.595  > 0.05, Accept 𝐻0 , which means that the Residuals follow normal.  

 

e. Mean of the residuals is zero. 

t.test(model1$r) 

 
    One Sample t-test 
data:  model1$r 
t = 0.75573, df = 99, p-value = 0.4516 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.3748326  0.8360087 
sample estimates: 
mean of x  
 0.230588  

p-value =0.4516 > 0.05 , which means the acceptance of the zero-mean hypothesis of the 

residuals. 

 

6- Forecasting : 

(f=forecast(model1, h=10)) 

    Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95 
101       219.6608 215.7393 223.5823 213.6634 225.6582 
102       219.2299 209.9265 228.5332 205.0016 233.4581 
103       218.2766 203.8380 232.7151 196.1947 240.3585 
104       217.3484 198.3212 236.3756 188.2489 246.4479 
105       216.7633 193.2807 240.2458 180.8498 252.6768 
106       216.3785 188.3324 244.4246 173.4858 259.2713 
107       216.0062 183.3651 248.6473 166.0860 265.9264 
108       215.6326 178.5027 252.7624 158.8474 272.4178 
109       215.3175 173.8431 256.7919 151.8879 278.7471 
110       215.0749 169.3780 260.7719 145.1874 284.9625 

autoplot(f) 



 

 

➢ plot the original time series as a black line, with the forecast values as 
a pink line:  

 fits<-fitted(model1) 
 plot(Y,col = "black",lwd=2) 
 points(fits, col = "deeppink",type = "l",lwd=2,lty = 2)  
 points(f$mean,col = "blue",type = "l",lwd=3) 

 


